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1 Introduction 

This is an announcement of a recent work [Wan22] of the author on generalized 
Fuchs theorem over p-adic polyannuli. 
Let K be a complete nonarchimedean field of mixed characteristic (O,p). 

Christol and Mebkhout have given an intrinsic definition of the exponents 

of a finite free differential module on one dimensional annuli satisfying the 
Robba condition in [CM97]. They have also shown that if the exponent has 

p-adic non-Liouville differences ([KedlO] Definition 13.2.1), then there exists a 
canonical decomposition of this differential module into the ones with exponent 

identically equal to a single element. This is called the p-adic Fuchs theorem. 

However, their work was found to be difficult due to the complicated nature of 
the Frobenius antecedent developed in [CD94], on which their work was built. 
Dwork gave a simplified proof of p-adic Fuchs theorem on one dimensional 
annuli, in which Frobenius antecedent no more plays an important role. This 

method is also written in [KedlO] with a slightly different way. After Dwork's 
proof on one dimensional annuli, Gachet proved the p-adic Fuchs theorem 

on higher dimensional polyannuli in [Gac99]. The precise statement of this 
theorem is as follows: 

Theorem 1.1 (Theorもmein page 216 of [Gac99]). Let P be a finite free 

diffe詑 ntialmodule on an open polyannulus over K for the derivations t;仇， with
1 :::; i :::; n satisfying the Robba condition and admitting an exponent on some 

closed subpolyannulus of positive width with p-adic non-Liouville differences. 

Then P adimits a basis on which the matrix of action of▽(t心） hasentries 
in K and its eigenvalues represent the exponent of P for all l :::; iさ n.
Consequently, P admits a canonical decomposition 

P=  EB P.,¥， 
入E(Zp/Z)れ

in which each P.,¥has exponent identically equal to入．

Meanwhile, Kedlaya proved a generalized version of one dimensional p— 
adic Fuchs theorem, by loosing the condition on exponents from having p-adic 

non-Liouville differences to a weaker one, namely, having Liouville partition, 
and yet still gives a decomposition of such differential module. 
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Theorem 1.2 (Theorem 3.4.22 in [Ked15]). Let P be a finite free differential 

module satisfying the Robba condition over one dimensional annulus over K 
associated to an open interval I. Let J C I be a closed subinterval of positive 
width, and suppose that P has an exponent A over J admitting a Liouville 

pa仕ition.0"1，．．．，ふ(fordefinition see Definition 3.4.4 in{Ked15}). Then there 
exists a unique direct sum decomposition PJ = P1 ①・・・① Pksuch that for 
g = 1,..., k, Pg admits an exponent over J weakly equivalent to吟

Moreover, it is realized that the generalized p-adic Fuchs theorem implies 
the the original p-adic Fuchs theorem in one dimensional case. 

In the article [Wan22], we proved a generalized version of higher dimensional 
p-adic Fuchs theorem: namely, we defined the notion of exponent A for a 
finite projective differential module P satisfying the Robba condition on higher 

dimensional polyannuli over K, and proved a decomposition theorem for P with 
respect to a Liouville partition of A, which is similar to Theorem 1.2. It is worth 
mentioning that our result implies Theorem 1. 1, and since our generalized p— 
adic Fuchs theorem works not only for finite free but also for finite projective 

differential modules, our result is possibly stronger than the result in [Gac99]. 
Also, though we basically follow the strategy developed by Kedlaya in [Ked15], 
there are new ingredients applied to get the decomposition from local ones, 
because of the lack of Quillen-Suslin theorem for arbitrary polyannuli over K. 
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2 Preliminaries 

In this section, we introduce some basic facts about module theory over p-adic 
polyannuli and abstract p-adic exponents. 
We denote the Berkovich affine n-space (SpecK[t1,..., t』)anover K by 

An 
K・ 

Definition 2.1. For a polysegment I= IT~=1 Ii C悶 0,the polyannulus with 
radius J over K is the subspace of A及definedby 

{x E鰈： ti(x)E Ji, 1さi::::;n}, 

and we call such a subspace an open (resp. closed) polyannulus if J is open 

(resp. closed). Moreover, we say that it is of positive width (resp. of width 0) 
if each Ji is not a point (resp. I consists of only one point). The coordinate 
ring of this polyannulus is 

