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FINITE CRYSTALLINE HEIGHT REPRESENTATIONS AND
SYNTOMIC COMPLEXES

ABHINANDAN

ABSTRACT. Using finite crystalline height representations and their naturally associated in-
variants, we study local and global syntomic complexes with coeflicients. The text is organized
as follows. After briefly recalling the p-adic crystalline comparison theorem and importance of
syntomic methods in its proof we pose a question on syntomic complex with coefficients. To
answer our question, we quickly recount the theory of finite crystalline height representations
developed in [Abh21] and show that Galois cohomology of such representations (upto a twist), is
essentially computed by (Fontaine-Messing) syntomic complex with coeflicients in the associated
F-isocrystal. In global applications, for smooth (p-adic formal) schemes, we show a compari-
son between syntomic complex with coefficient in a locally free Fontaine-Laffaille module and
complex of p-adic nearby cycles of the associated étale local system on the (rigid) generic fiber.
Proofs of aforementioned results can be found in [Abh22].

1. p-ADIC COMPARISON THEOREM

Let p denote a fixed prime, x a perfect field of characteristic p, K a discrete valuation field of
mixed characteristic with ring of integers Oy and residue field x and F' = W (x)[1/p] the fraction
field of ring of p-typical Witt vectors with coefficients in k. Fontaine’s crystalline conjecture for
an Og-scheme X examines the relationship between p-adic étale cohomology of its generic fiber
and crystalline cohomology of its special fiber. More precisely,

Theorem 1.1. Let X be a proper and smooth scheme defined over O, with X = X ®o, K
its generic fiber X, = X Qo k its special fiber. Then for each k € N there exists a natural
isomorphism

Héi (Xfa Qp) ®Qp BcriS(O?) l’ Hfris (:{H/W(’f)) ®W(n:) BcriS(Of)a
compatible with filtration, Frobenius and action of G on each side.

Here Beis(O7) denotes the crystalline period ring constructed by Fontaine (see [Fon94al),
and it is equipped with a filtration, Frobenius and continuous action of G

In [FM87] Fontaine and Messing initiated a program for proving the statement via syntomic
methods. By subsequent works of [KM92, Kato-Messing], [Kat94, Kato] and the remarkable
work of [Tsu99, Tsuji] this program was concluded with a proof of the crystalline comparison
theorem (more generally, the semistable comparison theorem). There have been several other
proofs as well as generalizations of crystalline comparison theorem: [Fal89; Fal02, Faltings],
[Niz98, Niziol], [Beil2; Beil3, Beilinson], [Sch13, Scholze], [YY14, Yamashita-Yasuda], [CN17,
Colmez-Niziol], [BMS18, Bhatt-Morrow-Scholze] among others.

Theorem 1.1 also holds for proper and smooth p-adic formal schemes. This was shown by
Andreatta and Iovita in [AI13] using Faltings approach of almost étale extensions. The natural
variation of Theorem 1.1 for proper semistable p-adic formal schemes was obtained by Colmez
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and Niziol in [CN17] using syntomic methods. One of the most important and difficult steps in
proofs utilising syntomic methods is establishment of a comparison between syntomic complex
and the complex of p-adic nearby cycles.

2.  p-ADIC NEARBY CYCLES

Let X be a smooth (p-adic formal) scheme over O with X its (rigid) generic fiber and X, its
special fiber. Let j : Xg — X¢ and ¢ @ X, ¢ — Xg denote natural morphisms of étale sites.
For r > 0, let &,,(r)x denote the syntomic sheaf modulo p™ on X, ¢. It can be thought of as a
derived Frobenius and filtration eigenspace of crystalline cohomology. In [FMS87], Fontaine and
Messing constructed a period morphism

r Iu(r)e — CREZ/M(r), (2.1)

«
from the syntomic complex to the complex of p-adic nearby cycles, where Zj(r) := WZ;;(T%
for r = (p — 1)a(r) + b(r) with 0 < b(r) < p— 1. In the case of schemes, for 0 < r < p—1
and after truncating the complexes in (2.1) in degrees < r the map ozfl,\f was shown to be a
quasi-isomorphism in the work of Kato [Kat87; Kat94], Kurihara [Kur87], and Tsuji [Tsu99]. In
[Tsu96], Tsuji generalized the result for schemes to some non-trivial étale local systems arising
from Fontaine-Laffaille modules over Oy (see [FL82]).

