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1 Introduction 

One commonly accepted strategy in order to build Langlands'conjectural conrrespondences 

is to look into the cohomology (here i!-adic) of some geometric spaces, which are equipped 

with an action of the reductive group under consideration. In the global setting, one is 

generally interested in the cohomology of Shimura varieties, whereas in the local setting 

one may consider the cohomology of Rapoport-Zink spaces, as introduced in [RZ96], or 

of their generalizations as local Shimura varieties, which were conjectured in [RV14], and 

later built as moduli of local shtukas (see [SW20]). 

In this manuscript, we will stick to the context of Rapoport-Zink spaces. Given a choice of 

local EL or PEL datum'D as in [RZ96] Definition 3.18, one may define a moduli problem 

classifying p-divisible groups with additional structures whose reduction mod p are quasi-

isogeneous to a fixed p-divisible group X with additional structures, called the framing 

object, whose isocristal is determined by the local datum. This problem is represented by 

a formal scheme M:＝知 overthe formal spectrum of叫， whereE is the completion 
of the maximal unramified extension of the local reflex field E (a finite extension of (Q砂
The local datum determines a p-adic group G over (Qp and an open compact subgroup 

K。C G((Q砂 definedas the stabilizer of a certain chain lattice. Let Man denote the 
generic fiber of M as an analytic space over E. For Kc  K,。anopen compact subgroup, 
one may define a finite etale covering MK→ Man by parametrizing the trivializations 

mod K of the Tate module of the universal p-divisible group over M (see [RZ96] 5.32 for 
the precise constructions). We have MK。=Man,and these spaces fit together inside a 
projective system M00 which we refer to as the Rapoport-Zink tower. The group G((QP) 

acts on M00 by Heeke correspondences. Besides, the group Aut(X) can be seen as the group 
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of②-rational points of a certain inner form J of a Levi complement in G. The natural 

action of J⑫ )on M extends to an action of each individual space MK, compatible with 

the transition maps and commuting with the G（ふ）—action. Taking cohomology, the groups 

H孔(MOO®C戸届）：＝皿迎加H~(U®Cp,Z/心） ®(ft,
KcK。UcMK k 

where U runs over the relatively compact open subspaces of MK, are naturally representa— 

tions of G（ふ） xJ(Qp) x WE, where叫 isthe absolute Weil group of E. The WE-action 

is induced by the (us叫 lynon effective) Weil descent datum on M as defined in [RZ96] 

3.48. This cohomology is expected to realize a local Langlands correspondence for G, and 

as such it is a natural object to study. 

The Kottwitz'conjecture (see [Rap95]) describes the G(QP) x J(Q砂supercuspidalpart in 

the alternate sum of the cohomology of叫， interms of the local Langlands correspon-

dence. This conjecture has been proved in a variety of cases. The case of the Lubin-Tate 

tower is done in [Boy99] and [HTOl], the Drinfeld case has been dealt with in [Hau05], but 

can also be deduced from the Lubin-Tate case by duality (see [Fal02] and [FGL08]). Both 

the Lubin-Tate and the Drinfeld cases correspond to Rapoport-Zink spaces of EL type, and 

the Kottwitz'conjecture was proved for all such basic unramified EL Rapoport-Zink spaces 

in [Far04] and [Shi12]. Eventually, the case of the basic unramified unitary Rapoport-Zink 

space of signature (r, n-r) with n odd was also done in [Ngu19] and [BMN21]. A general-

ization of Kottwitz'conjecture to moduli spaces of local shtuka is also proved in [HKW22]. 

Outside of the supercuspidal part, very little seems to be known. To our knowledge, the 

entire cohomology of Mro is only known in the Lubin-Tate case by [Boy09]. One deduces 

the Drinfeld case by duality, but in this case the cohomology at Iwahori level was already 

described in [8S91]. A derived description of the cohomology of the Drinfeld tower is also 

obtained in [Dat06]. 

