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1 Introduction 

In this article, we briefly review some recent results on nonintegrability of dynamical 
systems [19, 26-30]. See these references for the details of the results. 

Consider systems of the general form 

わ＝ f(x), XE町， (1.1) 

where f(x) is meromorphic or analytic. Here we adopt the following concept of integra-
bility. 

Definition 1.1 (Bogoyavlenskij [4]). For any integer n 2'. 1, the n-dimensional system 

(1.1) is called (m,n -m)-integrable or simply integrable for some integer m E [1,n] 
if there exist m vector fields fi(x)(:= f(x)), h(x),..., fm(x) and n -m scalar-valued 
functions Fi (x),..., Fn-m (x) such that the following two conditions hold: 

(i) f1(x),...,f五(x)are linearly independent almost everywhere and commute with each 

other, i.e., [Ji, f月(x):= Dfk(x)fi(x) -Dfi(x)丘(x)二 0for j, k = l,..., m, where 
[ ・, •] denotes the Lie bracket; 

(ii) The derivatives DFi(x),...,DFn-m(x) are linearly independent almost everywhere 

and凡(x),...,Fn-m(x) are first integrals of Ji,..., fm, i.e., DFk(x)T fi(x)三 0for 
j = 1,..., m and k = l,..., n -m, where the superscript'T'represents the transpose 
operator. 

We say that the system (1.1) is meromorphically (resp. analytically) integrable if the 
first integrals and commutative vector fields are meromorphic (resp. analytic). 

Definition 1.1 is considered as a generalization of Liouville-integrability for Hamilto-
nian systems [13] since an n-degree-of-freedom Liouville-integrable Hamiltonian system 
with n 2'. 1 but also n linearly independent commutative (Hamiltonian) vector fields 
generated by the first integrals. 

The outline of this article is as follows. In Section 2, we briefly describe a generalized 
version due to Ayoul and Zung [3] of the Morales-Ramis theory [13, 14], which is a pow-
erful tool to prove the nonintegrability of dynamical systems in the Bogoyavlenskij sense. 
We also give the result of [29] obtained by the theory for the SEIR epidemic model (see, 
e.g., [5]), which has recently attracted much attention from the viewpoint of combating 
COVID-19. In Section 3, we present a technique to prove the meromorphic nonintegra— 

bility of nearly integrable systems [26]. The technique is based on the Morales-Ramis 
theory and its extension, the Morales-Ramis-Simo theory [16], and treats the integrabil-
ity of these systems such that the related first integrals and commutative vector fields also 
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depend on the small parameter analytically or meromorphically. We apply the technique 

to the restricted three-body problem and succeed in proving its nonintegrability for any 

mass ratio of the two primaries [26]. This result is very outstanding compared with the 

famous one of Poincare [20]. Moreover, we give the result of [27] obtained by the technique 
for periodic perturbations of single-degree-of-freedom Hamiltonian systems and see that 

it is closely related to the subharmonic Melnikov method [10, 23]. In Section 4, we outline 
recent results on nonintegrability of three-or four-dimensional systems near degenerate 

equilibria. The results do not rely on the Morales-Ramis theory, and two novel results 

play key roles in their proofs. 
After the RIMS symposium "Geometric Structures and Differential Equations -Sym-

metry, Singularity, and Quantization", further results on nonintegrability of dynamical 

systems were reported in [31,32]. 

2 Generalized Morales-Ramis Theory 

The generalized version due to Ayoul and Zung [3] of the Morales-Ramis and Morales-

Ramis-Simo theories [13, 14, 16] were used to obtain the results reviewed here. We briefly 
describe the generalized Morales-Ramis theory. 

Consider the general system (1.1). Let x = ¢(t) be its nonstationary particular solu-
tion. The variational equation (VE) of (1.1) along x =の（t)is given by 

t=Df（の（t））も ~EC凡 (2.1) 

Let C(/ be a curve given by x =叫t)and let召beits closure containing the infinity in the 

phase space, i.e., points at which a component of x(t) becomes infinite. Assume that the 

vector field f (x) can be merom竺phicallyextended to a region containing召． Wetake the 
meromorphic function field on C(/ as the coefficient field of (2.1). Using arguments given 

by Morales-Ruiz and Ramis [13, 14] and Ayoul and Zung [3], we have the following result. 