Colmez and Niziol have shown that the Fontaine-Messing period map af};’i, after a suitable
truncation, is essentially a quasi-isomorphism. More precisely,

Theorem 2.1 ([CN17, Theorem 1.1]). For 0 < k <r, the map
af s HE(Su(r)x) — RFLZ/p" (1),

is a p"N-isomorphism, i.e. the kernel and cokernel of this map is killed by p~, where N =
N(e,p,r) € N depends on the absolute ramification index e of K, the prime p and the twist r.

Theorem 2.1 also holds for base change of proper and smooth (p-adic formal) schemes. In
particular, after passing to the limit and inverting p, for 0 < k < r we obtain isomorphisms (see
[Tsu99, Theorem 3.3.4])

ay™ HE L (Rog, ) g — Hi (X, Qp(r).- (2.2)
The isomorphism in (2.2) is one of the most important step in proving Theorem 1.1 via syntomic
methods. These ideas have been used in [FM87], [KM92|, [Kat87], [Kat94], [Tsu99] and [YY14].

The proof of Colmez and Niziol is different from earlier approaches. They prove Theorem
2.1 first and deduce the comparison in (2.2) via base change in proper and smooth case. To
prove their claim, they reduce the problem to local setting and construct another local period
map a%*, employing techniques from the theory of (¢, T')-modules and a version of integral
Lazard isomorphism between Lie algebra cohomology and continuous group cohomology. They
show that a;caz is a quasi-isomorphism and coincides with local Fontaine-Messing period map
up to some fixed power of p.

Remark 2.2. The results of [CN17] have been worked out in the setting of semistable (p-adic
formal) schemes. So to obtain the claim for 0 < k& < r as in Theorem 2.1, one should work
with log-crystalline cohomology. Working without log structures, one would obtain the p-power
isomorphism in Theorem 2.1 for 0 < k < r — 1 (also see Remark 4.5 (1) below).
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2.1. Local comparison. Most of the work done for the proof of Theorem 1.1 in [CN17]
involves computations in the local setting, i.e. over an étale algebra over a (formal) torus. More
precisely, a smooth (p-adic formal) scheme X defined over Ok can be covered by affine schemes
given as (formal) spectrum of (p-adic completion of an) étale algebra over O [Xlil, .. .,X;tl}
for some indeterminates X1, ..., X4. In the local setting, Colmez and Niziol also show that it is
enough to work with p-adic completions, i.e. formal schemes and deduce results for schemes by
invoking Elkik’s approximation theorem and a form of rigid GAGA (see [CN17, §5.1]).

For simplicity, we will take R to be the p-adic completion of OF[Xlil7 .. .,X;El] and let
S = Ok ®o, R. Let Gs = 7{(S[1/p],7) for a fixed geometric generic point of Sp (S[1/p]).
Let RE denote the (p, Xo)-adic completion of W (x)[Xo, led7 R X;lﬂ}, and let REP denote the
p-adic completion of the divided power envelope with respect to the kernel of the map RY, — S
sending Xy to w (a uniformizer of K). Further, let Q}%wa denote the p-adic completion of the

module of differentials of REP relative to Z and one can extend the Frobenius operator ¢ to
QEPD. The syntomic cohomology of S is computed by the complex

Syn(S, ) := Cone(F"Qyep P, o) [—1].

Theorem 2.3 ([CN17, Theorem 1.6]). If K contains enough roots of unity, then the maps

af“z t < Syn(S, 1) — T<,Rlcont (G5, Zyp(1)),
a,ﬁ.ff : 1< Syn(S, 7)n, —> T<;Rlcont (Gs. Z/p"(r)) — 7<,RT((Sp S[%])ét,Z/p"(r)),

are pN" -quasi-isomorphisms for a universal constant N .

Note that the truncation here denotes canonical truncation in literature. Having enough
roots of unity in K is a technical condition (see [CN17, §2.2.1]) and if one fixes K then K ({pm)
has enough roots of unity for m > ¢(K) + 3, where ¢(K) is the conductor of K.

In general, if K does not contain enough roots of unity (for example K = F'), then one passes
to an extension K ((ym ) for m large enough and then using Galois descent one obtains an alaogous
statement over K with constant N depending on the absolute ramification index e = [K : F], p
and 7 (see [CN17, Theorem 5.4]). The proof of Colmez and Niziol relies on comparing syntomic
complexes with the relative version of Fontaine-Herr complex of (p,I')-modules computing the
continuous Gg-cohomology of Z,(r) (see [Her98] and [AI08]).

Remark 2.4. Similar to Remark 2.2 let us note that in Theorem 2.3 Colmez and Niziol work
with semistable affinoids and log-syntomic complex. Without log structures one should truncate
in degree < r —1 (see Remark 4.5 (1) below).