2 Bruhat-Tits stratifications on Rapoport-Zink spaces 

In general, understanding the non-supercuspidal part of the cohornology of any Rapoport-

Zink space seems to be a target which is out of reach. There exists however a certain 

small family of Rapoport-Zink spaces whose special fiber exhibits some very nice geomet-

ric properties. Such spaces are said to be "fully Hodge-Newton decomposable" and they 

have been fully classified in [GHN19] using a group theoretic approach. The special fiber 

of a fully Hodge-Newton decomposable Rapoport-Zink space admits a stratification by 

Deligne-Lusztig varieties, and the incidence relations of the stratification is closely related 

to the combinatorics of the Bruhat-Tits building of an underlying p-adic group. Conse-

quently, this stratification is known as the Bruhat-Tits stratification. The Rapoport-Zink 

space is said to be "of Coxeter type" if it is fully Hodge-Newton decomposable, and if 
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the Deligne-Lusztig varieties occuring in the Bruhat-Tits stratification are of Coxeter type. 

This subfamily of Rapoport-Zink space has also been entirely classified in [GHN22]. 

To our knowledge, the first time that Deligne-Lusztig varieties were explicitely mentioned 

in the context of the Langlands program was in[YoslO], dealing with the Lubin-Tate 

tower. However, it is the pioneering work of [VollO] and [VWll] which coined the notion 

of Bruhat-Tits stratification. The authors used an approach based on Dieudonne theory 

and the combinatorics of vertex lattices in a hermitian space. The corresponding space 

was the GU(l, n -1) PEL Rapoport-Zink space at inert p and hyperspecial level. This 

paved the way to the study of the geometry of the special fiber on a case-by-case basis by 

many authors, using either a similar Dieudonne theoretic approach or a group theoretic 

approach. 

Dcligne-Lusztig varieties naturally arise in Deligne-Lusztig theory, a field of mathematics 

whose aim is the classification of all irreducible complex representations of finite groups 

of Lie type, ie. reductive groups over finite fields. Let G be a connected reductive group 

over an algebraic closure町oflFP. Let q be a power of p and assume that G has an lFq― 
structure, induced by a Frobenius morphism F : G → G. Let G := G(lFq) "" GF be the 

associated finite group of Lie type. A Levi complement Lこ Gis the group of lF q-points of 

some rational Levi complement L of G. Such a Levi complement L is said to be split if 

L is the Levi complement of a rational parabolic subgroup P of G. One way of building 

irreducible representations of G is to decompose representations parabolically induced from 

proper split Levi complements L of G. However, this process fails to recover the cuspidal 

representations. To remedy this issue, Deligne and Lusztig defined in their innovative work 

[DL76] new induction functors from any (not necessarily split) Levi L of G, generalizing 

the usual parabolic induction. They did so by associating a certain variety YLcP to any 

parabolic subgroup P of G with rational Levi complement L, which is naturally equipped 

with commuting actions of G and of L = LF. The alternate sum of the cohomology of YLcP 

provides a virtual G-bimodule-L, which is used to define the Deligne-Lusztig induction 

functor Rt between the categories of representations of L and of G. Reducing to the case 

where L = T is a maximal torus in G and computing explicitely the decompositions of the 

induced representations亭 forall characters 0 of T, Lusztig managed in [Lus84] to give 
a complete classification of all irreducible representations of all simple finite groups of Lie 

type. 

To sum up, the geometry of certain Rapoport-Zink spaces can be described in terms of 

Deligne-Lusztig varieties, and cohomology plays a crucial role in both the Langlands pro-

gram and Deligne-Lusztig theory. This observation is the starting point of our work. We 

brought our attention to the case that has been chronologically first considered, that is 

the unramified unitary PEL Rapoport-Zink space of signature (1, n -1) as in [VollO] and 

[VWll]. 
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3 Non-admissibility in the cohomology of the unram-

ified GU(l, n -1) Rapoport-Zink spaces 

Given a smooth admissible (complex) representation p of J(QP) (meaning that dim(pり＜
oo for all open compact subgroups K こ J(QP)),it is well-known that the G(Q砂modules

Ext~(H仰(MOO®Cp，◎）， p)

are admissible. It is proved in [Far04], and it is a simple consequence of the fact that the 

cohomology groups H~(MK ⑭ Cか◎） are finitely generated J⑫ )-modules. We note that 

this admissibility statement has been largely generalized in [FS21], in so that the authors 

prove a derived version with integral coefficients regarding local Shimura varieties. 