Theorem 2.1. Suppose that the VE (2.1) has no i汀 egularsingularity at infinity in the 

phase space and let C§ denote the differential Galois group of (2.1). If Eq. (1.1) is mero-

morphically integrable near賃 thenthe identity component炉 o頂 iscommutative. 

Remark 2.2. (i) The differential Galois group contains the monodromy group. If the VE 

(2.1) is Fuchsian, then the Zariski closure of the latter is equivalent to the former. 

(ii) If the system (1.1) is Hamiltonian, then Bogoyavlenskij-integmbility is replaced by 
Liouville-integmbility. 

(iii) If the VE (2.1) has an i汀 egularsingularity at infinity in the phase space, then 
we must replace the word "meromorphically" with "rationally" in the conclusion of The-

orem 2.1. See Section 4.2 of [13] or Section 5.2 of [14] for the details. 

(iv) A higher-order theory beyond (2.1) was also developed by Morales, Ramis and 

Sim6, and is called the Morales-Ramis-Simo theory. 

(v) The Morales -Ramis and Momles-Ramis-Sim6 theories have been applied success-

fully to many systems: Henon-Heiles system, general N-body problems (N 2'. 3), heavy 

top, homogeneous potentials, Lorentz equation and so on. See [6,8,9,12-16] and references 

therein for the details. 
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We now consider the SEIR epidemic model (see, e.g., [5]) 

S = -rSI, 方＝ rSl-bE, j = bE -al, R = al, (2.2) 

where the state variables S, E, I and R represent the numbers of susceptible, exposed, 
infected and removed individuals, respectively, while r, b and a represent the infection, 
latent and removal rates, respectively. The variable R is not essential in (2.2) since it 
does not appear in the first three equations. We see that 

F(S,E, I)= Sexp (-~(S + E + I)) 

is a first integral for the (S, E, !)-components of (2.2). We have a particular solution 
(S, E, I) = (0, 0, C1e―at) with 01 E <C is a constant. Introducing the new variables 
X = er(S+E+I)/a_ y = er(S+E)/ Y = er(S+E)/a and Z = erS/a and removing the inessential R-component, 

we rewrite (2.2) as 

S = -rSI, 

X = -rIX, 

E = rSI -bE, j = bE -al, 

rb __ _ _._ r2 
Y = -~EY, Z = -'-SIZ, 

a a 

for which the VE (2.1) along the particular solution becomes 

硲＝一rC1e―atos, OE= rC1e―atos-ME, 

紅＝ ME-aol, oX = -r X(t)ol -rC1e―atox, 

oY=ー和E, 紘＝―r;c1e―atos,

and has irregular singularity at oo, where X(t) = exp(召C1 e-at). Letting恥＝ <C(e-at,X(t)) 

and r =已 weapply Theorem 2.1 to prove the following [29]. 

Theorem 2.3. If aヂ0and b/a tj_ Q ¥ {1}, then the (S, E, !)-components of (2.2) is not 
Bogoyavlenskij-integrable near (S, E) = (0, 0) such that the first integrals and commutative 
vector fields are rational functions of S, E, I, e汽砂 andeI. Here we may take a, b, r E <C. 

Remark 2.4. When b/a = -1, the (S, E,I)-components of (2.2) is integrable since 

厨， E,I) ＝—臼＋知I2 -(a+ l)(S + E +I)+ ½(S + E + I)2 

is another first integral. 

3 Nearly Integrable Systems 

In this section we review the recent results on nonintegrability of nearly integrable systems 
[26-28]. We begin with the general theory [26]. 
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Figure 1: Assumption (A2). 

