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1 Introduction

One commonly accepted strategy in order to build Langlands’ conjectural conrrespondences
is to look into the cohomology (here ¢-adic) of some geometric spaces, which are equipped
with an action of the reductive group under consideration. In the global setting, one is
generally interested in the cohomology of Shimura varieties, whereas in the local setting
one may consider the cohomology of Rapoport-Zink spaces, as introduced in [RZ96], or
of their generalizations as local Shimura varieties, which were conjectured in [RV14], and
later built as moduli of local shtukas (see [SW20]).

In this manuscript, we will stick to the context of Rapoport-Zink spaces. Given a choice of
local EL or PEL datum D as in [RZ96] Definition 3.18, one may define a moduli problem
classifying p-divisible groups with additional structures whose reduction mod p are quasi-
isogeneous to a fixed p-divisible group X with additional structures, called the framing
object, whose isocristal is determined by the local datum. This problem is represented by
a formal scheme M := Mp over the formal spectrum of O}, where E is the completion
of the maximal unramified extension of the local reflex field E (a finite extension of @Q,).
The local datum determines a p-adic group G over @, and an open compact subgroup
Ky ¢ G(Q,), defined as the stabilizer of a certain chain lattice. Let M® denote the
generic fiber of M as an analytic space over E. For K Ky an open compact subgroup,
one may define a finite étale covering My — M?®** by parametrizing the trivializations
mod K of the Tate module of the universal p-divisible group over M (see [RZ96] 5.32 for
the precise constructions). We have My, = M and these spaces fit together inside a
projective system M., which we refer to as the Rapoport-Zink tower. The group G(Q,)
acts on M., by Hecke correspondences. Besides, the group Aut(X) can be seen as the group



of Q,-rational points of a certain inner form J of a Levi complement in . The natural
action of J(Q,) on M extends to an action of each individual space M, compatible with

the transition maps and commuting with the G(Q,)-action. Taking cohomology, the groups

H; (Mo ® Cy, Q) := lim lim  lim H (U ® C,, Z/6°7) ® Qu,
KcKoUcMy k

where U runs over the relatively compact open subspaces of M, are naturally representa-
tions of G(Q,) x J(Q,) x Wg, where W is the absolute Weil group of E. The Wg-action
is induced by the (usually non effective) Weil descent datum on M as defined in [RZ906]
3.48. This cohomology is expected to realize a local Langlands correspondence for G, and
as such it is a natural object to study.

The Kottwitz’ conjecture (see [Rap95]) describes the G(Q,) x J(Q,)-supercuspidal part in
the alternate sum of the cohomology of M, in terms of the local Langlands correspon-
dence. This conjecture has been proved in a variety of cases. The case of the Lubin-Tate
tower is done in [Boy99] and [HTO01], the Drinfeld case has been dealt with in [Hau05], but
can also be deduced from the Lubin-Tate case by duality (see [Fal02] and [FGLO0§]). Both
the Lubin-Tate and the Drinfeld cases correspond to Rapoport-Zink spaces of EL type, and
the Kottwitz’ conjecture was proved for all such basic unramified EL Rapoport-Zink spaces
in [Far04] and [Shil2]. Eventually, the case of the basic unramified unitary Rapoport-Zink
space of signature (r,n —r) with n odd was also done in [Ngu19] and [BMN21]. A general-
ization of Kottwitz’ conjecture to moduli spaces of local shtuka is also proved in [HKW22].
Outside of the supercuspidal part, very little seems to be known. To our knowledge, the
entire cohomology of M, is only known in the Lubin-Tate case by [Boy09]. One deduces
the Drinfeld case by duality, but in this case the cohomology at Iwahori level was already
described in [SS91]. A derived description of the cohomology of the Drinfeld tower is also
obtained in [Dat06].

