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SURVEY ON  THE GEOMETRIC BOGOMOLOV CONJECTURE 

KAZUHIKO YAMAKI 

INTRODUCTION 

In Diophantine geometry, there is a notion of heights of points of algebraic varieties. The 
heights estimate a kind of arithmetic complexity of points, and points of "small" height are 
considered as the "arithmetically simple" points. 

Focusing on the points of small height, one can formulate conjectures of "Bogomolov type" 
for classes of algebraic varieties in various settings. Those conjectures predict that closed 
subvarieties with many points of small height should be very special kinds of subvarieties. 

The geometric Bogomolov conjecture, which is our main topic in this note, is one of such 
conjectures of Bogomolov type for abelian varieties over function fields. It was formulated 
in 2013 by the author inspired by Gubler's theorem. Then the author gave several partial 
answers to the conjecture, and Xie and Yaun gave a final answer by solving the remaining 
special case. 

In this note, we formulate the geometric Bogomolov conjecture and explain its background. 
Further, we outline how it was solved. 

Acknowledgment. I thank the organizers for giving me the opportunity to contribute this 
note. This work was partially supported by JSPS KAKENHI 18K03211. 

Notation and conventions. 

• Throughout the note, we fix an algebraically closed field k and a smooth projective 
curve IJ3 over k. When we say a "function field", this means the function field ofお．

• Let K always denote a number field or a function field. We fix an algebraic closure 
穴 ofK. A finite extension of K will be always taken in瓦

• Assume that K is a function field. For a finite extension K'of K, there exists a 
Cartesian product 

Spec(K'）一お'

』』
Spec(K)ーIJ3,

where労→お isa finite covering of smooth projective curves over k and Spec(K'）→ 
Spec(K) is a morphism induced from the canonical inclusion K ~ K'. Such a 
diagram is unique up to canonical isomorphism. We call this diagram, or simply四
the no竹 nalizationof IJ3 in K'. 

• Let K be a number field or a function field. For a finite extension K'of K, we define 
the set of places MK, of K'as follows. 
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-When K is the function field ofお， wetake the normalization咽 ofお inK'and 
set MK':＝咽(k),the set of closed points of IJ3'. 

-When K is a number field, we set 

狐：＝（Spec(OK')¥ {(O)}) II K'(C), 

where OK, is the ring of integers of K'and K'(C) is the set of embeddings of K' 
into C. An element in Spec(OK') ¥ {(O)} is called a finite place, and an element 
in K'(C) is called an infinite place. 

• For each v'E MK,, we define an absolute value l・lv', which is called the normalized 
absolute value on K'associated to v', as follows. 
-Assume that K is a function field. Then the local ring四，v'isa discrete 

valuation ring, and hence we have the order function ordv, : K'→Z U {+oo} 
arising from 0お',v'・ We set lalv':= e―0rdv'(a) for a E K'. 

-Assume that K is a number field. When v'is a finite place, then the local ring 
OK',v'is a discrete valuation ring, and we set lalv'= IOK,/Pv'l-0rdv'(a), where pが

is the prime ideal of OK'corresponding to v'and ordv, : K'→Zu{+(X)｝is the 
order function. When v'is an infinite place K'c...+ C, we set lv'(a)I, where l・I is 
the usual absolute value on C. 

1. HEIGHTS 

In this section, we quickly review the notion of heights and the canonical height functions 
on abelian varieties. See [2, 14] for details on height theory. 

1.1. Heights. Let K be a function field or a number field. First, we recall the Weil height 
function on the projective space. It is classically known that there exists a unique function 
研：戸（酌→艮 thathas the following property: for any p E戸（K)and for any finite 
extension K'/ K with p E戸 (K'),if we write p = (a。:•· ・ : an) with a。,．．．，anEK', then 

研 (p):= 
1 

[K’:K］と logm訟{|叫v'li=O,...,n}.
v'EMK, 

This function hw is called the Weil height function on界 Itdepends on the choice of the 
homogeneous coordinates on the projective space. 