3.1 General theory 

Let£, m EN and consider 

j = sh(I, 0; s), 0 = w(I) + sg(I, 0; s), (3.1) 

in action-angle coordinates (I, 0) E配 x戸 whereIsl ≪ 1 and h :配 X']['mX股 → 記

w:配→ ffi.mandg:配 X']['mX股→応 areanalytic. We make the following assumptions: 

(Al) For some I* E配 thereexists a constant w* > 0 such that w(I*)/w* Eか＼ ｛O}. 

(A2) Let T* = 21r/w*. For some k：：：：：゚ and0 E 11'叫 thereexists a closed loop 10 such 
that'Y。n(i瞑 U(T* + i股）） ＝0 (see Fig. 1) and 

ダ勺0):= Dw(I*) 1叩（I*,w(I*)T + 0; O)dT =J 0. 
'Yo 

Under these assumptions we have the following. 

Theorem 3.1. Suppose that (Al) and (A2) hold. Then the system (3.1) is not meromor-
phically integrable near the resonant periodic orbit (I*, w(I*)t +0) in the Bogoyavlenskij 
sense such that the first integrals and commutative vector fields also depend meromorphi-
cally on s nears = 0. 

See [26] for a proof of Theorem 3.1. In the proof, a perturbation approach was used 

along with the theory of Section 2. 

Remark 3.2. The real-analytical integrability of (3.1) such that the first integrals and 
commutative vector fields also depend real-analytically on s near s = 0 was also recently 
discussed in [18] under more restricted conditions in some meaning. 

3.2 Restricted three-body problem 

We now consider the restricted three-body problem. Here we only treat the planar case 
but can extend the result to the spacial case without much difficulty. The equation of 
motion in the rotational frame (see Fig. 2) is given by 

8U2 
x =px +y, リ＝ Py-X, Px = Py + ~ ax 

(x, y), 
8U2 

凡＝一Pェ＋ー
8y 

(x,y), (3.2) 
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Figure 2: Restricted three-body problem. 

where 

砧(x,y) = 
μ 

＋ 
1-μ 

V(x-1 ＋砂＋y2 V(x＋砂＋y2

Equation (3.2) is a two-degree-of-freedom Hamiltonian system with the Hamiltonian 

H = ½(P~ ＋砂） ＋ （PxY -PyX)一伍(x,y), 

so that it is Liouville-integrable if it has an additional first integral. Poincare [20] proved 
the following. 

Theorem 3.3 (Poincare). The Hamiltonian system (3.2) is not analytically integrable 

such that the additional first integral also depends analytically on μ nearμ = 0. 

Regarding (3.2) as a Hamiltonian system on the four-dimensional complex manifold 

巧＝｛（X,Y,Px,Py墨 1位） EC6 

I Ui -(x -1 + μ)2 -炉＝匹一 (x+ μ)2 -炉＝ O},

we rewrite it as a meromorphic (rational) system: 

允＝ Px+ Y, iJ = Py -x, 

Px = Py -μ(x -1 + μ)/uf -(1 -μ)(x + μ)/ut 

砂＝一Px-μy/uf -(1 -µ)y/u~, 

妬＝ （（x -1 + μ)(Px + y) + Y(Py -x))/uぃ

妬＝（（x+μ)（四＋ y)+ y(py -x))/u2. 

Consider a neighborhood of (x, y) = (-μ, 0). Let 

改＝ X+ μ, E2'T} = Y, E―灰＝Pむ'E―l四＝Py+μ.

After scaling t→t/E尺upto the order of E見weobtain 

~=PE+ 翌n, 灰＝一
(1 -µ)~ 

炉＋nり3/2
+E如＋2翌μふ

り＝ Pn―表， P11= -
(1-μ)rJ _3__ _6 

（ざ十nり3/2
-e pg -C μn, 

(3.3) 
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which is a Hamiltonian system with the Hamiltonian 

l-μ 
H = ½(p~ ＋砂）— +星(TJPE―如）一ふ翌μ(2ぐーが）．

{ 

Using Delaunay elements, we rewrite the above system in action-angle coordinates. Let 

乃： 巧→で bethe projection such that 

叫X,Y,Px,Py叫 図 ） ＝ （x, Y,Px,Py) 

and let 

E（巧）＝｛柘＝ （x-l＋犀＋炉＝ O}U｛四＝ （x+μ戸＋炉＝ 0}C巧．

Note that 1r2 is singular on ~(:/'2). Applying Theorem 3.1, we prove the following. 