Our goal is to generalize Theorem 2.1 to non-trivial coefficients. Clearly, one needs to restrict
themselves to a “friendly” category of coefficients, i.e. objects for which local computations
similar to [CN17] could be carried out. In the local setting, by techniques employed in the proof
of Theorem 2.3 (and applying K (, 1)-Lemma of Scholze for p-coefficients, see [Sch13, Theorem
4.9]), the problem could be formulated as

Question 2.5. Is it possible to obtain a statement similar to Theorem 2.3 for non-trivial
Zy-representations of Gr?

Our goal in this article is to give a positive answer to the question posed above. A natural
object to consider for a local result of this nature is a G'r-stable Zj-lattice T inside a crystalline
representation V' of Gg (in the sense of [Bri08, Chapitre 8]). However, as local computations
involve complexes of (¢,I')-modules, we should further restrict ourselves to a representation
whose corresponding étale (o, I')-module is of “finite height” and “crystalline”. Representations
capturing these ideas are referred to as finite crystalline height representations.
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Remark 2.6. Imposing finite height assumption on the (¢, I')-module attached to a crystalline
representation of Gy is not at all restrictive since all crystalline representations are of finite height
(see [Abh23, Theorem 1.7]). However, in the present article we only use results of [Abh21] and
[Abh22] so we motivate the objects of interest informally as above.

3. FINITE HEIGHT REPRESENTATIONS

In the classical case, i.e. for a mixed characteristic local field K, in [Fon90] Fontaine established
an equivalence of catgeories between Z,-representations (resp. p-adic representations) of G
and étale (p,I')-modules over a certain period ring Ag (resp. Bpg). Moreover, in [Fon79;
Fon82; Fon94a; Fon94b] Fontaine described crystalline representations of G in terms of weakly
admissible filtered p-modules over F. For K = F, by the works of [Wac96; Wac97, Wach],
[Col99, Colmez] and [Ber04, Berger] it is known that crystalline representations of G can also
be described in terms of finite height (p, I')-modules (closely related to the étale (¢, I")-module
of Fontaine).

In the relative case, let us now fix p > 3 (see Remark 4.5), an absolutely unramified extension
F over Qp, K = F((m) for a fixed m > 1 and let w = (pm — 1. Let R denote the p-adic
completion of an étale algebra over Op[X ftl., X ;tl] with non-empty geometrically integral
special fiber and let S := O ®o, R. We also fix lift ¢ : R — R of the absolute Frobenius
R/pR — R/pR given as x — aP (see [Abh22, §2.1]). Denote by Qi the p-adic completion of
module of differentials of R with respect to Z.

3.1. (¢,I)-modules. Let us fix an algebraically closed field Fr (R) containing F. Let R
denote the union of finite R-subalgebras R' C Fr (R) such that R'[1/p] is étale over R[1/p]. We
write CT(R) = R as the p-adic completion, C(R) = C*(R)[1/p] and Gr = Gal(R[1/p]/R[1/p]).
For n € N, let F,, = F(Cpn) with ring of integers Op, and let R, denote the integral clo-
sure of R ®o, O, [X 11/ ,..,X;/pn} inside R[1/p] and let Ro := UyR,. We set ['p =
Gal(Roo[1/p]/R] 1/p]) Hp := Ker (Gg — I'g) and we have an exact sequence

1—TIp—Tgr—Tp—1,

where I, = Gal(Roo[1/p]/FaoR[1/p]) ~ Z, and Ty = Gal(Fu/F) ~ Z (see [Abh21, §3.1.1]).
Similarly, one can define corresponding groups for S, i.e. groups Gg and I'g.