2 Bruhat-Tits stratifications on Rapoport-Zink spaces

In general, understanding the non-supercuspidal part of the cohomology of any Rapoport-
Zink space seems to be a target which is out of reach. There exists however a certain
small family of Rapoport-Zink spaces whose special fiber exhibits some very nice geomet-
ric properties. Such spaces are said to be “fully Hodge-Newton decomposable” and they
have been fully classified in [GHN19] using a group theoretic approach. The special fiber
of a fully Hodge-Newton decomposable Rapoport-Zink space admits a stratification by
Deligne-Lusztig varieties, and the incidence relations of the stratification is closely related
to the combinatorics of the Bruhat-Tits building of an underlying p-adic group. Conse-
quently, this stratification is known as the Bruhat-Tits stratification. The Rapoport-Zink
space is said to be “of Coxeter type” if it is fully Hodge-Newton decomposable, and if
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the Deligne-Lusztig varieties occuring in the Bruhat-Tits stratification are of Coxeter type.
This subfamily of Rapoport-Zink space has also been entirely classified in [GHN22].

To our knowledge, the first time that Deligne-Lusztig varieties were explicitely mentioned
in the context of the Langlands program was in [Yos10], dealing with the Lubin-Tate
tower. However, it is the pioneering work of [Vol10] and [VW11] which coined the notion
of Bruhat-Tits stratification. The authors used an approach based on Dieudonné theory
and the combinatorics of vertex lattices in a hermitian space. The corresponding space
was the GU(1,n — 1) PEL Rapoport-Zink space at inert p and hyperspecial level. This
paved the way to the study of the geometry of the special fiber on a case-by-case basis by
many authors, using either a similar Dieudonné theoretic approach or a group theoretic
approach.

Deligne-Lusztig varieties naturally arise in Deligne-Lusztig theory, a field of mathematics
whose aim is the classification of all irreducible complex representations of finite groups
of Lie type, ie. reductive groups over finite fields. Let G be a connected reductive group
over an algebraic closure F, of F,. Let ¢ be a power of p and assume that G has an F-
structure, induced by a Frobenius morphism F' : G — G. Let G := G(F,) ~ G be the
associated finite group of Lie type. A Levi complement L < G is the group of F,-points of
some rational Levi complement L of G. Such a Levi complement L is said to be split if
L is the Levi complement of a rational parabolic subgroup P of G. One way of building
irreducible representations of G is to decompose representations parabolically induced from
proper split Levi complements L of G. However, this process fails to recover the cuspidal
representations. To remedy this issue, Deligne and Lusztig defined in their innovative work
[DL76] new induction functors from any (not necessarily split) Levi L of G, generalizing
the usual parabolic induction. They did so by associating a certain variety Ypcp to any
parabolic subgroup P of G with rational Levi complement L, which is naturally equipped
with commuting actions of G’ and of L = L. The alternate sum of the cohomology of Y,cp
provides a virtual G—bimodule— L, which is used to define the Deligne-Lusztig induction
functor RY between the categories of representations of L and of G. Reducing to the case
where L = T is a maximal torus in G' and computing explicitely the decompositions of the
induced representations R$6 for all characters @ of T, Lusztig managed in [Lus84] to give
a complete classification of all irreducible representations of all simple finite groups of Lie
type.

To sum up, the geometry of certain Rapoport-Zink spaces can be described in terms of
Deligne-Lusztig varieties, and cohomology plays a crucial role in both the Langlands pro-
gram and Deligne-Lusztig theory. This observation is the starting point of our work. We
brought our attention to the case that has been chronologically first considered, that is
the unramified unitary PEL Rapoport-Zink space of signature (1,n — 1) as in [Vol10] and
[VW11].