Theorem 3.4. The Hamiltonian system (3.2) does not have another first integral that is 

meromorphic in (x, y, Px, Py墨 1位） excepton~（巧） in punctured neighborhoods of 

(x,y) = (-μ,O) and (l -μ,O) (resp. (x,y,z) = (-μ,0,0) and (l -μ,0,0)) 

for anyμ E (0, 1), as Hamiltonian systems on乃

See [26] for a proof of Theorem 3.4. Note that if the system (3.2) is meromorphically 
integrable, then so is the system (3.3) such that the first integral is meromorphic on E 

near E = 0. 

Remark 3.5. Using Theorem 3.1, we can also prove a result similar to Theorem 3.3: The 
Hamiltonian system (3.2) does not have another first integral that is meromorphic on μ 

nearμ= 0 in a neighborhood of the unperturbed periodic orbit forμ= 0. See [28] for the 
details. 

3.3 Perturbations of Hamiltonian systems 

We turn to time-periodic perturbations of single-degree-of-freedom Hamiltonian systems, 

r: = JDH(x) 
0 1 

i:=JDH(x)+rn(x,vt), J=(~l ~), xE股叫 (3.4) 

where H:配→ 股 andu：配 xぎ→配 areanalytic and J is the 2 x 2 symplectic 
matrix. We assume the following on (3.4) with c = 0: 

(Ml) For some a1 < a2 there exists a one-parameter family of periodic orbits炉 (t),

a E (a1心）， withperiod仔＞〇．

(M2)炉 (t)is analytic in a E (a1匹）．

For relatively prime integers l, m EN, assume that the nondegenerate resonance con-
dition 2可炉＝ mv/ l and dTa / da =J O hold at a = al/m. We define the scalar action 

variable Ia for each periodic orbit xa(t) = (x『(t),x2(t)) as 

『＝土 [ax2凸＝土［゜吋（国(t)dt (3.5) 
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in the standard manner (see, e.g., Chapter 10 of [2]). The action variable I can thus be 
determined only by a. We assume that da/dl > 0 without loss of generality, and apply 
the implicit function theorem to (3.5) to represent a as a function of I: a = a(I). We 
can show that the symplectic transformation from (I, 0リtox is given by 

X = Xa(I)（ふ）， (3.6) 

where 

O(I) = 
21r 

Ta(I). 

We see that dO/dJヂ0at I = I" since dT" / daヂ0.Moreover, we have the relations 

0x 0x 
DxI = -J~, Dx仇＝ J-

00'OI.  

Let 02 = vt mod 21r in (3.4). Using (3.6) and (3.7), we transform (3.4) into 

(3.7) 

j = sh(I, 0ぃ約）， 釘＝以I)＋叩(I,01,約）， 的＝v, (3.8) 

where 

h(I, 01，約）＝贔DH(xa(I)（向）） u (xa(I)（五），02),

叫1,01,02)= J羞xa(I) （ふ） •u (xa(I)（ふ），02)

See Section 2 of [23] for the details on these computations. Applying Theorem 3.1 to 

(3.8), we obtain the following [27]. 

Theorem 3.6. Under assumptions (Ml) and (M2), if dT" /da =JO at a= al/m and there 

exists a closed loop況 forsome ¢ E §1 such that r</> n (i股U(T*＋遺））＝0 and 

”:=J DH（砂（t)).g（炉(T),VT+¢) dT =J 0, 
1¢) 

then the system (3.4) is meromorphically nonintegrable near the resonant periodic orbit 
（研(t),vt + ¢) with a= al/n in the meaning of Theorem 3.1. 