To define the notion of heights, we fix a notation. For a set S, let F(S) denote the set of 
real valued functions on S and let BF(S) denote the subset of F(S) consisting of bounded 
functions. For an h E F(S), let [h] denote the class in F(S)/BF(S) to which h belongs. 

Let X be a projective variety over兄Thenit is也ssicallyknown that there exists a group 
homomorphism fJx: Pic(X)→F(X(K))/BF(X(K)) that has the following property: if L 
is a very ample line bundle and if ¢ : X→可 isa closed embedding withが(Oil'先（1))竺 L,

then fJx(L) = [h似].We call fJx(L) the height associated to L. A function hL E F(X（酌）
that represents fJx (L) is called a height function associated to L. 

Remark 1.1. The Weil height function is a nonnegative function. It follows that if L is 
an ample line bundle on a projective variety X over万， aheight function associated to L is 
bounded below. 
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For a set Sand for h1, h2 E F(S), we write柘～加 if[h1] = [h叶inF(S)/ BF(S). Let hL 
and加 beheight functions associated to line bundles L and M on X, respectively. By the 
definition of height functions, 

(1.2) 加十 hM~h⑬ M・

As for the relationship between the morphisms and line bundles, we have the functoriality 
in the following sense. 

p roposition 1.3. Let f : Y→X be a morphism of projective varieties over K and let L 
be a line bundle on X. Let hL and hf*(L) be height functions on X and Y associated to L 
and f*(L), respectively. Then hf*(L) ~ f*(h砂

From here to the end of this subsection, assume that K is a function field, i.e., the function 
field of 12:,. We recall that a height function can be constructed from a model. 

Let X be a projective variety over K. Let K'be a finite extension of K and let労 be
the normalization ofおinK'. A model (overお')。fX means a flat morphism X →労

equipped with an isomorphism X x23, Spec（K) ~ X. We sometimes simply write X for a 
model X→お'.Wesay that a model X→ 咽 isproper if it is a proper morphism. Let L 
be a line bundle on X. A model（ぷ£)over労 of(X, L) means a pair of a model X→12:,' 

of X and a line bundle£, on X equipped with an isomorphism £Ix竺 L.
Suppose that we are given a proper model (1r : X→12:,', £) of (X, L). We define a function 

hぼ，£） ： xぽ）→股 asfollows. For any X € X（万）， let今 denotethe Zariski closure of the 
point x in the mordel X; the natural morphismふ→ 12:,is a finite morphism, and let 
［ふ： 12:,]denote the degree of this finite morphism. Then we set 

h匹）（x):= 
deg(c1(£) ・［ふ])

［ふ： 12:,].

p roposition 1.4. Let X and L be as above. Let (X, £) be a proper model of (X, L). Then 

h（ぶ.c)is a height function on X associated to L. 

We call hぼ，.c)the model height function induced from (X, £)1. 

1.2. Canonical height functions on abelian varieties. In general, height functions are 
determined only up to bounded function. However, it is classically known that on abelian 
varieties, one has a canonical choice of a height function associated to each line bundle, and 
such height functions are called the canonical height functions. 
In this section, we will recall the canonical height functions associated to "even" line bun-

dles. Let A be an abelian variety. For an m E Z, let [m] denote them-times endomorphism 
on A. A line bundle Lis said to be even2 if [-l]*(L)竺 L.If L is an even line bundle on A, 

then for any m E Z,［叫＊（L)竺 LRm2holds by the theorem of cube ([20]). 

Theorem 1.5. Let A be an abelian va加 tyover K and let L be a line bundle on A. 

1We can show that, for any X and L as above, there exists a proper model of (X, L). It follows that a 
height function associated to L can be constructed as a model height function. Also over a number field, we 
have a notion of models over the ring of integers of a number field. Further, using the arithmetic intersection 
theory in the sense of Arakelov geometry, we can construct height functions in a similar maner. 