{f=，苔”iE K[[t,t―1 ll :|，丹~I Ji I pi = 0 ¥:/ p E J}, 
and we denote this ring by K1,n-Here we put the subscript n in the notation 
to emphasize the dimension of the associated polyannulus. For p EI, we define 

the rrGauss norm of f＝区iEZnf;t'E K1,n to be lflp := max;Ezn IJ;lp'. 
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When I is closed, K1,n is a K-affinoid algebra in the sense of Berkovich, 
and the supremum norm (which is power multiplicative but not necessarily 

multiplicative) on K1,n is defined by IJl1 := maxpEI{IJlp}-For polysegments 
JC I in覧。 anda K1,n-module P, we denote the module KJ,n RK,,n P by 
PJ. 
For a finite projective module over a polyannulus of positive width, the 

following theorem shows that, after properly shrink the inner and outer radius 
of the polyannulus, the projective module becomes free. 

Theorem 2.2 ([Wan22], Theorem 1.18). Let a,(3 E顕。 withaく (3,andlet 
P be a finite projective K[a,(3］，n module. Then, for any p E (a,(3）， there exist 
a'and(3＇with a< a'< pく (3'く (3suchthat P[a',(3']is free. 

For x E乙， wedenote by〈x〉thesmallest nonnegative rational number a 
such that one of x -a and x + a is a p-adic integer. 

Definition 2.3. We say that a E Zp is a p-adic Liouville number if a r:f_ Zand 

liminf 
p m a 

m→00五に〉 <00.
If a is not p-adic Liouville, we say that it is a p-adic non-Liouville number. 

In the following, for a multisubset A=  { A1,..., Am} of z;, we denote the 
i-th entry of Aj by A}, and denote the multisubset {Ai,...,Aぶ｝ ofZP by Ai_ 

Definition 2.4 ([Wan22], Definition 1.21, Definitions in p.194 of [Gac99], cf. 

[Ked15], Definition 3.4.2). Let A = {A1,..., Am} be a multisubset of勾
We say that A is p-adic non-Liouville in the r-th direction if A'; is a p-adic 
non-Liouville number for any 1 :S jさm,and we say that A is p-adic non-
Liouville if it is p-adic non-Liouville in every direction. We say that A hasp-
adic non-Liouville differences in the r-th direction if the difference multisubset 

A-A:= {Ai -Ai: 1さi,jさm}is p-adic non-Liouville in the r-th direction, 
and we say that A has p-adic non-Liouville differences if it has p-adic non-
Liouville differences in every direction. 

Definition 2.5 (Definitions in p.189 of [Gac99], cf.[Ked15] Definition 3.4.3). 

For two multisubsets A=  (A1,..., Am) and B = (B1,..., B叫 ofz;, we say 
that A is weakly equivalent to B if there exists a constant c > 0 and a sequence 
of permutations ah (h E Z>o) of {1, 2,..., m} such that, for all 1 ::; i ::; n and 
1 ::;j::; m, 

Ph 〈 A；丁― B; ）~ ch 

We say that A is equivalent to B if there exists a permutation c, of {1, 2,..., m} 
such that for all 1 ~ i ~ n and 1 ~ j ~ m, 

,, -B~ E Z. Ai 
叫）

Definition 2.6 ([Wan22], Definition 1.24, cf. [Ked15], Definition 3.4.4). Let 
k 

A,.rd1，．．．,.rdkbe multisubsets of z; such that A = LJ:=1瓜 asmultisets. We 
say that.rd1 ，．•．，吟 form a Liouville partition of A in the r-th direction if 

町，．．．，咋 isa Liouville partition of A八namely,for any 1さl< m S k and 
al E外r,a= E.rd~, a1 -a= is a p-adic non-Liouville number which is not an 
integer. 
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Proposition 2.7 ([Wan22], Proposition 1.25, cf. [Ked15], Proposition 3.4.5). 
Let A be a finite multisubset of窃 andlet.f211，．．．，“k be a Liouville partition 
of A in the r-th direction. 

(1) Let納，．．．，磁 bemultisubsets of z; such that !?ll[ is weakly equivalent to 
町 forl ~ j ~ k. Then免，．．．，怠 forma Liouville partition in the r-th 
direction of B = LJ: k j=l 疫'k・

(2) Suppose that B is a multisubset of勾 weaklyequivalent to A. Then B 
admits a Liouville partition気，．．．，高 inthe r-th direction such that !?llj 
is weakly equivalent to巧 forl ~ j ~ k. 