Let CH(R (_) = hmmHzp C*(R)/p denote the tilt of perfectoid algebra C*(R) and let C(R)” =
CH(R)’[1/p’] where p* = (p, pl/p P ..) € C*(R)’, both algebras equipped with a natural
action of Gr. Let W(C(R)?) denote the ring of p-typical Witt vectors equipped with Witt
vector Frobenius and natural G'g-action. Using a certain period ring A C W(C(R)’), stable
under induced Frobenius and Gg-action, in [And06] Andreatta generalized Fontaine’s results
to Zy-representations (resp. p-adic representations) of Gr. To any Z,-representation 1" of G,
Andreatta functorially attaches an étale (v, I'g)-module D(T') = (A ®z, T)1r over the period
ring Ay = AR, This induces an equivalence of categories between Zy-representations and étale
(¢, Tg)-modules over Ag. Similarly, to any p-adic representation V of G, using the period ring
B = A[1/p], one can attach an étale (p,T'g)-module D(V) = (B ®g, V)"* over By = Bf# =
ARg[1/p]. Again, this induces an equivalence of categories between p-adic representations and
étale (¢, T'g)-modules over Bg. Now let Ait(R) = W(CH(R)?), At = ANAi(R) € W(C(R)")
and set DT(T) = (AT ®z, T)""# € D(T) a module over A}, = (A*)"# equipped with induced
(¢,Pg)-action. Let & = (1,(p. (p2,...) € CT(R)” where (pn is a primitive p"-th root of unity.
Set m =[] =1, g = p(m) /7 € Aine(R).
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In [Abh21], we studied the notion of finite ¢-height representations, motivated by classical
definition of finite crystalline height representations [Fon90; Wac96; Wac97; Col99; Ber04] (see
[Abh21, Remark 1.4]). Moreover, finite g-height representations are closely related to crystalline
representations of G (see Theorem 3.3 below). We introduce the following definition:

Definition 3.1 ([Abh21, Definition 1.3]). A Z,-representation T of G is positive and of finite
q-height if there exists a finite projective Aj-submodule N(T') C D(T) of rank = rkz, T such
that:

(1) N(T) is stable under the action of p and I'r, and Apr Dat N(T) = D(1);

(2) The Af-module N(T')/¢*(N(T)) is killed by ¢° for some s € N;
(3) The action of I'g is trivial on N(T")/7N(T);
(4) There exists R C R finite étale over R such that A}, ® AL N(T) is free over A}, .

The height of T is defined to be the smallest s € N satisfying (2) above. Furthermore, a positive
finite ¢-height p-adic representation V of G is a representation admitting a positive finite
¢-height Z,-lattice 7' C V and we set N(V) := N(T')[1/p] satisfying properties analogous to
(1)-(4) above. The height of V is defined to be the height of 7.

3.2. Crystalline representations. Akin to Fontaine’s methods to study p-adic represen-
tations of G in [Fon82], Brinon studied p-adic representations of G in [Bri08]. To classify
relative crystalline representations, one uses the crystalline period rings Acis(R) and OAis(R)
which are p-adically complete R-algebras equipped with a continuous G p-action, a Frobenius
endomorphism and a filtration. Moreover, on OAs(R) we have an A s(R)-linear connection
d satisfying Griffiths transversality i.e. d(Fil" OAeqis(R)) C Fil' TOAqis(R) ®r Ql, for r € Z
(see [Bri08, Chapitre 6] and [Abh21, §2.2] for details). For a p-adic representation V of Gg let

ODyis(V) := (OBeis(R) ®g, V)“~.

This construction is functorial in V' and takes values in the category of filtered (p, d)-modules
over R[1/p]. The representation V is said to be crystalline if the natural map OBeis(R?) ®@R[1/p]
ODgis(V) = OBeis(R) ®q, V is an isomorphism. Restricting the functor ODgyjs to the sub-
category of crystalline representations of G establishes an equivalence with the essential image

of the restriction.

Remark 3.2. Let m1 = ¢ (7)) € Aje(R) and take A;fw = Af[m]. Consider the algebra
R®gy, A;@, and the natural surjective map R®z A}, _ — S = R[w]. The kernel of the preceding
surjection is given by the ideal I = (7 /71, X1©1-1&[X}], ..., Xa®1-19[X}]) C R®ZAE,W Set
OA}L to be the p-adic completion of (R®z A, _)[z*/k!, 2z € I]. We have OALD C OAis(R)
equipped with induced filtration, Frobenius, Gg-action and a connection satisfying Griffiths
transversality with respect to filtration (see [Abh21, §4.3.1] for details).

Finite g-height representations of G introduced in Definition 3.1 are related to p-adic crys-
talline representations of G using the period ring OARD .

Theorem 3.3 ([Abh21, Theorem 1.6]). Let V be a positive and finite q-height representation of
GR, then

(1) V is a positive crystalline representation, i.e. all its Hodge-Tate weights are < 0.
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(2) We have an isomorphism of R[1/p]-modules
) ~ PD Trr1
ODn(V) < (OAFR, @5, N(T)™ (1]
compatible with Frobenius, filtration, and connection on each side.

(3) Ower (’)ARW we have a natural isomorphism
(’)A 2 ®p ODgis (V) <~ OA © @At N(V),

compatible with Frobenius, filtration, connection and the action of Tr on each side.