One sometimes says that it is symmetric. 
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(1) Fix an m E Z翌． Thent~ere exists a unique height function和onA associated to L 

such that [m]*(h叫＝ m如．
(2) Let hL be as in (1). Then it is a quadratic form on the Z-module Ai_K) in the sense 

that there exists a bilinear form b : A（K) X A(K)→股 suchthat加(x)= ½b(x,x) 
for all x EA（穴）．

We call位 inTheorem 1.5 the canonical height function associated to L. We saw several 
equalities and inequalities modulo bounded functions between height functions (cf. Re-
mark 1.1, (1.2), and Proposition 1.3). For the canonical height functions, they are equalities 
and inequalities as functions. 

p roposition 1.6. Let A be an abelian variety over万．

(1) Let L1 and L2 be even line bundles on A. Then hい@L2= hぃ＋ hL2・

(2) If L is an ample even line bundle, then hL ~ 0. 
(3) Let f : B→A be a homomorphism of abelian varieties over K.~ Thenjor any even 

line bundle L on A, f*(L) is an even line bundle on B, and f*（和） ＝ hf*（L)・

From here to the end of this subsection, we assume that K is a function field. Let A be 
an abelian variety over K and let L be an even line bundle on A. In general, the canonical 
height function associated to L is not a model height function. However, as we are going to 
see, if A is "nowhere degenerate", then it turns out to be a model height function. 

Let K'be a finite extension of K and let咽 bethe normalization of SJ3 in K'. An abelian 
scheme model (over SB') of A is an abelian scheme 7r : A→SB'of A equipped with an 
isomorphism A x'B'Spec（天）竺 Aof abelian varieties. We say that A is nowhere degenerate 
if it has an abelian scheme model for some finite extension K'/ K. 

p roposition 1.7. Let A be an abeli e an abelian variety over K and let L be an even line bundle on 
A. Suppose that A is nowhere degenerate. Then the following holds. 

(1) There exist a finite extension K'/ K and a proper model (7r : A→SB',£), where咽

is the normalization of SJ3 in K', such that the following hold: 
(i) 1r : A→SB'is an abelian scheme model of A; 
(ii) o;(£)竺 O'B,,where O" is the zero section of the abelian scheme 1r. 

(2) Let (1r : A→お',£)be as in (1) above. Then for any m E Z, we have [m]*(£)竺

£0m2, where [m] : A→A is the m-times endomorphism of the abelian scheme. 

Let (1r : A→SB',£) be a model as in Proposition 1.7 (1). By (2) in this proposition 
and the projection formula, we see that [m]* (h(A，い） ＝而h(A,£).Since h(A,£) is a height 

function associated to L (Proposition 1.4), it follows from Theorem 1.5 that h(A,£) = hレ

1.3. Height _Q points. Let K be a function field or a numb~ field. Let A be an abelian 
variety over K. We define the notion of height O points of A(K). Let L be an ample even 

line bundle. For an a E Aぽ）， wecan show that the property“い(a)= O" does not depend 
on the choice of ample even L. Thus it makes sense to say that a point a E A（万） hasheihgt 

0, which means that hL(a) = 0 for some and hence any ample even line bundle Lon A. 
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We set A（万）h=O:= {a EA(K) I a has height O}. Let A（万）tordenote the set of torsion 

points of the additive group A（万）． SincehL for an even line bundle L is a quadratic form, 

we have A（万）torCA（万）h=O・

One may ask if any height O point is a torsion point or not. When K is a number field, 
the answer is affirmative. 

Theorem 1.8. Assume that K is a number field. Let A be an abelian variety over K. Then 

A国）h=O= A国）tor・

It is natural to ask about the case of function fields. In fact, it does not hold in general. 
Assume that K is a function fi~ld. We say that an abelian variety A ov~ 万 is constant if 

there exists an abelian variety A over the constant field k such that A竺 A翫 K.Note that, 

via this isomorphism, we regard A(k) C A（穴）． Weclaim that A(k) C A（穴）h=O;thus this 

implies that A（万）h=Oh as non-torsion points in general. Indeed, the canonical projection 

A X~pec(k) お→ SB is an abelian scheme m<:_del of A; we take an amp~e even line bun~le L 
on A and let.C and L be the pullbacks of L by the first projections A Xspec(k)も→ A and 
～ ～ 

AckK→A, respectively. Then (A X Spec(k)も→ SB,.C)is a model of (A, L) that satisfies the 

conditions in Proposition 1.7 (1). We take any歪EA(k). Regarding this point as a point in 

A（万）， wetake its Zariski closure今 inthe model. Then今＝ ｛x} Xお， andwe see that 

deg(c心） •今） ＝0. By Proposition 1.7 (1), this shows that歪EA（万）h=O・

We will see later how the height O points are characterized over function fields. 