However, it is also known that the cohomology groups H~(MK @ (Cか◎）xare not neces-

sarily of finite length as J(Qp)-modules. Here, for a continuous character x of the center 
Z(J(QP)) and V a smooth representation of J(Qp), we denote by Vx the largest quotient 

of V on which the center acts through X・ Thus, the cohomology is somewhere in between 

finitely generated and finite length. What about admissibility? In the Lubin-Tate and 

Drinfeld cases, the groups H~(MK@ (C戸切）xare admissible as J⑫ )-modules. However, 
it turns out that it is not the case in general, our study led to a counter-example. 

From now on, let M denote the basic unramified unitary PEL Rapoport-Zink space of 

signature (1, n -1). The prime p is odd, the local reflex field E＝如 isthe quadratic 

unramified extension of Qp, the group G = GVn is the quasi-split group of unitary simil-

itudes of a certain n-dimensional QP2/QP-hermitian space, and Ki。こ G（如 isa maximal 
hyperspecial parahoric subgroup, corresponding to the stabilizer of a self-dual lattice. The 

group J is isomorphic to G when n is odd, and it is the non quasi-split inner form of G 

when n is even. The framing object X is the supersingular unitary'[rdivisible group of 

signature (1, n -1) as defined in [VWll]. We observe that in this case, the Rapoport-Zink 

space can actually be defined over勾 insteadof the ring of integers of QP'However, this 

rational structure does not stem from the Weil descent datum defined in [RZ96], which is 

not effective. They are however related up to the action of an element in the center of 

真）． Wedefine an integer m ~ 0 by the equality 

2m + 1 if n is odd, 

n = ｛2(m+ 1) if n is even. 
Theorem. Let x be an unramified character of Z(J⑫)）"" Q;2. If n ~ 3 then the 

cohomology group H應n-1-m)（Man®Cか ~)x is not J(Qp)-admissible. If n ~ 5, the same 
holds for H墨n-1-m)+l(M疇 C心）x・

We emphasize that the statement is about the cohomology of the generic fiber Man= MKo, 

that is the maximal level of the Rapoport-Zink tower. In regard to the cohomology of M00, 
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it amounts to taking the G((Q)P)-invariants. 

The key ingredient in the proof is the Bruhat-Tits stratification on the reduced special fiber 

Mred of the Rapoport-Zink space, and the cohomology of the closed Bruhat-Tits strata as 

generalized Deligne-Lusztig varieties. 

4 Cohomology of the closed Bruhat-Tits strata 

The stratification can be written as 

Mred = lJ兄，
AEBT 

where each stratum MA  is a locally closed subvariety over lFp2, and A runs over the set of 

vertices BT = BT(J, Qp) of the Bruhat-Tits building of J. For all A E BT let MA  denote 

the closure of the stratum Mふwhichis a smooth projective variety of dimension 0 ;;:,, 0. 

The J-action on the special fiber Mred is compatible with the Bruhat-Tits stratification, 

in the sense that any g E J induces an isomorphism g : MA  ~ M;(A), and thus an isomor-

phism between the closed strata MA  ~ Mg(A) as well. Let JA := FixJ(A) be the fixator of 

A, that is a maximal parahoric subgroup of J⑨ ).If J! denotes the pro-p radical, the quo-

tientふ：＝ JA/J1is a finite group of Lie type, isomorphic to G(U20+1(JFP) x Un-20-i(lFP)). 

We have O,(0,::;; m, so that the integer t(A) := 20 + 1, called the type of A, is not greater 
than n. It turns out that the induced action of hon MA  and MA  factors through an ac-

tion ofふ， whichis trivial on second unitary component. Thus, each Bruhat-Tits stratum 

comes equipped with an action of the finite group of Lie type GU20+1(lFp)-With respect to 

this action, MA  is isomorphic to the Coxeter variety for GU20+1(lFp), and the closure MA  

is isomorphic to a generalized parabolic Deligne-Lusztig variety. Let us explain what we 

mean by this. 

In general, let G be a connected reductive group over冗equippedwith a Frobenius mor-
phism F: G→ G inducing an lFq-structure. Let G := GF be the associated finite group of 

Lie type. Let P be a parabolic subgroup of G. The associated generalized Deligne-Lusztig 

variety is 

Xp := {gP E G/P lg―1F(g) E PF(P)}. 