Remark 3.7. The integrand in the integralダ(¢)is the same as in the subharmonic 
Melnikov function, which enables us to detect the existence of resonant periodic orbits and 
their stability and bifurcations (see, e.g., [10,23,24]). 

Theorem 3.6 was applied to show their nonintegrability near resonant periodic orbits 
in the meaning of Theorem 3.1 for the Duffing oscillator 

切＝四，む＝ax1-Xi+ c(fJ cos vt —伝）

and the forced pendulum 

(3.9) 

ふ＝窃，む＝一sinx1 + c(fJ cos vt -8叩） （3.10) 

in [26] and [19], respectively, where a = 0 or士1and 8 2"'. 0 and fJ, v > 0 are constants. 
The real-analytical nonintegrability of (3.9) with a = 1 and (3.10) were also discussed 
in [18, 19]. Further examples for application of Theorem 3.1 are found in [27]. A result 
similar to Theorem 3.6 but real-meromorphic integrability near homo-and heteroclinic 
orbits was proved in [31], in which Theorem 2.1 was used but Theorem 3.1 was not. 
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4 Degenerate Equilibria 

Finally,we review a recent result on nonintegrability of three-and four-dimensional dy-

namical systems near degenerate equilibria [27]. Here the Morales-Ramis theory is not 
required to obtain the result. 

4.1 Main theorems 

Consider systems of the general form (1.1), where n = 3 or 4 and f(x) is analytic. We 
assume that x = 0 is an equilibrium, i.e., f(O) = 0, and the Jacobian matrix Df(O) of 
f(x) at x = 0 has (I) a zero and pair of purely imaginary eigenvalues,入＝ 0,上iw(w>O),
for n = 3 or (II) two pairs of purely imaginary eigenvalues,入＝士iwi巳＞ 0),j = 1, 2, 
with wifw2 (/_ (Ql for n = 4. Then by polynomial changes of coordinates the system (1.1) 
is transformed into 

坊＝ーは砂十 Oc1X1叩ー a呼 2巧， む＝ WX1+a虹 1巧十 a1x虹3,

む＝a3(Xi+ x~) + a4x~ 

up to O(lxl2) for case (I), and to 

允1= -W1X2 + (a1(x『 +x~) + a2(x~ + x~))x1 -(/31(x『 +x多）十 /32(x~ + xmxぁ

允2=W1X1 + (/31 (xi+ X弓）十 /32(x~ + x~))x1 + (a1(x『 +xり＋ a2(x~ +xmx公

ゎ3= -W2X4 + (a3(Xi + Xり＋ a4(x~ + x~))x3 -(/33(X『 +xD+/34(x~ + x~))x4, 

允4=W2X3 + (/33(Xi + Xり＋ /34(x~ + x~))x3 + (a3(x『+xぢ） + a4(x~ + x~))x4 

(4.1) 

(4.2) 

up to O(lxl3) for case (II), where aj,/3j E股， j= 1 .... 4. We state our main results as 
follows: 

Theorem 4.1. Let n = 3 and suppose that the system (1.1) is transformed into (4.1) 
up to O(lxl2). If one of the following conditions holds, then the system (1.1) is not real-
analytically integrable in the Bogoyavlenskij sense near the origin: 

(i) a凸＞ 0; (ii) a凸 <0and a4/a1'f-Q. 

Theorem 4.2. Let n = 4 and suppose that the system (1.1) is transformed into (4.2) 

up to O(lxl3). If a1ナ叩， a2ヂa4and one of the following conditions holds, then the 
system (1.1) is not real-analytically integrable in the Bogoyavlenskij sense near the origin: 

(i) a叫 ora凸＞ 0; (ii) a1叩， a2a4< 0 and aif a3心2/a4'f-Q. 

Theorems 4.1 and 4.2 also imply that three-and four-dimensional systems exhibiting 
fold-Hopf and double-Hopf bifurcations (see, e.g., [11]), respectively, are real-analytically 
nonintegrable when the two control parameters are zero if their hypotheses are satisfied. 
The nonintegrability of the normal forms for these bifurcations when the two control 
parameters are nonzero was previously discussed in [ 1, 25]. 