3 Non-admissibility in the cohomology of the unram-
ified GU(1,n — 1) Rapoport-Zink spaces

Given a smooth admissible (complex) representation p of .J(Q,) (meaning that dim(p”) <
o for all open compact subgroups K < J(Q,)), it is well-known that the G(Q,)-modules

EXt(}(HZZ(Mao ® (Cp7 @) p)

are admissible. It is proved in [Far04], and it is a simple consequence of the fact that the
cohomology groups Hi(M g ® C,, Q) are finitely generated J(Q,)-modules. We note that
this admissibility statement has been largely generalized in [FS21], in so that the authors
prove a derived version with integral coefficients regarding local Shimura varieties.
However, it is also known that the cohomology groups H2(M ® C,, Q;), are not neces-
sarily of finite length as J(Q,)-modules. Here, for a continuous character x of the center
Z(J(Qp)) and V a smooth representation of J(Q,), we denote by V, the largest quotient
of V on which the center acts through x. Thus, the cohomology is somewhere in between
finitely generated and finite length. What about admissibility? In the Lubin-Tate and
Drinfeld cases, the groups HY(M ® C,, Qy), are admissible as .J(Q,)-modules. However,
it turns out that it is not the case in general, our study led to a counter-example.

From now on, let M denote the basic unramified unitary PEL Rapoport-Zink space of
signature (1,n — 1). The prime p is odd, the local reflex field E = Q2 is the quadratic
unramified extension of @Q,, the group G = GU,, is the quasi-split group of unitary simil-
itudes of a certain n-dimensional Q,2/Q,-hermitian space, and Ky ¢ G(Q,) is a maximal
hyperspecial parahoric subgroup, corresponding to the stabilizer of a self-dual lattice. The
group J is isomorphic to G when n is odd, and it is the non quasi-split inner form of G
when n is even. The framing object X is the supersingular unitary p-divisible group of
signature (1,n — 1) as defined in [VW11]. We observe that in this case, the Rapoport-Zink
space can actually be defined over Z,2 instead of the ring of integers of @;. However, this
rational structure does not stem from the Weil descent datum defined in [RZ96], which is
not effective. They are however related up to the action of an element in the center of
J(Q,). We define an integer m > 0 by the equality

2m + 1 if n is odd,

n =
2(m +1) if nis even.

3 then the

5, the same

Theorem. Let x be an unramified character of Z(J(Qp)) ~ ;2. If n
cohomology group 5 ) (M ®C,,Qy), is not J(Q,)-admissible. If n
holds for Hg“ﬁl*mﬂl(/\/lalrl ®Cp, Q) -

=
=

We emphasize that the statement is about the cohomology of the generic fiber M®* = M,
that is the maximal level of the Rapoport-Zink tower. In regard to the cohomology of M,
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it amounts to taking the G(Q,)-invariants.
The key ingredient in the proof is the Bruhat-Tits stratification on the reduced special fiber
M eq of the Rapoport-Zink space, and the cohomology of the closed Bruhat-Tits strata as

generalized Deligne-Lusztig varieties.

4 Cohomology of the closed Bruhat-Tits strata
The stratification can be written as

Mieq = |_| My,
AeBT

where each stratum M is a locally closed subvariety over F,2, and A runs over the set of
vertices BT = BT(J,Q,) of the Bruhat-Tits building of J. For all A € BT let M, denote
the closure of the stratum M3, which is a smooth projective variety of dimension 6 > 0.
The J-action on the special fiber M,.q is compatible with the Bruhat-Tits stratification,
in the sense that any g € J induces an isomorphism g : M3 — /\/l;( I and thus an isomor-
phism between the closed strata My — M) as well. Let J, := Fix;(A) be the fixator of
A, that is a maximal parahoric subgroup of J(Q,). If J{ denotes the pro-p radical, the quo-
tient Jy := Jy/J} is a finite group of Lie type, isomorphic to G(Usgi1(F,) x Up_9p—1(F,)).
We have 0 < 6 < m, so that the integer ¢(A) := 26 + 1, called the type of A, is not greater
than n. It turns out that the induced action of J, on M3 and M, factors through an ac-
tion of Jx, which is trivial on second unitary component. Thus, each Bruhat-Tits stratum
comes equipped with an action of the finite group of Lie type GUgg1(FF,). With respect to
this action, M$ is isomorphic to the Coxeter variety for GUgg1(F,), and the closure My
is isomorphic to a generalized parabolic Deligne-Lusztig variety. Let us explain what we
mean by this.