It is defined over lF砂 whereJ ;;:,, 1 is the smallest integer such that戸(P)= P, and 

it is equipped with an action G,.-..,. Xp by left translations. We say that a generalized 

Deligne-Lusztig variety Xp is classical if in addition, there exists a rational Levi comple-

mentLこ P.When this condition is satisfied, the Deligne-Lusztig variety inherits an action 

Xp'""'L := LF by right translations, which commutes with the action of G. In this case, 

the cohomology of Xp is a G-bimodule-L, and can bc uscd to dcfincd thc Dclignc-Lusztig 

induction functor between the categories of representations of L and of G. We note that 
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the varieties denoted in the introduction by YLcP are in fact some L-torsor of Xp. 

Thus, in the context of Deligne-Lusztig theory which focuses on the study of the induction 

functors afforded by the varieties YLcP, one is only interested in classical Deligne-Lusztig 

varieties. For this reason, to our knowledge their generalized versions have not been system-

atically studied in the literature, except in [BR06] where a criterion for the irreducibility 

of Xp is proved. 

Since MA  is a generalized (non classical) Deligne-Luztig variety, computing its cohomology 

may be difficult. Fortunately, [VWll] provides us with enough geometric understanding 

so that the computation is doable. If t(A) = 20 + 1, the Ekedahl-Oort stratification on the 
closed Bruhat-Tits stratum is 

ふ＝日 MA(0'),
0<O’<O 

where each locally closed subvariety MA(0') is isomorphic to a parabolic induction of the 

Coxeter variety for GU20'+1(1F砂 In[Lus76], Lusztig has computed the cohomology of the 
Coxeter varieties for all finite classical groups in terms of unipotent representations. The 

unipotent representations of GU20+1(1Fp) are classified in [1S77] by the integer partitions入

of 20 + 1 and we denote them PA・肝omthe Howlett-Lehrer comparison theorem proved in 
[HL83] and the Pieri rule for Coxeter groups of type B (see [GM20] and [GPOO]), one derives 

the combinatorical rules to compute parabolic induction of unipotent representations. It 

allows us to entirely determine the cohomology of the Ekedahl-Oort strata M虚'),which

we can plug into the spectral sequence 

E~,b = H戸(MA(a)(8)町，◎）=H~+b(MA (8)町，◎）．

The distribution of the weights of the Frobenius implies that the sequence degenerates on 

the second page, and one may compute all the E2 terms leading to the following statement. 

Theorem. Let A E BT with t(A) = 20 + 1. 

(1) The cohomology group HHM虚冗豆） iszero unless O ~ j ~ 20. 
(2) The Frobenius T acts like multiplication by the scalar (-p)j on H~(MA (8)町◎）．
(3) For O ~ j ~ 0 we have 

min(j,0-j) 

H?(MA (8) 同，O）＝〶 P(20+1-2s,2s) ・
s=0 

For O ~ j ~ 0 -1 we have 

min(j,0-1-j) 

H~j+1(MA® 瓦，◎）＝④ P(20-2s,2s+1)・ 
s=0 

In particular, all irreducible representations in the cohomology groups of even index belong 

to the unipotent principal series, whereas all the ones in the groups of odd index have cus-

pidal support determined by the unique cuspidal unipotent representation p△2 of GU3(lFp), 
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whereふ＝ （2, 1) is a partition of 3. The cohomology group H化(M遺因((fe)contains no 
cuspidal representation of GU20+1（恥） unless0 = j = 0 or 0 = j = 1. If 0 = 0 then H~ is 

the trivial representation of GU1（応） ＝JF:Z, and if 0 = 1 then H~ is the representation p今

of GU3(lF砂

5 The Cech spectral sequence on the generic fiber 

Let red : Man→ Mred denote the reduction map. It is anticontinuous, so that the 

analytical tubes UA := red―l(M心areopen subspaces of Man. Let BTmax denote the 
subset of all vertex lattices A E BT having maximal orbit type t(A) = tmax = 2m + 1. Then 