2. BACKGROUND 

The geometric Bogomolov conjecture has a long history in its background, which we are 
going to brief in this section. 

2.1. History. We start with the Manin-Mumford conjecture. Let F be an algebraically 
closed field. Let C be a smooth projective curve over F of genus g ~ 2. Fix a divisor D 
on C of degree 1, and let J : C'----+ Jacc be the embedding of C into its Jacobian given by 
xi-+ [x-D]. 

Conjecture 2.1 (Manin-Mumford conjecture). Assume that char(F) = 0. ThenJ―1 (Jacc（万）tor)

is a finite subset of C（万）．

In 1980, Bogomolov "arithmetized" the Manin-Mumford conjecture. With the above 
notation, assume that F:＝K, where K is a function field or a number field (not necessarily 

上 （ 
char（万） ＝0). Let h : Jacc(K)→恥0be the Neron-Tate height function, which is the 
canonical height function associated to a certain theta divisor. For an E E恥 weset 

C(E) := {x E C(K) I h(J(x)) :SE}. 

Conjecture 2.2 (Bogomolov conjecture for curves, [1]). Assume that, when K is a function 
field, C cannot be defined over k. Then there exists an E > 0 such that C(E) is finite. 

For E ~ 0, we have戸 (Jacc（衣）tor)C C (E). Thus the Bogomolov conjecture implies the 

Manin-Mumford conjecture when F = Q. 
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In 1983, Raynaud proved that the Manin-Mumford conjecture holds, and moreover, he 
established a generalization. To describe this, let A be an abelian variety over an algebraically 
closed field F. A subvariety T of A is said to be torsion if it is the translate of an abelian 
subvariety by a torsion point, i.e., if there exist an abelian subvariety A'of A and a t E 
A（天）torsuch that T = A'+ t. We say that a closed subvariety has dense torsion points 
if it has a dense subset of torsion points. Since an abelian variety over an algebraically 
closed field has dense torsion points, so does a torsion subvariety. Raynaud proved that the 
converse also holds if char(F) = 0. 

Theorem 2.3 (Raynaud's theorem, [22] when dim(X) = 1 and [23] in general). In the above 
setting, assume that char(F) = 0. Then for any closed subvariety X of A, if X has dense 
torsion points, then it is a torsion subvariety. 

Raynaud's theorem implies the Manin-Mumford conjecture. Indeed, under the setting of 
the conjecture, since J(C) is not a torsion subvariety, it follows from Raynaud's theorem that 
it does not have dense torsion points. Since dim(C) = 1, this means that J(C) has only a 
finite number of torsion points. 

In 1995, S. Zhang proposed an "arithmetization" of Raynaud's theorem over number fields. 
To state that, we define the notion of density of small points. Let A be an abelian variety 
over万． Foran ample even line bundle L on A, a closed subvariety X C A, and an E E恥
set X(E; L) := {x EX（万） 1い(x)さE}.It is easy to see that the property that X (E; L) is 
dense in X for any E > 0 does not depend on the choice of an ample even line bundle L. 
We say that X has dense small points if X (E; L) is dense in X for any E > 0 and for some 
(hence any) ample even line bundle L on A. 
Since a torsion subvariety has dense torsion points, it has dense small points. Zhang 

conjectured that, when K is a number field, the converse should also hold. 

Conjecture 2.4 (Generalized Bogomolov conjecture, [36]). Assume that K is a number 

field. Let A be an abelian variety over K. Then for any closed subvariety X of A, if X has 
dense small points, then it is a torsion subvariety. 

Note that Conjecture 2.4 generalizes the Bogomolov conjecture for curves (Conjecture 2.2) 
over a number field and Raynaud's theorem when F =豆

In 1998, Ullmo proved that the Bogomolov conjecture for curves over number fields holds. 