The preceding result helps us in constructing an R-submodule inside OD;s(V') satisfying
certain key properties helpful in establishing our main local result (see Theorem 4.2).

4. SYNTOMIC COEFFICIENTS AND (¢, ")-MODULES

In this section, let us consider the following class of representations: Let V' be a positive finite
g-height representation of G with T' C V a G'g-stable Z,-lattice as in Definition 3.1 such that
the Ajf-module is free of rank = dimg, V. Assume that the Wach module N(T') is free of rank
= dimg, V over Ajg and let M C ODqis(V) be a free R-submodule of rank = dimg, V such that

M1/p] = ODgis(V) and the induced connection over M is p-adically quasi-nilpotent, integrable
and satisfies Griffiths transversality with re sp( ct to the induced hl‘rmtlon Furthermore, assume
that p*M C ¢*(M) and there exists a p"-isomorphism OALD @, M ~ (’)A%{)w Rk N(T)

with N =n(T,e) €N for e = [K : F] =p"™ 1(p—1) and compatlble with Frobenius, filtration,
connection and I'p-action. See [Abh22, Example 5.2] on obtaining M as above from N(7).

4.1. Main results. Our objective is to relate the relative Fontaine-Herr complex (see
[AI08]) computing continuous Gr-cohomology of T'(r) to syntomic complex with coefficients in
the R-module M C ODyis(V). Let us first consider the case of cyclotomic extension S = R[w].
Let RL = R[Xy] equipped with a Frobenius endomorphism extending the Frobenius on R by
setting ¢(Xo) = (14 Xo)? — 1. We have a surjective map f : R — S = R[w] sending X( — w.
Let RPP denote the p-adic completion of divided power envelope of RZ, with respect to Ker f.
The Frobenius on RE extends naturally to an endomorphism of REP (see [Abh21, §3.2- §3.3]).

Set MgD = Rf,_i,D ®r M equipped with a tensor product Frobenius endomorphism, tensor
product filtration and a connection defined using the Leibniz rule on the differential on REP
and connection on M. The connection on MEP further satistfies Criffiths transversality with
respect to the filtration. In particular, we have a filtered de Rham complex

Fil'D§  : Fil'MEP — Fil" ' MEP @ gep Qppp — Fil" 2MEP @ gep Qfpp — -+

dXq  dXy dx,
To describe the action of Frobenius on QRPD we fix a basis of QRPD as {1+X07 Xl xh }.

ForjeN,let I; = {0 <4y < -- <zj<d}andfor17(zl,.. z])elj,sct

dx,;
dXg 72 LAY S

B H_XO/\ /ARRRWAN X, if i1 =0,
wi = Xy A dX th .

X_i1 s X'Lj otherwise.

Define the Frobenius operator ¢ on Q%I%ED by ¢ e, Tiw;) = Yie, (zi)wi. Note that this is not

the usual definition of Frobenius on § ZZQPD' But in order to define a useful operator 1 integrally,
=
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we need to divide the usual Frobenius on &2}%* by powers of p (see [Abh22, Remark 5.3]).
Furthermore, with the usual definition of Frobenius we have ¢d = d¢ over M C ODgis(V).
However, using a definition similar to above for ¢ on 9}2 as well, we note that for f € M, we

now have dar((f)) = S0y 0@ (H))wi = S pe(9i(f))wi = pp (O (£))-

Definition 4.1. Let € N and define the syntomic complex of S with coefficients in M as

Syn(S, M,r) := [Filr@é,M Forte, D 1y

Syn(s’ M7 r)n = Syn(Sv M7 T) ® Z/pn
Our main local result is as follows:

Theorem 4.2 ([Abh22, Theorem 1.5]). Let V be a postive finite q-height representation of Gr
of height s with T C 'V a GRr-stable Zy,-lattice as above and let r € N such that r > s+ 1. Then
there exists p -quasi-isomorphisms'
af(zz : TSr‘fsflsyn(S> M7 7") =~ TSr'fsfercont (GS7 T(T))7
Oéf,f{z : Tgr—s—1SyH(S, M, T)n jad Tgr—s—ercont (GS7 T/pn (7”)),

where N = N(T,e,r) € N depending on the representation T, the absolute ramification index e
of K and the twist r.