Definition 2.8 ([Wan22], Definition 1.28). Let k 2". 1. We define the notion 
of Liouville partition of a multisubset A of z; by k multisubsets.sd1，．.．,.sdkof 
勾 inductivelyon k as follows: 

(1) When k = l，迅 isa Liouville partition of A if.sd1 ＝A as multisets. 

(2) For general k,迅，．．．，吟 isa Liouville partition of A if there exists a 
partition 

{1,...,k} = LJI; 
i=l 

as sets for some l ~ 2 with each Ii nonempty such that ujEJ, J4j,..., ujEit巧
is a Liouville partition in the r-th direction of A for some 1 ::; rさnand 

that巧 (jE Ii) is a Liouville paヰitionof UjEJ,吟 whichis defined by 
the induction hypothesis. 

3 Th e construction of categories ~o and ~ p p 

For a polysegment I c悶 0,let Der(K1,n/ K) be the module of continuous K-
derivations on K1,n, where the topology on K1,n is induced by p-Gauss norms 
for all p E I. It is a finite free module generated by derivations with respect to 
each ti, which are denoted by仇， for1さi:S: n. 

Definition 3.1. Let P be a finite projective K1,n-module. A connection over 
Pis a K-linear homomorphism▽ :Der(K1,n/K)→EndK(P) satisfying the 
Leibniz rule: 

▽(o)(fa) = o(f)a + f▽(o)(a), for all 8 E Der(K1,n/K), f E K1,n, a E P. 

Moreover, a connection is called integrable if for 8, {)'E Der(Kr,n/ K), 
▽([8,8']) = [v'(8)，▽(8')], where [・, •] is the Lie bracket. 

A (finite projective) differential module over Kr,n is a (finite projective) 
Kr,n-module P with an integrable connection▽p, which we denote simply 
by▽if no ambiguity arises. A horizontal homomorphism between differential 
modules P and Q over Kr,n is a module homomorphism f: P→Q satisfying 
▽叫8)(f(x))= f(v'p(8)(x)) for all 8 E Der(Kr,n/K) and for all x E P. In 
the rest of the paper, we often say a differential module over Kr,n a differential 
module over I, by abuse of terminology. 
For any p E欧0,there is a direct system of rings ((Kr,n)r, ('PI J : Kぃ→

KJ,n)にJ)with the index set being all closed polysegments of即苅 containing
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p in its interior and partially ordered by inverse inclusion, and homomorphisms 

are given by the canonical inclusion. We denote the direct limit of this direct 
system by Rp,n or simply by Rp- Rp is canonically a differential ring with 

respect to仇， for1：：：：： i ：：：：：几
Since any finite projective module over Rp is extended from a finite projective 

module over K[a,(3],n for some a < pく (3,itis extended from a finite free 

k□]，n-module for some a<  p <(3by Theorem 2.2. In particular, all finite 
projective modules over Rp are finite free. 

Let Der(R以K)be the module of K-derivations {) on Rp such that 8IK,,n : 
kI,n →恥 isinduced by a continuous K-derivation on Kr,n for any closed 
polysegment I containing p in its interior. It is again a finite free module 
generated by仇 for1：：：：： i ：：：：： n. Using D出柘爪）， wecan d函碑伽呵皿
of (finite free) differential modules over Rp and horizontal homomorphisms 
between them in the same way as above. It is easy to see that any finite free 

differential module over凡isextended from some finite free differential module 
over Kr,n for some closed interval I containing pin its interior. 

Definition 3.2 (cf. [KXlO], Definition 1.5.2, [KedlO], Definition 9.4.7, [KedlO], 
Definition 13.3.1). Let I C 恥％ bea polysegment and let P be a finite 
projective differential module over Kr,n-Take p E J, let恥 bethe completion 
of K(t1,..., tn) with respect to the p-Gauss norm, and put VP= P R的，n応・
The intrinsic radius of P at p is defined as 

IR(Vp) ＝ min IR8t,（Vp) ＝ mm 
• |仇|sp,Fp

1<i<n 1<t<n _ ＿ 1▽(8tJlsp,VP 
E (0, l]. 