4.2 Key results 

We collect key results to prove the main theorems. We first consider the system (1.1) in 
a more general situation in which nヂ3,4 is allowed but x = 0 is still an equilibrium. 
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Definition 4.3 (Poincare-Dulac normal form [33, 34]). Change the coordinates in (1.1) 

such that Df(O) is in Jordan normal form. The system (1.1) is called a Poincare-Dulac 
(PD) normal form if [Sx, f] = 0, where Sis the semisimple part ofDf(O), i.e., S = diag心
where朽， j= 1,...,n, are the eigenvalues ofDf(O). 

We easily see that the full systems for (4.1) and (4.2) without truncation are PD 
normal forms for (1.1) under our assumptions although their right-hand sides may not be 
convergent. 

Theorem 4.4 (Zung [34]). Let n 2: 1 be any integer. If the system (1.1) is analytically 
integrable in the Bogoyavlenskij sense, then there exists an analytic change of coordinates 
under which it is transformed into a PD normal form. 

Theorem 4.4 also implies that the corresponding PD normal form is convergent and 
analytically integrable if the system (1.1) is analytically integrable. So we only have 
to prove the analytic nonintegrability of the full systems for (4.1) and (4.2) to prove 
Theorems 4.1 and 4.2. 

We next recall a result from [1]. Let m > 0 be an integer and consider m + 2-
dimensional systems of the form 

出＝ fx(x,y)，iJ= Jy(x,y), (x,y) ED, (4.3) 

where D c C2 x cm is a region containing them-dimensional y-plane { (0, y) E C2 x cm I 

y EC吋， andfx: D→C2 and ]y: D→cm are analytic. Assume that by the change of 
coordinates x = (x1,四） ＝ （rcos0,rsin0), Eq. (4.3) is transformed into 

r = R(r,y)，リ＝ fy(r,y), 0 = 8(r, y), (r, y, 0) ED  x C, (4.4) 

where DCCX cm i di is a region containing the m-dimensional y-plane, and R : D→C, 

fy :D → ←and 8: D→股 areanalytic. 

Propositi~n 4.5. (i) Suppose that Eq. (4.3) hr:s a meromorphic first integral near (x1,四） ＝ 
(0, 0). If fyj(O, y) -/-0 for almost all y E D for some j = 1,..., m, then the (r, y)-
component of (4.4) has a meromorphic first integral near r = 0. 
(ii) Suppose that E_q. (4.3) has a meromorphic commutative vector field. If 8(0, y) -/-0 
for almost ally ED, then the (r, y)-component of (4.4) has a meromoryhic commutative 
vector field near r = 0. 

Since f(x) is analytic near x = 0, we have 

00 

f(x)＝Lfi(x), (4.5) 
j=k 

where k EN and the elements of !J(x) are jth-order homogeneous polynomials of x. We 
have the following [27]. 

Theorem 4.6. Suppose that f(x) has the form (4.5) for some k EN. If the system (1.1) 
is analytically integrable in the Bogoyavlenskij sense, then so is the truncated system 

iJ =丘(y). (4.6) 
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We finally consider planar vector fields of the form 

z=p(z), zEC2, 

where p(z) is analytic in z. We also have the following [27]. 

(4.7) 

Proposition 4. 7. Let D C CC be a region that is covered by nonconstant solutions to 
(4.7) almost everywhere. Suppose that the system (4.7) has a first integral Q(x) and 
commutative vector field q(x) in D. Let 

△(x) = det(p(x), q(x)) = P1(x)q2(x) -P2(x)q1(x), 

where qj(x) and pj(x) are the jth-elements of q(x) and p(x), respectively. Then there 

exists a function x : <C→<C such that 

△(x)DQ(x) = x(Q(x))（;［冒）． (4.8) 

4.3 Proofs of the main theorems 

We sketch the proofs of Theorems 4.1 and 4.2. See [30] for the details. 
Using Theorems 4.4 and 4.6 and Proposition 4.5, we obtain the following. 

p roposition 4.8. ff the complexification of (1.1) in case (I) is analytically integrable 
near the origin x = 0, then so is the truncated system 

. - ---- _._ - __ 2 
i" = a1rx3, x3 = a3r~ + 2 

a4x3 (4.9) 

near (r, x3) = (0, 0). 