In general, let G be a connected reductive group over F_p equipped with a Frobenius mor-
phism F' : G — G inducing an F-structure. Let G := G be the associated finite group of
Lie type. Let P be a parabolic subgroup of G. The associated generalized Deligne-Lusztig
variety is

Xp = {gP € G/P| g F(g) e PF(P)}.

It is defined over F,s where § > 1 is the smallest integer such that F°(P) = P, and
it is equipped with an action G —~ Xp by left translations. We say that a generalized
Deligne-Lusztig variety Xp is classical if in addition, there exists a rational Levi comple-
ment L € P. When this condition is satisfied, the Deligne-Lusztig variety inherits an action
Xp — L := L by right translations, which commutes with the action of G. In this case,
the cohomology of Xp is a G-bimodule-L, and can be used to defined the Deligne-Lusztig
induction functor between the categories of representations of L and of G. We note that



the varieties denoted in the introduction by Yi,cp are in fact some L-torsor of Xp.
Thus, in the context of Deligne-Lusztig theory which focuses on the study of the induction
functors afforded by the varieties Yrcp, one is only interested in classical Deligne-Lusztig
varieties. For this reason, to our knowledge their generalized versions have not been system-
atically studied in the literature, except in [BRO6] where a criterion for the irreducibility
of Xp is proved.
Since M is a generalized (non classical) Deligne-Luztig variety, computing its cohomology
may be difficult. Fortunately, [VW11] provides us with enough geometric understanding
so that the computation is doable. If £(A) = 26 + 1, the Ekedahl-Oort stratification on the
closed Bruhat-Tits stratum is

My = |_| M (0),

0<0'<0

where each locally closed subvariety M (¢’) is isomorphic to a parabolic induction of the
Coxeter variety for GUay41(FF,). In [Lus76], Lusztig has computed the cohomology of the
Coxeter varieties for all finite classical groups in terms of unipotent representations. The
unipotent representations of GUsgp,1(FF,) are classified in [LS77] by the integer partitions A
of 20 + 1 and we denote them p,. From the Howlett-Lehrer comparison theorem proved in
[HL83] and the Pieri rule for Coxeter groups of type B (see [GM20] and [GP00]), one derives
the combinatorical rules to compute parabolic induction of unipotent representations. It
allows us to entirely determine the cohomology of the Ekedahl-Oort strata M (6'), which
we can plug into the spectral sequence

Etlhb = HZH](MA(G) ® ]BTW @) - H[cLer(MA ® va @)
The distribution of the weights of the Frobenius implies that the sequence degenerates on
the second page, and one may compute all the F5 terms leading to the following statement.
Theorem. Let A € BT with t(A) = 20 + 1.

(1) The cohomology group Hi(My ® F,, Qy) is zero unless 0 < j < 26.
(2) The Frobenius T acts like multiplication by the scalar (—p) on Hi(My ® F,, Q).
(3) For 0 < j <0 we have

__ min(j,0—j)
HZJ (Mr® IF;N@Z) = @ P(20+1—25,25) -
s=0
For 0 <j<6—1 we have
) o min(j,0—1—j)
H?H(MA ® Fp, Q) = @ P(20—25,25+1) -
s=0

In particular, all irreducible representations in the cohomology groups of even index belong
to the unipotent principal series, whereas all the ones in the groups of odd index have cus-

pidal support determined by the unique cuspidal unipotent representation pa, of GUs(F,),
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where A, = (2, 1) is a partition of 3. The cohomology group Hi (M, ® F,, Q,) contains no
cuspidal representation of GUgg,(FF,) unless = j = 0 or § = j = 1. If # = 0 then H? is
the trivial representation of GU;(F,) = F;,, and if § = 1 then H! is the representation pa,
of GU;(F,).