We say that P satisfies the Robba condition if IR(Vp) = 1 for all p E J. 
Also, we say that a finite free differential module over Rp satisfies the Robba 
condition if it is extended from a finite projective differential module over KJ,n 

satisfying the Robba condition for some closed polysegment J containing p in 
its interior. 

Let劣 bethe category in which objects are finite free differential modules 
over Rp satisfying the Robba condition, and morphisms are horizontal homo-
morphisms. For a polysegment J containing p in its interior, we say that P is 

an object in劣 defined(by P') over J if P'is a finite free differential module 
over KJ,n and Pis extended from P'. 
From now on for a positive integer s,几 denotesthe group of p•-th roots 

of unity in Kalg'and r = Us>O rs. Also r; and rn denote the product of n 

copies of rs and r, respectively. 

Definition 3.3 ([Wan22], Definition 2.3). The category Cef'p is defined as follows: 

The objects are finite free Rp-modules P endowed with a semilinear group 
action of rn on p鐸 K(r)satisfying the following conditions: 

(1) Pis extended from a finite free KJ,n-module P'for some closed polysegment 
J contains pin its interior, and the action of rn on P cK K(r) is induced 
from some semilinear group action of rn on P'鐸 K(r).

(2) The action of rn is equivariant with respect to the action of Gal(K(r)/ K) 

on both rn and P 0K K(r). That is, for a E Gal(K(r)/K), (E仔 and

xEP飯 K(r),we have 

び（ぐ(x))= a(（）＊（a(x)). 
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(3) For some basis e1,..., em of P'in (1), there exists l > 0 such that, for each 
positive integer k and (E r~, the representation matrix E(() ofぐwith
respect to this basis satisfies the inequality IE(()IJ :s: P伍

The morphisms f : P→Q of objects in'tfp are module homomorphisms 
satisfyingぐ((!0 id)(x)) = (f 0 id)（ぐ(x))for all (E rn and x E P 0K K(r). 

We summarize properties of these two categories'tfp and [gP as follows: 

Theorem 3.4 (cf. [Wan22], Lemma 2.6, Remark 2.7, Proposition 2.11). The 

following properties are true for祐 and劣：

(1) Both'tfp and劣 areAbelian catego成esand every object in'tfp and劣 is
finite free. 

(2) Tensor product and dual exist in'tfp and劣・

(3) For any PE劣，＜ Ern and x E P, the following series converges: 

叫）＝~ ((-1)"'( 
aEZ図。

t~) (x). 

This defines a functor劣→ ％ Here, 1 = ( 1,...,1) and ( tD a) 
（砂1 t辺 na1 )・・ •C"a~n) with Di =▽（仇）．

(4) The functor defined in (3) is an exact tensor functor of abelian categories. 

4 Generalized p-adic Fuchs theorem 

In this section, we define p-adic exponents associated to p-adic differential 

equations over polyannuli satisfying the Robba condition. Moreover, we state 

some basic facts and our main theorem. 
From now on, we use the following conventions. For (= ((1,... ，品） Er~,

an n-tuple of variables t = (t1,..., tn) and an n-tuple of m x m diagonal 

matrices 

A=(A1,...,A門＝ （diag(an,..., a1m),..., diag(an1,..., anm)), 

set 

(1) (t :=（（山，．．．，知％）．

(2) (A:= ({... (;;n, with ({ := diag((f",. • •, (l伍m).

Firstly, we give the definition of exponent for objects in Cef'p and show some 
properties of it. 

Definition 4.1 ([Wan22], Definition 3.1, cf. [KedlO], Definition 13.5.1 and 

[Ked15], Definition 3.4.11). Let P be an object in Cef'p free of rank m. Take a< 
p < f3 such that P is defined by P'over [a, (3], and take a basis e 1,..., em of P'. 
An exponent of P(admitted by P') is an n-tuple of m x m diagonal matrices of 

A=(A1,...,A門withentries in Zp for which there exists a sequence { Sぃ｝k=l
of m x m matrices with entries in K[a,f!],n satisfying the following conditions. 
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(1) If we put (vk,A,1,...'Vk,A,m) = (e1,...'em)Sk,A, then for all (Erk 

ぐ(vk,A,1,• • •, Vk,A,m) = (vk,A,1, • • •, Vk,A,m)砂

(2) There exists l > 0 such that ISk,Al[a,/3］:<:: plk for all k. 