Proposition 4.9. If the complexification of (1.1) in case (II) is analytically integrable 
near the origin x = 0, then so is the truncated system 

内＝ （a1ri + a元）八，朽＝ （a叶＋ a叶）r2

near (r1,乃） ＝ （0, 0). 

We easily see that the systems (4.9) and (4.10) have first integrals 

Q(r, x3) = r-2四／a1(a記＋ （山— a1)x~)

and 

Q(r1,乃）＝信）2(a1叩） （伽ー~+0:2-0:4)如3ー叩4'
r2 乃

(4.10) 

respectively. We can show that if the hypotheses of Theorems 4.1 and 4.2 hold, then the 

systems (4. 9) and (4.10), respectively, have no analytical first integral. When Q (r,叫
and Q(r1，乃） arenot analytic, we assume that analytic commutative vector fields q(r,邸）
and q(r1心） existand use Proposition 4. 7 to obtain 

△(r，叫＝ Cr(a記＋ （a4 -a1)x~), 
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for (4.9), and 

△(r1,r2) = Cr1r2 (~ + 
2 

a2 -mal  r: a3) 

for (4.10), where C -=JO is some constant. From these expressions we estimate 

q(r, X3) = C (;3) + O(lrl2 + Ix計）
X3 

and 
C q(r1 五）＝― (m- 叫（~G~)+o(lr|『＋ |r附），

which are easily shown to be not commutative vector fields of (4.9) and (4.10), respectively. 
This contradicts our assumptions. Thus, we obtain the desired results. ロ

Remark 4.10. The nonintegrability of PoincarもDulacnormal forms with higher-order 
terms was discussed in [32]. In particular, it was shown there that they may be meromor-
phically nonintegrable even if the hypotheses of Theorems 4.1 or 4.2 do not hold. 

4.4 Examples 

As stated in Section 4.1, Theorems 4.1 and 4.2 imply that three-or four-dimensional 
systems exhibiting fold-Hopf and double-Hopf bifurcations are analytically nonintegrable 
under the weak conditions. We now give two such examples. See [27] for more details. 

We first consider the Rossler system [22] of the form 

允1=-（砂＋叩），む＝ X1+ ax2, 允3=如＋乃(x1-c), (4.11) 

where a, b, c are constants. We can show that it exhibits fold-Hopf bifurcations when 
b = 1, c = a E (-v'2, v'2) and a2 rf_ (Q [27]. 

Proposition 4.11. When b = 1, c = a E (-v'2, v'2) and a2 (j_ (Q, the Rossler system 
(4.11) is not real-analytically integrable near the origin. 

We next consider the coupled van der Pol oscillators [21] 

ふ＝四，む＝一X1+(釘-a三）砂＋ b1X3,

知＝叩， ね＝一C硲＋ ⑮ -a2x~）四十 b坪1'

where aj, bj, c > 0 andもE良， j= 1, 2, are constants. Let 

W1=  
(c + 1) - ✓（C - 1)2 + 4b1b2 

2 
'W2  = 

(c + 1) + ✓(c -1戸十4b1b2

2 

(4.12) 

We can show that it exhibits double-Hopf bifurcations when釘＝ 0,j = 1, 2, b山 <c,

叫吟(/.(Q, and 

a1b1((w多― 1)2-2b1的） ＋a2的((wf-1)2 -2b1b2)ヂ0. (4.13) 

See [27] for the details. 

Proposition 4.12. Whenも＝ 0,j = 1, 2, b1b2 < c and叫心(/.(Q, the coupled van der 
Pol oscillators (4.12) are not real-analytically integrable near the origin if condition (4.13) 
holds. 
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