5 The Cech spectral sequence on the generic fiber

Let red : M* — M, denote the reduction map. It is anticontinuous, so that the
analytical tubes Uy := red *(M,) are open subspaces of M®. Let BT™® denote the
subset of all vertex lattices A € BT having maximal orbit type ¢(A) = tyax = 2m+ 1. Then
{Un} aeprmax forms an open cover of the generic fiber M®" to which one can associate the
following J(Q,) x W-equivariant Cech spectral sequence, concentrated in degrees a < 0
and 0 <b<2(n—1),

Eab @ Hb ,\/ ® (Cp, Qi’) — HZer(Man ® (Cp,@)
YEl-—at1

Here, for a < 0 the index set I_,;; consists of all tuples v = (A',..., A=*"!) such that
the A € BT™ satisfy U(y) := ﬂ*“l Uyri + &. By the properties of the Bruhat-Tits
stratification, there exists a unique vertex A(y) € BT such that U(y) = Ur(). Each
cohomology group H(U(y) ® C,, Q) is naturally a representation of (Jy x I)7% where
I = W is the inertia subgroup, and 7 := (p~! - id, Frob) € J x W is called the rational
Frobenius element. Here, Frob € W is a lift of the geometric Frobenius, and p~! - id is seen
as an element of the center Z(J(Q,)) ~ Q>. The cohomology of the analytical tubes Uy
and of its special fiber M, are related by the following statement.

Proposition. Let A € BT and let 0 < b < 2(n —1). Write t(A) = 20 + 1. There is a
natural (Jy x I)tZ-equivariant isomorphism

HY(Uy ® C,, Q) = 2 (My @ Fy, Qi) (n — 1 - 6).

On the right-hand side the inertia I acts trivially and the rational Frobenius T corresponds

to the geometric Frobenius.

The key point is that Ky < G(Q,) in the local PEL datum is hyperspecial, so that the local
model associated to the Rapoport-Zink space is smooth. Thus, nearby cycles are trivial
and we may identify the cohomology (without support) of Uy and of M. Poincaré duality
then induces a shift in degrees and the Tate twist.

It follows that 7 acts like multiplication by the scalar (—p)® on any term E®" Thus, the
spectral sequence degenerates on the second page and the filtration on the abutment splits,

ie. the k-th cohomology group of M®" is the direct sum of the E3 * terms on the diagonal



a+ b = k. The Frobenius 7 then acts in a semi-simple manner on the abutment. Besides,
by considering the alternate version of the Cech spectral sequence, it is apparent that two
specific terms in the first page are not connected to any non-zero differential, so that they

remain untouched in the abutment. More precisely, we have B2 17 ~ E?’mﬁl*m),

and if n > 3 we also have Ey" 1 7mT o pO2(n—lmm)H

. The reason is that the terms in
the column a = 0 correspond to the cohomology of a single closed Bruhat-Tits stratum
of dimension m, however the terms in the other columns for @ < 0 correspond to the
cohomology of the intersection of |a| different strata. Such an intersection has dimension
< m, so that the range of non-zero cohomology groups drops by 2 from to a = 0 column
to the a < 0 columns.

In order to study the J(Q,)-action, one may rewrite all the terms EY * in terms of compact
inductions. Let us fix a vertex A, € BT™ and write J,,, = J),,. The two terms identified

above can be rewritten as

E?,Q(n—l—m) ~c— Indiﬂ HZ(n—l—m)(UAm ® (Cp’ @) ~c— Indjm HE(_/\/lAm ® IETP, @),
EYTmm o g, B (U @ Cy, Q) ~ ¢ — Ind) HA (M, @ F,, Qo).

Recall that H(M,, ®F,, Q) ~ Pem+1) = 1is the trivial representation of GUs,,41(F,),
and H'(M,,, ®F,, Q) ~ Peam,1)- The non-admissibility of the cohomology groups of M™
of degrees 2(n — 1 —m) and 2(n — 1 —m) + 1 is now a consequence of the following general
theorem.