The proof of Theorem 4.2 proceeds in two main steps: First, we modify the syntomic complex
with coefficients in M to relate it to a “differential” Koszul complex with coefficients in IN(7")
(see [Abh22, Proposition 5.30]). Next, in the second step we modify Koszul complex from the
first step to obtain Koszul complex computing continuous Gg-cohomology of T'(r) (see [Abh22,
Theorem 5.5 and Proposition 6.1]). The key idea behind relating these two steps is provided
by the comparison isomorphism in Theorem 3.3 and a version of Poincaré Lemma (see [Abh22,
§5.6]). The idea for the proof is inspired by the work of Colmez and Niziol [CN17], however our
setting demands several non-trivial technical refinements. See [Abh22] for details.

We can descend the quasi-isomorphism in Theorem 4.2 to R. Note that we have a filtered
de Rham complex over R with coeffcients in M as

Fil'% 3, 5« Fil'M — Fil' "M @5 Qf — Fil' M @ Qp — -+
Similar to above, one can define the Frobenius operator ¢ on Q}z.
Definition 4.3. Let r € N and define the syntomic complex of R with coefficients in M as
Syn(R, M,r) := [Fil’"@;{,M M> @;%,M B
Syn(R, M,r), := Syn(R, M,r) R Z/p".
Using Theorem 4.2 for w = (2 — 1 and Galois descent from [Abh22, Lemma 6.24], we obtain

Corollary 4.4 ([Abh22, Corollary 1.6]). Let V be a positive finite q-height representation of
GRr of height s with T C V' a Gg-stable Zy-lattice as above and let r € N such that r > s + 1.
Then there exists p -quasi-isomorphisms
T<r—s—lsyn(R7 M, T) = T<r—s—1chont(GRa T(T))7
TST*S*IS}’H(R, M, T)n =~ Tgrfsfercont(GRa T/pn (T))v

where N = N(p,r,s) € N depending on the prime p, the twist r and the g-height s of V.

'A homomorphism f : M — N of Z,-modules is said to be a p™-isomorphism for some n € N, if the kernel
and cokernel of f are killed by p".
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Remark 4.5. (1) Taking T' = Z, in Theorem 4.2 we obtain a statement similar to Theorem
2.1. However, note that we truncate in degree < r — 1. This is because we do not work
with log-structures unlike [CN17]. Working with log-syntomic complex, where we consider
log-structure over RE with respect to the arithmetic variable Xy and Kummer Frobenius
(see [CN17, §2.2]) would enable us to show a p-power quasi-isomorphism also in degree r.

(2) To obtain the statement over F one could proceed as in [Abh22, Remark 1.8]. Alternatively,

one could directly work over C, = I as in [Gil21] to avoid complications arising from
Frobenius on arithmetic variable X.

(3) The case p = 2 is different from p > 3 as for p = 2 the constant N in Theorem 4.2 depends
on the relative dimension of R (see [CN17, Lemma 3.11].

To conclude this section, let us note that for S as in Theorem 4.2, using the fundamental
exact sequence in p-adic Hodge theory, one can define the local version of Fontaine-Messing
period map (see [Abh22, §6.7]) for 1" as in Theorem 4.2. Then we are able to show:

Theorem 4.6 ([Abh22, Theorem 1.10]). The Fonatine-Messing period map is pNT¢") -equal to
ﬁ‘” from Theorem 4.2.

4.2. Proof of Theorem 4.2. The idea for the proof of Theorem 4.2 can be captured in the
following commutative diagram of complexes. Note that we have Ky ,(F" MEP) = Syn(S, M, r)
and the map aﬁaz is obtained by composing the maps in lower boundary where we note that
Ca(T(r)) — RI(Gs,T(r)). The isomorphisms in the diagram indicate a p-power quasi-
isomorphism between complexes. Notations are explained after the diagram.

~

| | | s

Koo (F"MEY) — Co(Ko ,(Fralbel)) P2 g (K, (Frald)) Ce(T(r))

K0, (Fr AL Co(K (FTTAb))  Co(Kp(TAR(r)))

ZTPL )

Ky, (F"MEDP) —— C(Kp o (FTAPP)) EX O (K, (FTAPPY)) —s Co(K oy (FT Acris))

K0, (F" N2 Cr(Ky (DR, (1))
T<r th' l
Ko vie r(FTNE) = C, n(FTNEY) Cr(Ky(Da(r))

ZTtT tTT l

Ko i t(NE (1)) 2 Ky n(NE(r)) s Ko r (VO (1) — K p(D (7).

In [Abh22, §2.5-§2.6] we define successively larger rings REP C R[u] - R[u U equipped with
compatible filtration and Frobenius operator where one can take u = (p —1)/p and v = p — 1.