Theorem 2.5 (Ullmo's theorem, [26]). When K is a number field, Conjecture 2.2 holds. 

The key ingredient of the proof is the "equidistribution theorem of small points" by Szpiro-
Ullmo-Zhang ([25]), which will be explained in the next subsection. 

Inspired by Ullmo's idea, Zhang proved the generalized Bogomolov conjecture by using 
the equidistribution theorem in the same year. 

Theorem 2.6 (Zhang's theorem, [37]). Conjecture 2.4 holds. 

The idea that uses the equidistribution theorem of small points, which was the key in the 
proofs of Ullmo's theorem and Zhang's theorem, will play a crucial role in the discussion 
in the sequel. To figure out the idea, we will outline the proof of Zhang's theorem in the 
following subsections. 
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2.2. Canonical measures and the equidistribution of small poi°:竺•In this subsec-
tion, assume that K is a number field. For a projective variety X over K and for any em-
bedding v:万'---+<C (called an archimedean place of K, here), letぷ denotethe basechange 
of X by v. This is a projective variety over <C, and let X炉denotethe associated complex 
analytic space. For a line bundle Lon X, let L炉denotethe induced line bundle on x:n. 

Let A be an abeliaE._ variety over K. A rigidification of a line bundle L 竺~Aisan
isomorphism L(O)竺瓦 whereL(O) is the fiber of L over the point O E A(K). A line 
bundle with a rigidification is called a rigidified line bundle. An isomorphism of rigidified 
line bundles means an isomorphism of line bundles that respects the rigidifications. Note 
that an isomorphism between rigidified line bundles is unique. If the rigidified line bundle 
Lon A is even, then for any m E Z, there exists a unique isomorphism [m]*(L)空 LRm2of 
rigidified line bundles. 

Theorem 2. 7. Let L be a rigidified even line bundle on an abelian variety A over K. Let 

v:万→ <Cbe an archimedean place. Then there exists a unique metric 11 ・II can on L忙such

thatfor any m € Z, We have [m]＊（||・||can) ＝ ||・||悶2nvia the isomomhtsm [m] ＊（L庁）~ (~~n)~m2 
of rigidified line bundles. This metric is smooth, i.e., C00-class. Further, if Lis ample, then 
the curvature form c1 (L, 11 ・ llcan) is positive. 

We call the metric ll・llcan the canonical metric on L~n. 
Let X be a closed subvariety of A of dimension d. Then c1(L翌 11・ llcan)Ad is a smooth 

d-form, which naturally gives a (signed) Borel measure c1(L庁， ll・Wanydlx;:non x:n by re-

striction. The total volume of this measure equals degL(X). Suppose that Lis ample. Then 
degL(X) > 0, and we have a probability measure 

μx炉，L:= 
degL(X) 

叫L:n,ll・llcan)Adl xin. 

We call this measure the canonical measure on X炉associatedto L. By Theorem 2. 7, this 
measure is positive. 

Next, we explain the equidistribution theorem of small points. Let（ふ）iENbe a sequence 

of points in X（万）． Wesay that（ふ）iENis generic if for any i。EN and for any proper closed 
subset Y of X, 1here exists an i~ E N such that i1 2: i。andxi, rf-Y. We say that it is 

small if limi→00 h(xi) = 0, where h is the canonical height function associated to an ample 
even line bundle; note that this property is well-defined and not depend on the choice of the 
ample even line bundle. 

Since K has countable cardinality, the set of closed subsets of X has countable cardinality, 
and hence we see the following. 

Lemma 2.8. If X has dense small points, then there exists a generic and small sequence 
onX（冗）．

We take a廿niteextension K'/ K over which the above A and X can be defined. We fix 

a model A'and X'over K'of A and X, respectively. Then Gal（万／K')acts on X国）． For

anx EX（万）， letOK,(x) denote the Gal（冗K')-orbitof x in X（万）． Itis a nonempty finite 
set. 