Theorem ([Bus90]). Let G be a p-adic group and let L = G be an open subgroup containing
Z(G) and compact modulo Z(G). Let (o,V) be a smooth irreducible representation of L.

There is a canonical decomposition
G
¢c—Indy o ~ Vo @V,

where Vy is the (finite) sum of all supercuspidal representations of ¢ —Indg o, and Vg

contains no non-zero admissible subrepresentation.

In particular, V., does not contain any irreducible subrepresentation, however it may still
have many irreducible quotients and subquotients.
If x is an unramified character of Z := Z(J(Q,)) and p is any unipotent representation of

Im, inflated to J,,, Frobenius reciprocity gives a natural isomorphism
(c—Indj p)y ~c—Indg; X®p > Vo ® Vo,

where V;,, and V, ,, are given by the previous theorem. What remains is to prove
that if p = pam+1) and m > 1, or if pom,,1y and m > 2, then Vg, = 0. Namely, it is
enough to justify that the compactly induced representation ¢ — Indjm p does not have any
supercuspidal subquotient. This is true as soon as p is not a cuspidal representation of 7,,,,
as follows from type theory and the notion of level-0 types developped in [Mor99].
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6 The cohomology of the supersingular locus of the

associated Shimura variety at an inert prime for
n =34

The Rapoport-Zink space M is related to the supersingular locus of a certain PEL Shimura
variety via the p-adic uniformization theorem, and a spectral sequence relates the coho-
mology of both spaces. In particular, for small values of n, our computations so far allow
us to describe the cohomology of the supersingular locus at an inert place. Let E be an
imaginary quadratic field, and let V be an n-dimensional non-degenerate E/Q-hermitian
space of signature (1,n—1) at infinity, and such that V®Q@Q, is isomorphic to the hermitian
space defining the group of unitary similitudes G. In particular E, ~ Q,2, so that p is inert
in E. Let G be the group of unitary similitudes of V, seen as a reductive group over Q.
Then Gg, = G and Gg = GU(1,n — 1). Assume that there exists a self-dual Og-lattice
I'in V, and let Stab(I') denote the compact subgroup of G(A) of elements g such that
9(I' ®z Z) =1®yz 7. Here Ay denotes the ring of finite adeles. For any open compact
subgroup K? < Stab(I') n G(A;) which is small enough, there is an integral model Sg» of
the associated PEL Shimura variety which is defined over Op. Since we have hyperspecial
level structure at p, the integral model Sg» is smooth and quasi-projective. Let Sk» denote
the special fiber of Sg», and let gizp denote the supersingular locus. Let I be the inner
form of G such that 1(Q,) = J, Iyr = GAz} and Ig = GU(0,n). The p-adic uniformization
theorem of [RZ96] gives natural isomorphisms of analytic spaces

I(Q)\(M™ x G(A})/K?) = :Sf\;?;an’

which are compatible as the level K? varies. Here §§§»’fm denotes the analytical tube of

the supersingular locus inside the analytification of the generic fiber of Sk»r. Associated to

~
SS,an

this geometric identity, a spectral sequence computing the cohomology of S}, is built in
[Far04]. Since Sg» is smooth, it amounts to the cohomology of the supersingular locus S,
itself. The G(A’;) x W-equivariant spectral sequence takes the following shape

= @ Exti (HOV MM @C, Q)1 -n),1,) @117 = HI(S™ @ F,, L),
HEA&(I)

where ¢ is a finite dimensional irreducible algebraic Qp-representation of G of weight
w(§) € Z, L is the associated local system on the Shimura variety, A¢(I) is the space
of all automorphic representations of I(A) of type E at infinity, and H2(S” ® F,, Le) =
@Kp H; (gizp ® ]F—pv [’E)~

By [Far04] Lemme 4.4.12, we have Fy ' — 0 as soon as a is strictly bigger than the semisim-
ple rank of J, which is equal to m. In particular, if m < 1 then all the differentials are zero

and the spectral sequence is already degenerated, allowing us to compute the abutment



entirely. Since the case m = 0 is kind of trivial, we now assume m = 1 (ie. n = 3 or 4).
In particular, the supersingular locus Sy, has dimension m = 1. Let X"(J(Q,)) denote
the set of unramified characters of J(Q,). Let St; denote the Steinberg representation of
J(Q,). fz e Q,", we denote by Q¢[z] the 1-dimensional representation of the Weil group
W where the inertia acts trivially and Frob acts like multiplication by the scalar x.