｛い｝AEBTm訟 formsan open cover of the generic fiber Man to which one can associate the 

following J(Qp) x W-equivariant Cech spectral sequence, concentrated in degrees a,;;; 0 

and O,:;; b,;;; 2(n -1), 

麿'b： ① H罰 ('Y)RC心） =Hジ(ManRC喜）．
租 I-a+1

Here, for a,,;; 0 the index set La+l consists of all tuples 1 = (A 1,..., A-a+l) such that 
the Ai E BTm邸 satisfyU(r) := n;:_;ト1U Ai + 0. By the properties of the Bruhat-Tits 
stratification, there exists a unique vertex A(r) E BT such that U(r) = UA(,)・ Each 

cohomology group H罰 (r)RC戸⑮ isnaturally a representation of (J A x I)戸 where
Iこ W is the inertia subgroup, and T := (p―1 • id, Frob) E J x W is called the rational 

Frobenius element. Here, Frob E Wis a lift of the geometric Frobenius, and p-1 • id is seen 

as an element of the center Z(J⑫ ))c:::e (Ql;2. The cohomology of the analytical tubes U A 

and of its special fiber MA  are related by the following statement. 

Proposition. Let A E BT and let O,,;; b,,;; 2(n -1). Write t(A) = 20 + 1. There is a 
natural (JA x I)T2-equivariant isomorphism 

H招(UA(8) Cp, ◎）二 H~一2(n-1-0)(MA® 瓦，◎）（n -l -0). 

On the right-hand side the inertia I acts trivially and the rational Frobenius T corresponds 

to the geometric Frobenius. 

The key point is that Ki。こ G(QP)in the local PEL datum is hyperspecial, so that the local 
model associated to the Rapoport-Zink space is smooth. Thus, nearby cycles are trivial 

and we may identify the cohomology (without support) of UA and of MA. Poincare duality 

then induces a shift in degrees and the Tate twist. 

It follows that T acts like multiplication by the scalar (-pt on any term Ef'b. Thus, the 

spectral sequence degenerates on the second page and the filtration on the abutment splits, 

ie. the k-th cohomology group of Man is the direct sum of the Eg,b terms on the diagonal 
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a+ b = k. The Frobenius T then acts in a semi-simple manner on the abutment. Besides, 

by considering the alternate version of the Cech spectral sequence, it is apparent that two 

specific terms in the first page are not connected to any non-zero differential, so that they 

remain untouched in the abutment. More precisely, we have 
0,2(n-l-m) _. z;,0,2(n-l-m) 

y, EOO ~ El,  
and if n ;;,, 3 we also have E'(;, 

0,2(n-l-m)+l _. z;,0,2(n-l-m)+l 
c:::e Et~,.. -.-,,,rri. The reason is that the terms in 

the column a = 0 correspond to the cohomology of a single closed Bruhat-Tits stratum 

of dimension m, however the terms in the other columns for a < 0 correspond to the 

cohomology of the intersection of lal different strata. Such an intersection has dimension 

< m, so that the range of non-zero cohomology groups drops by 2 from to a = 0 column 

to the a < 0 columns. 

In order to study the J⑫ )-action, one may rewrite all the terms Ef'b in terms of compact 

inductions. Let us fix a vertex Am E BTmax and write lm = JAm・ The two terms identified 

above can be rewritten as 

E『'2(n-l-m)c:::e C _ In吐 H~(n-1-m)(U心RCp,(fe)c:::e c -In吐 H~(M心®冗， (fe),

E『'2(n-l-m)+lc:::e C _ In吐 H~(n-1-m)+l(UAm R (Cp,◎)c:::e c -IndL田（MAmR冗，(fe).

Recall that H~(M心®瓦， (fe) c:::e P(2m+l) = 1 is the trivial representation of GU2m+l (lF砂
and H!(M知R瓦，◎） c:::eP(2m,l). The non-admissibility of the cohomology groups of Man 
of degrees 2(n -1-m) and 2(n -1-m) -1 -m) + 1 is now a consequence of the following general 

theorem. 

Theorem ([Bus90]). Let G be a p-adic group and let L c G be an open subgroup containing 

Z(G) and compact modulo Z(G). Let (a-, V) be a smooth i汀educiblerepresentation of L. 