(3) We have I det(Sk,A)l[a,/3］2". 1 for all k. 

For an object Pin各 wesay A is an exponent of P if, when considered 
as an object in'(/p, A is an exponent of P. 

Theorem 4.2 ([Wan22], Theorem 3.2, cf. [KedlO], Theorem 13.5.5,[Gac99], 
Theoreme in p.173). Let P be an object in'(/p・ Then there exists an exponent 
A for P. 

Theorem 4.3 ([Wan22], Theorem 3.3, cf. [KedlO], Theorem 13.5.6). Let P be 
an object in'(/P defined by Pi over Ji and by A over J2, where J1, J2 are closed 
polysegments containing p in its interior. Then the exponents of P defined by 
Pi and P2 are weakly equivalent. In particular, the exponent of P is uniquely 
determined up to weak equivalence. 

Moreover, exponents are compatible with exact sequence, tensor product 
and dual: 

Lemma 4.4 ([Wan22], Lemma 3.4, cf. [Ked15], Remark 3.4.14, [KS17]). Let 
A, A and P be three objects in'(/P with Pi having exponent Ai (i = 1, 2). 
Then, 

{1) if there exists a short exact sequence 

0 →尺→ P→的→ 0,

then P admits the multiset union A1 U A2 as an exponent. 

{2) the module PiR P2 is an object in'(/p, and admits the multiset A1 + A2 as 
an exponent. 

{3) the module P(is an object in'(/p, and admits the multiset -A1 as an 
exponent. 

Theorem 4.5 ([Wan22], Theorem 3.10, cf.[KSl 7]). Let P be an object in約
having an exponent A with Liouville partition叫，．．．，JZtkin the r-th direction. 
Then there exists a unique direct sum decomposition P = P1 Ell ・ ・ ・①凡 in劣
with each Pi having exponent weakly equivalent to吟 for1さiさk.

Let P be a finite projective differential module over an open polysegment 

I of顕。 satisfyingthe Robba condition. Then, for p EI, Pp := P 0的，n凡 is
an object of劣 andso an exponent AP of PP is defined. 

Lemma 4.6 ([Wan22], Lemma 3.12). Let the notations be as above. Then, for 
any p, p'EI, Ap and Ap'are weakly equivalent. 

Then we can define the exponent of a finite projective differential module 
over an open polysegment as follows: 
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Definition 4. 7 ([Wan22], Definition 3.13). Let P be a finite projective differential 
module over an open polysegment I in配］。 satisfyingthe Robba condition. We 
say that A is an exponent of P if it is an exponent of Pp := P 0的，n柘 for
some p EI. 

By uniqueness of exponent up to weak equivalence, decompositions of Pp 
in劣 forp EI can be glued up to a decomposition of P. 

Corollary 4.8 ([Wan22], Corollary 3.15). Let P be a finite projective differential 
module over some open polysegment I satisfying the Robba condition, admitting 
an exponent A with Liou ville partition Pl1,..., Plk. Then there exists a unique 
decomposition P = P直...①Pk,where each Pi is a finite projective differential 
module and admits an exponent weakly equivalent to必 for1 Si S k. 

Then a slightly stronger version of Gachet's p-adic Fuchs theorem can be 
proved using Corollary 4.8: 

Corollary 4.9 ([Wan22], Corollary 3.20). Let P be a finite projective differential 
module over an open polysegment I in即贔 satisfyingthe Robba condition. 
Furthermore we assume that P has p-adic non-Liouville exponent differences. 
Then P admits a basis on which the matrix of action of Di for 1 S i S n has 
entries in K whose eigenvalues represents an exponent of P. Consequently, P 
admits a canonical decomposition 

P= 〶 P入，
入E(Zp/Z)れ

where P.入isfree with exponent identically equal to a representative in z;。J入．
In particular, P is free, and is extended from some finite differential module 
over a polydisc for the derivations t紅 1:S i :S n. 

Note that the reason that Corollary 4.9 is possibly slightly stronger than 
the result of [Gac99] is that we do not know yet if any finite projective differential 
module on polyannuli is free, and [Gac99] only treated finite free differential 
modules. 

5 Future Prospects 

We believe that after appropriate modification, a similar strategy can be applied 
to study the generalized'[J-adic Fuchs theorem over relative polyannuli. 
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