Theorem 2.9 (Equidistribution theorem, [25, 37]). Let A, X, and v be as above. Let L be 
an ample even line bundle on A. Let K'be a finite extension of K over which A and X can 
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be defined, and we fix models of them over K'. Let (x;)iEN be a generic and small sequence 

onXぽ）． Thenon X炉， wehave a weak convergence of measures 

1 

IOK1(x;)I 
L bz→μx杷，L

zEOK’（Xi) 

as i→oo, whereふdenotesthe dirac measure with support z and I 0バx;)Iis the number 

of elements of 0叫x;).

2.3. Idea of the proof of Zhang's theorem. We outline the proof of Zhang's theorem 
(Theorem 2.6). We note the following lemma, which is easily deduced from Proposition 1.6. 

Lemma 2.10. Let X be a closed subvariety of an abelian variety A over万． LetB be an 
abelian variety. 

(1) Let Y be a closed subvariety of B. If X and Y have dense small points, then so does 
the closed subvariety X x Y of A x B. 

(2) Let cp : A→B be a homomorphism. If X has dense small points, then so does cp(X). 

The proof of Theorem 2.6 is given by contradiction. Assume that there exists a coun-
terex竺:11-rleto the generalized Bogomolov conjecture; then there exist an abelian variety A 
over K and a closed subvariety X C A such that X is not a torsion subvariety but has dense 
small points. We call { a E A I X + a C X} the stabilizer of X. Taking the quotient by 
the stabilizer, we may assume that there exists a counterexample with trivial stabilizer. By 
Theorem 1.8, we note that dim(X) ;::,: 1. 

For a natural number n, we define the difference homomorphism 

炉→An-1; (a1,...'an)→(a1 -a2,..., a正 1-a砂

Let 0: :幻→ An-lbe the restriction of this homomorphism to X匹 Ifn is large enough, it 
follows from the assumption that X has trivial stabilizer that 0: is generically injective; in 
particular, it is generically finite. We take such an n. Let Y denote the image of 0: and set 
Z := xn. Thus 0: induces a surjective generically finite morphism Z→Y. 

Since X has dense small points, so does Z := xn by Lemma 2.10 (1). Then by Lemma 2.8, 

we can take a generic and small sequence (z;)iEN on Z（酌． Weset y; := 0:(z;) for all i. Since 
the morphism Z→Y is surjective, the sequence (y;)iEN is generic. Since 0: is a restriction 
of a homomorphism of abelian varieties, it follows from Lemma 2.10 (2) that (y;)iEN is also 
small. Let K'be a finite extension over which A and X can be defined. We note that 

a* （|0k]に） ZEE(z,）6z) ＝ |0心）1:叫心，
Then by the equidistribution theorem (Theorem 2.9), we get 

(2.11) a.(μz茫，M)= μyvan,£, 

where Land Mare ample even line bundles on An-l and A叫respectively.
The right-hand side of equality (2.11) is a smooth measure (in the sense that it comes from 

a smooth form). On the other hand, since μz炉，M is a strictly positive smooth measure and 
the diagonal△c xn = Z is contracted to a point by 0:, it follows that the right-hand side 
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a(μz炉，M)should be "too dense" to be a smooth measure at a（△）． That is a contradiction, 
which completes the proof. 

3. GEOMETRIC BOGOMOLOV CONJECTURE 

In this section, we assume that K is a function field. It is natural to ask if the same 
statement as Zhang's theorem holds also over function fields. In general, this does not hold 
because there exists an abelian variety A over万 thathas a non-torsion height zero point 
a EA（穴）； seethe argument just below Theorem 1.8. Indeed, {a} has dense small points 
and is not a torsion subvariety. More generally, if A can be defined over the constant field k 
of the function field, then a closed subvariety that can be defined over k has dense height 0 
points. 

Thus, there are two possible options over function fields. 

Options 3.1. (1) We restrict ourselves to a certain class of abelian varieties and estab-
lish the same asse仕ionas Zhang's; 

(2) We define a suitable counterpart of torsion subvarieties and formulate a conjecture 
for all abelian varieties. 