There is a canonical decomposition 

c-Ind炉T::::, ％〶 VOO ，

where V0 is the (finite) sum of all supercuspidal representations of c -Indf a-, and V00 

contains no non-zero admissible subrepresentation. 

In particular, V00 does not contain any irreducible subrepresentation, however it may still 

have many irreducible quotients and subquotients. 

If xis an unramified character of Z := Z(J((Q)p)) and pis any unipotent representation of 

Jm, inflated to Im, Frobenius reciprocity gives a natural isomorphism 

(c -IndL P)x"'c -Ind五X(8) p "'Vo,P,X 〶 Voo,p,x,

where Vo,P,x and Voo,p,x are given by the previous theorem. What remains is to prove 

that if p = P(2m+1) and m ~ 1, or if P(2m,1) and m ~ 2, then Vo,P,x = 0. Namely, it is 

enough to justify that the compactly induced representation c -IndL p does not have any 

supercuspidal subquotient. This is true as soon as p is not a cuspidal representation ofぶ

as follows from type theory and the notion of level-0 types developped in [Mor99]. 
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6 The cohomology of the supersingular locus of the 

associated Shimura variety at an inert prime for 

n = 3,4 

The Rapoport-Zink space M is related to the supersingular locus of a certain PEL Shimura 

variety via the p-adic uniformization theorem, and a spectral sequence relates the coho-

mology of both spaces. In particular, for small values of n, our computations so far allow 

us to describe the cohomology of the supersingular locus at an inert place. Let lE be an 

imaginary quadratic field, and let V be an n-dimensional non-degenerate JE/Q-hermitian 

space of signature (1, n -1) at infinity, and such that V鴨 isisomorphic to the hermitian 

space defining the group of unitary similitudes G. In particular lEP "" QP2, so that pis inert 

in lE. Let G be the group of unitary similitudes of V, seen as a reductive group over Q. 

Then気＝ Gandら＝ GU(l,n -1). Assume that there exists a self-dual('.)E-lattice 

r in V, and let Stab(f) denote the compact subgroup of G（的） ofelements g such that 

g(r Rz Z) = r Rz z. Here的 denotesthe ring of finite adeles. For any open compact 
subgroup KPこ Stab(r)n G（砧） whichis small enough, there is an integral model SKP of 

the associated PEL Shimura varicty which is defincd ovcr('.)E・ Since we have hyperspecial 

level structure at p, the integral model SKP is smooth and quasi-projective. Let祝Pdenote 
--ss 

the special fiber of SKP, and let S7<p denote the supersingular locus. Let I be the inner 

form of G such that I(Qp) = J, IAr; = GAr; and I艮＝ GU(O,n). The p-adic uniformization 

theorem of [RZ96] gives natural isomorphisms of analytic spaces 

J((Q)¥(Man X 1G（砧）／kり~ s;~an, 

which are compatible as the level KP varies. Here s;,:n denotes the analytical tube of 

the supersingular locus inside the analytification of the generic fiber of SKP・ Associated to 

this geometric identity, a spectral sequence computing the cohomology of S悶~an is built in 
→S 

[Far04]. Since SKP is smooth, it amounts to the cohomology of the supersingular locus S炉

itself. The G(A1) x W-equivariant spectral sequence takes the following shape 

F2a,b =〶 Ext'.J (H~(n-1)-b(Man (8) <Cp,如 (1-n),Ilp)RW= H~+bぽ冷阿，＆），
IIEA1;(I) 

where t is a finite dimensional irreducible algebraic (ft-representation of (G of weight 

w(t) E Z,.C~ is the associated local system on the Shimura variety, AE(I) is the space 
of all automorphic representations of I(A) of type [ at infinity, and H~(s"" (8)瓦，£g)：＝ 

皿KPH~（喜®瓦，＆）．
By [Far04] Lemme 4.4.12, we have F;,b = 0 as soon as a is strictly bigger than the semisim-

ple rank of J, which is equal to m. In particular, if m,s; 1 then all the differentials are zero 

and the spectral sequence is already degenerated, allowing us to compute the abutment 
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entirely. Since the case m = 0 is kind of trivial, we now assume m = 1 (ie. n = 3 or 4). 