The ring Rg] can be thought of as analytic functions convergent on the disk v,(Xo) > u/e

and similarly RE;"U} can be thought of as analytic functions convergent on the annulus u/e <
vp(Xo) < v/e (see [CN17, Remark 2.4]). Furthermore, in [Abh22, Definition 5.22, Lemma 5.23]

we define OAPDw C E'ED - E[ ] - E[u o equipped with compatible Frobenius, filtration
I's-action and connection batlsfylng Grlfﬁthb transversality. Moreover, in [Abh22, Definition

17
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5.22, Lemma 5.23] we define OAis(R) C EED - E[u v equipped with compatible Frobenius,
filtration G r-action and connection satisfying Grlfﬁths transversality.

In the diagram, we take APP = EPD @r M, APDO = (APDYI=0 T A . = Ayi(R) ®z, T,
A[u,v] _ E%%U] Qp M, A[u,v],a _ (A[uv])a 0 TA[uv] [ﬁuvv] ®Zp T, A?ﬂ%“] _ E%’;] ®p M,
TAg(r) = W(C(R)’) @z, T(r), Dw(r) = AE,W a1 D(T(r)), N5(r) = Ak o @5 N(T'(r)) and
Dpr. (1) = As,, ®Ap.,, Dw(r) (see [Abh22, §2] for period rings). Moreover, G = Gg, T =T
with Cg and Ct denoting the complex of continuous cochains of G' and I', respectively. The
letter “K” denotes the Koszul complex (see [Abh22, §4]) with subscripts: d denotes the operators
(1+ XO)aaTov . .,Xd%) for a choice of coordinates (Xg, X1,..., Xy) on RE, T denotes the
operators (yo — 1,...,74 — 1) for our choice of topological generator@ of T, Lie I denotes the
operators (Vo,...,Vy) with V; = logv; and d4 denotes ((1 + XU)JXO X152~ TXT ’XdDéT)(i) as

operators on A[ng] and EI[;"’“] via the isomorphism tcyq : A[;%"’“] = l;“ (see [Abh227 §2.7]).
The letter “/C” denotes a subcomplex of the Koszul complex (see [Abh22, §6.2-§6.5]).

Next, we describe maps between rows. FES denotes a map originating from fundamental
exact sequences in [Abh22, §2.2.1 & §2.4.4]. AS denotes a map coming from the Artin-Schreier
theory in [Abh22, §2.4.4]. PL denotes maps originating from filtered Poincaré Lemma of [Abh22,
§2.8]. Going from first row to the second row is induced by the inclusion REP ¢ R[u vl The
leftmost slanted vertical map from third to second row is induced by the inclusion E, Lu. U] c EbY,
The vertical map from second to third row is induced by taking horizontal sections [Abh22 §6 7).
The rightmost vertical map from fourth to third row is the inflation map from I'p to G, using
the inclusion Ro, C R (one could use almost étale descent to obtain the quasi-isomorphism)
and the rightmost vertical map from the fifth to fourth row uses the inclusion R C Ry (the
quasi-isomorphism is obtained by decompletion techniques). The leftmost vertical arrow from
fourth to fifth row is given by multplication by suitable powers of ¢ as in [Abh22, Lemma
6.2] and the rightmost vertical arrow from sixth to fifth row is comparison between complex
computing continuous cohomology of I'p and Koszul complex as in [Abh22, §4.2]. The inclusions
A}%w C Ait(R) C A[u *l and A (R) ®A+ N(T) C Aie(R) ©z, 1" induce the slanted vertical
arrow from fifth to thud row.

Finally, we describe maps between columns. Top two maps from first to second column are
induced by inclusions RPP ¢ E%D and R[g’v] c EMY. The bottom two maps Laz between
first and second column are Lazard isomorphisms discussed in [Abh22, §6.2]. Bottom map
from third to second column is induced canonically by Ag’;H - A%g (see [Abh22, §2.7] for
definitions). The horizontal map from third to fourth column is induced by taking horizontal
sections [Abh22, §6.7]. The bottom horizontal map from fifth to fourth column is obtained by

the inclusion A" € Ap ., (see [Abh22, §6.5-§6.6]).

5. GLOBAL APPLICATIONS: FONTAINE-LAFFAILLE MODULES

We finally come to global applications of results described in the previous section. In this section
we will consider locally free Fontaine-Laffaille modules introduced by Faltings in [Fal89, §II].
These objects are obtained by gluing together local data. Let s € N such that s < p — 2.