Gubler proved a theorem in the direction of Options 3.1 (1). He considered abelian 
varieties that are totally degenerate at some place. More details will be explained in the first 
subsection below. On the other hand, the geometric Bogomolov conjecture was an attempt 
to establish a theorem in the direction of Options 3.1 (1). The statement will be given in 
the last subsection of this section. 

3.1. Gubler's theorem. If K'is a finite extension of Kand K" is a finite extension of K', 
then there is a natural map M即→ MK'.Thus the family (MK')K', where K'runs through 

the finite extensions (in万） ofK, is an inverse system. We set MK:＝加!K'MK'andcall an 

element of this set a place of K. Note that the canonical map MK→MK'is surjective for 
any finite extension K'/ K. For each v =（加）K'EMR, we can put a unique absolute value 

l・lv on穴suchthat: its restriction to K'is equivalent to the normalized absolute value on K' 
corresponding to the place VK,; its restriction to K coincides with the normalized absolute 
value on K. Further, the completion of瓦 ofK with respect to I・ Iv is an algebraically closed 

valuation field with nonarchimedean absolute value l·lv• Let冗 denotethe valuation ring of 

Kv. For an algebr珀cvariety X over穴 andfor av E MR, letふ denotethe basechange of 

Xb  y the field extension K→Kv・

Let A be an abelian variety over K. By the Grothendieck semistable reduction theorem, 
K there exists a semiabelian scheme over K: with generic fiber A, which we call a semiabelian 

scheme model of Av. We say that A is totally degenerate at v E M万 ifA has a semiabelian 

scheme model over the valuation ring冗 thathas torus reduction. 

Remark 3.2. Let v E MK. The product of two totally degenerate abelian varieties at v is 
again totally degenerate at v. A quotient abelian variety of an abelian variety that is totally 
degenerate at v is again totally degenerate at v. 

It is classically known that if A is totally degenerate at some place, then A（酌圧0 = 
A（穴）tor• Note that this is the same equality that holds when K is a number field, and in 
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particular, there is no non-torsion closed subvariety of A of dimension O that has dense small 
points. Thus, one may expect that the same statement as Zhang's theorem should hold for 
an abelian variety that is totally degenerate at some place. Indeed, this expectation was 
realized by Gubler in 2007. 

Theorem 3.3 (Gubler's theorem, [10]). Assume that K is a function field. Let A be an 

abelian variety over K. Assume that A is totally degenerate at some place. Then if a closed 
subvariety X C A has dense small points, then X is a torsion subvariety. 

The basic strategy of the proof of Gubler's theorem is the same as Zhang's in the sense 
that the key is the equidistribution theorem. The difference is that: in Gubler's proof, the 
equidistribution theorem is applied on the tropical analytic varieties over the place at which 
the abelian variety is totally degenerate, while in Zhang's proof, it is done on the complex 
analytic spaces. 

We will later outline the proof of Gubler's theorem, but we notice that this proof will be 
slightly different from Gubler's original one. The proof that we are going to explain will 
use canonical measures and the equidistribution theorem on the Berkovich analytic spaces 
as the counterparts of those on the complex analytic spaces in Zhang's proof. On the other 
hand, Gubler's original proof uses those on tropical varieties ([9, 10]). When Gubler proved 
the theorem, the equidistribution theorem was not established on the Berkovich analytic 
spaces. Then he proved the equidistribution in the tropical geometric setting and applied 
them to prove his theorem. Now, necessary techniques on Berkovich analytic spaces have 
been developed enough, and we can argue in terms of Berkovich analytic geometry. 

Let us recall the canonical measures and the e墜idistributiontheorem on the Berkovich 
analytic spaces. For an algebraic variety X over K and for a v E Mx, let X炉denotethe 

Berkovich analytic space over瓦 associatedto Xv. Let A be an abelian variety over万and
let X be a closed subvariety of A. Let L be an ample even line bundle on A. Let v E M万・

It is known that the canonical measure μx茫，L onX炉isdefined (cf. [4, 12]). 
Let（叩）iEIbe a net on X(K), where I is a directed set. Then we can define the notions 

of genericness and smallness of（叩）iEIin the same way as we did in Subsection 2.2 when 
K is a number field. Assume that A and X can be defined over a finite extension K'/ K. 