In particular, the supersingular locus S:v has dimension m = 1. Let X呵J（如） denote
the set of unramified characters of J⑫)． Let St1 denote the Steinberg representation of 

J（ふ）． IfxEQ£ , we denote by Q心]the I-dimensional representation of the Weil group 
W where the inertia acts trivially and Frob acts like multiplication by the scalar x. 

Let巧：＝ c-lnd
. - --・ . - --・ • 

NAJ1) P△; where N1（み） isthe normalizer of J1, and p△; is an extension 
to N1（み） ofthe cuspidal representation p△2 of J1. Then T1 is an irreducible supercuspidal 

representation of J（ふ）． IfII E A~(I), we define砿：＝ Wrrp(p―1・ id)p—w(~) E百xwhere 
wrrv is the central character of Ilp, and p-1 ・ id lies in the center of J. For any isomorphism 

l : <Ch'"" C we have I l（仇）1＝ 1. 

Theorem. There are G(Aj) x W-equivariant isomorphisms 

H緊(bo)(8) lF, ~) ~④ II鸞◎［伽pw(€l],
IIEA,(I) 
IIpEXUil(J) 

H隅(bo)(8) lF, ~) ~〶 II噂む［狐pw({)麗④ II鸞如—畑pw({)+l],
IIEA, (I) IIEAc(I) 
孜EXun(J)，ヨXEX呵 J),
IIp~x-StJ IIp~x·T1 

H隅(bo)(8) lF, ~) ~④ II鸞◎［如pw(€)+2].
IIEA,(I) 

叫キ0

In order to compute the Ext groups involved in the spectral sequence, two different tech-

niques have been used. The first is actually an indirect argument, exploiting the weights 

of the Frobenius to show that some terms can not be nonzero. The second tool is a gener-

alization of a duality theorem of Schneider and Stuhler, which is proved in [NP20]. 

7 Some perspectives 

The strategy which we explained in this manuscript essentially consists of three steps: 

1. compute the cohomology of the closed Bruhat-Tits strata via Deligne-Lusztig theory, 

2. introduce the Cech spectral scquence on the generic fiber, and rclatc its terms to Stcp 

1. via the nearby cycles, 

3. plug the results of Step 2. into the Hochschild-Serre spectral sequence, and find out 

what it tells about the supersingular locus of the Shimura variety. 

In principle, this strategy could be applied to any Rapoport-Zink space that is fully Hodge-

Newton decomposable, however some additional technical difficulties may show up. 

First, the success of Step 1. depends on how much is known on the Deligne-Lusztig varieties 

involved. Provided that they are of Coxeter type, it is reasonable to expect that explicit 
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computations can be done. However, even in the case of Coxeter type, the closed Bruhat-

Tits strata MA are not necessarily smooth, eg. see [RTW14]. In such cases, we can not 

rely on the purity of the応obeniusto simplify the computations in the spectral sequence 

induced by the Ekedahl-Oort stratification. 

Then, the feasibility of Step 2. entirely relies on whether the nearby cycles can be computed 

or not. In the case of good reduction such as the unramified GU(l, n -1), this is not a 

problem. More generally, as long as we have semistable reduction, it should be possible 

to carry out explicit computations. Similar statements regarding non-admissibility of the 

cohomology groups of certain degrees should be expected in more general cases. 

Eventually, Step 3. is doable as long as n is small enough so that the semisimple rank of 

J is not too big. In particular if it is ::;; 1, the Hochschild-Serre spectral sequence already 

degenerates on the second page. It may be interesting to keep track of the contribution 

of the supersingular locus (at maximal level) to the supercuspidal part of the cohomology. 

It amounts to checking when do cuspidal representations occur in the cohomology of the 

Deligne-Lusztig varieties MA・
Another possibility would be to adapt this approach to mod £ coefficients. The current 

hot topics in Deligne-Lusztig theory seem to be widely focused on the modular theory, 

and many results are known on the modular cohomology of Coxeter varieties at primes 

£ which correspond to "the Coxeter case", cf. [Dud12], [Dud14] and [DR14]. We could 

thus reach statements regarding the existence of torsion or not in the cohomology of the 

Rapoport-Zink spaces. 
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