Definition 5.1. Define the category of free relative Fontaine-Laffaille modules of level [0, s],
denoted by MF|g g free(R, @, 0), as follows:
An object with weights/level in the interval [0, s] is a quadruple (M, Fil®*M, 0, ®) such that,

(1) M is a free R-module of finite rank. It is equipped with a decreasing filtration {Fil* M} ez,
by finite R-submodules with Fil°A/ = M and Fil**'M = 0 such that gr%ilj\f is a finite
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free R-module for k € Z.

(2) The connection @ : M — M ®p Q}% is quasi-nilpotent and integrable, and satisfies Griffiths
transversality with respect to the filtration, i.e. B(Filklﬂ) C FilF'M @g Q}% for k € 7Z.

(3) Let (¢*(M),¢*(0)) denote the pullback of (M,d) by ¢ : R — R, and equip it with
a decreasing filtration Fil’;(go*(M)) = Yien P (FilF M) for k € Z. We suppose that
there is an R-linear morphism @ : ¢*(M) — M such that ¢ is compatible with connections,
O (Filk(p*(M))) € pPM for 0 < k < s, and Yj_ p *®(Fili(p*(M))) = M. We denote

the composition M — p*(M) 2 M by ©.

A morphism between two objects of the category MF[QSM,%(R ®, ) is a continuous R-linear
map compatible with the homomorphism ® and the connection 0 on each side.

The category MEFg g, free (12, @, 0) is a full subcategory of the abelian category E)JTS[%? S](R) of
[Fal89, §II]. One can functorially attach to such a module, a free Z,-module T¢is(M) equipped
with a continuous G-action such that Viys(M) = Teis(M)[1/p] is crystalline and s equals the
maximum among the absolute value of Hodge-Tate weights of Vi5(M). Moreover, in [Abh21,
Theorem 5.4] it has been shown that Vis(M) is a finite g-height representation of height s.
Furthermore, V,s(M) satisfies assumptions of Theorem 3.3 and Theorem 4.2 (with very precise
bounds on the constant N(p,r,s), see [Abh22, Example 5.2 (iii)]).

The category of free relative Fontaine-Laffaille modules globalizes well. Let X be a smooth
(p-adic formal) scheme defined over Op with X as its (rigid) generic fiber and X, as its special
fiber. Cover X by affine (formal) schemes {&;};e; where $l; = Spec A; (resp. 4l; = Spf A;) such
that p-adic completions AZ satisfy assumptions for R above and fix Frobenius lifts ; : ﬁl — XZ

Definition 5.2. Define MF g fee(X, ®,0) as the category of finite locally free filtered Ox-
modules M equipped with a p-adically quasi-nilpotent integrable connection satisfying Griffiths
transverality with respect to the filtration and such that there exists a covering {;};es of X as
above with My, € MF[U,SLH%(@; ,®,0) for all i € I and on {;; the two structures glue well for
different Frobenii (see [Abh22, §8.1]).

By [Fal89, Theorem 2.6%], the functor Ti,is associates to any object of MFg g free(X, ®,0) a

compatible system of étale sheaves on Spec (Al [%} ). Again, these sheaves glue well to give us an
étale sheaf on the (rigid) generic fiber X of X. The étale Z,-local system on the generic fiber
associated to M will be denoted as IL. Our global result is as follows:

Theorem 5.3 ([Abh22, Theorem 1.11]). Let X be a smooth (p-adic formal) scheme over O,
M € MF(g g free(X, ®,0) a Fontaine-Laffaille module of level [0, s] for 0 < s <p—2 and let L
be the associated Zy-local system on the (rigid) generic fiber X of X. Then for0 <k <r—s—1
the Fontaine-Messing period map

e+ HE(Fn(Mr)x) — PRELL/D" (),
is a p™N -isomorphism for an integer N = N(p,r,s), which depends only on p, r and s.

The theorem is proved by reducing it to the local setting, where we can directly apply
Theorem 4.2.

Remark 5.4. In light of Remark 4.5 (2), it should be possible to base change the isomorphism
of Theorem 5.3 to F.
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Remark 5.5. In [BMS19, §10] Bhatt, Morrow and Scholze have refined the definition of syntomic
complex (using prismatic cohomology) and showed that it computes p-adic nearby cycles for
trivial coefficients. By the work of Morrow and Tsuji on coefficients in integral p-adic Hodge
theory and prismatic cohomology [MT20], we should be able to refine our results and obtain
an integral result for coefficients (in the geometric case). Furthermore, by recent introduction
of completed/analytic prismatic F-crystals on the absolute prismatic site [DLMS22; GR22], we
should be able to further refine these results, thus including the arithmetic case. We will report
on these ideas in future.
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