Let 7 == ¢ — Indﬂmm Pa, where N (Jp) is the normalizer of Ji, and pa, is an extension
to N (Jy) of the cuspidal representation pa, of Ji. Then 7 is an irreducible supercuspidal
representation of .J(Q,). If Il € A¢(I), we define oy, := wy, (p~* - id)p~™® € Q. where
w, is the central character of I, and p~' -id lies in the center of .J. For any isomorphism
v+ Qy ~ C we have [1(dy,)| = 1.

Theorem. There are G(A") x W -equivariant isomorphisms

H(S(bo) ® F,BTe) ~ @ P @ Qu[om,p" @),

e Ag ()
1,eX1 ()
HISMb)®F.BT)~ @ WeQb,r@e @ el "),
HeAg (1) e Ag (1)
IxeX (), Fyex (),
IIp=x-Sts T,=x-11
H(S(by) ® F,BTe) ~ P TP @ Qy[dn, p*@+?].
e A (1)
I 40

In order to compute the Ext groups involved in the spectral sequence, two different tech-
niques have been used. The first is actually an indirect argument, exploiting the weights
of the Frobenius to show that some terms can not be nonzero. The second tool is a gener-

alization of a duality theorem of Schneider and Stuhler, which is proved in [NP20].

7 Some perspectives

The strategy which we explained in this manuscript essentially consists of three steps:

1. compute the cohomology of the closed Bruhat-Tits strata via Deligne-Lusztig theory,

2. introduce the Cech spectral sequence on the generic fiber, and relate its terms to Step
1. via the nearby cycles,

3. plug the results of Step 2. into the Hochschild-Serre spectral sequence, and find out
what it tells about the supersingular locus of the Shimura variety.

In principle, this strategy could be applied to any Rapoport-Zink space that is fully Hodge-
Newton decomposable, however some additional technical difficulties may show up.
First, the success of Step 1. depends on how much is known on the Deligne-Lusztig varieties

involved. Provided that they are of Coxeter type, it is reasonable to expect that explicit
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computations can be done. However, even in the case of Coxeter type, the closed Bruhat-
Tits strata M are not necessarily smooth, eg. see [RTW14]. In such cases, we can not
rely on the purity of the Frobenius to simplify the computations in the spectral sequence
induced by the Ekedahl-Oort stratification.

Then, the feasibility of Step 2. entirely relies on whether the nearby cycles can be computed
or not. In the case of good reduction such as the unramified GU(1,n — 1), this is not a
problem. More generally, as long as we have semistable reduction, it should be possible
to carry out explicit computations. Similar statements regarding non-admissibility of the
cohomology groups of certain degrees should be expected in more general cases.
Eventually, Step 3. is doable as long as n is small enough so that the semisimple rank of
J is not too big. In particular if it is < 1, the Hochschild-Serre spectral sequence already
degenerates on the second page. It may be interesting to keep track of the contribution
of the supersingular locus (at maximal level) to the supercuspidal part of the cohomology.
It amounts to checking when do cuspidal representations occur in the cohomology of the
Deligne-Lusztig varieties M.

Another possibility would be to adapt this approach to mod ¢ coefficients. The current
hot topics in Deligne-Lusztig theory seem to be widely focused on the modular theory,
and many results are known on the modular cohomology of Coxeter varieties at primes
¢ which correspond to “the Coxeter case”, cf. [Dudl12], [Dudl4] and [DR14]. We could
thus reach statements regarding the existence of torsion or not in the cohomology of the

Rapoport-Zink spaces.
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