(―) By fixing models over K'of A and X, respectively, AutK'(K) acts on X(K). Thus we can （） 
consider AutK’(万)-orbitof a point in X(K). For an x E X(K), let OK,(x) denote the 

AutK' （万）—orbit of x in X（万）． Weregard X（K) C x:n naturally. 

Theorem 3.4 ([10, 11]). Under the setting above, let（ふ）ibe a generic and small net on 

X（万）． Then,we have a weak convergence of measures on X炉

as i→00. 

1 

IOK,(x;)I 
L Dz→μx杷，L

zEOK’（叩）

Remark 3.5. One may think that we have enough ingredients to prove Gubler's theorem in a 
similar way, as we have the canonical measures and the equidistribution theorem. However, 
we notice that more properties on the canonical measures should be needed. In fact, it 
was important that the canonical measures are smooth positive measure on the positive 
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dimensional spaces. If the canonical measures in (2.11) were the dirac measures of points, 
for example, we could not find any contradiction from this equality. 

Therefore, in the proof, some "smoothness" and "positivity" properties on the canonical 
measures will be required. Gubler proved that the canonical measures on a d-dimensional 
subvariety are d-dimensional Lebesgue measures, as follows. 

Theorem 3.6. Assume that an abelian variety A is totally degenerate at v. Let X be a 
closed subvariety of dimension d. Then there exists a subspace Sx;;n of X茫withthe following 
properties: 

(i) Sx:;n has a canonical structure of polyhedral complex of pure dimension d; 
(ii) there exist a finite polyhedral decomposition Uu a-of Sx:;n and a positive real number 

r u for any a-of dimension d such that the canonical measure μx;;n (associated to an 
ample even line bundle on A) equals 

Lrふ，
o• 

where(Jruns through the d-dimensional polytopes in the polyhedral decomposition and 

8" is a Lebesgue measure on the polytope(J． 

We outline the proof of Gubler's theorem. Suppose that there exists a counterexample to 
the theorem. Then one constructs an abelian variety A that is totally degenerate at some 
place and a closed subvariety X of positive dimension such that X has trivial stabilizer 
(Remark 3.2). By the same construction as Zhang, we have a generically finite morphism 
a:Z→AN-l, where Z := X凡andZ has dense small points. Set Y := a(Z). The same 
argument using the equidistribution of small points, we get 

(3.7) °'• (μz;:n) = μyvan, 

where μz:;n and μy"an are the canonical measures associated to some ample even line bundles 
on AN and AN-l , respectively. 

Since AN and AN-l are totally degenerate at v (Remark 3.2), it follows from Theorem 3.6 
that there exist closed subsets Sz;:n c Z:1 and Sy:n c y;,an that have structures of polyhe-
dral complex of pure dimension d = N dim(X). Further, μz;:n and μz:,n are d-dimensional 
Lebesgue measures on Sz:;n and Sy:n, respectively. 

Then the same argument as Zhang's leads us to a contradiction. Indeed, since a contracts 
the diagonal to a point and μZざnis a Lebesgue measure around the diagonal, a* （μzgn) must 
be too dense to be a d dimensional Lebesgue measure around the image of the diagonal. On 
the other hand, μ兄fnis a d-dimensional Lebesgue measure. That is a contradiction. 

3.2. Special subvarieties. Next, we want to think of Options 3.1 (2). Then we have to 

define a counterpart of the notion of torsion subvarieties. To do that, we will use the“冗／k-
trace" of an abelian variety. 

In this subsection, let F / k be any field extension with k algebraically closed. We recall 
the notion of F/k-trace. For an abelian variety A over F, a model over k is an abelian 

variety over k with an isomorphism A竺 i幻 F.An abelian variety A over F is said to be 
F/k-constant, or simply constant, if A has a model over k. 
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Theorem 3.8 (Chow's theorem, [13]). Let A and B be abelian varieties over F a!!'.d let 

免： A→B be a homomorphism. Assume that A and B are F / k-constant and let A and 

B be models over k of A and B, respectively. Then there exists a unique homomorphism 

¢:A→B such that the basechange ¢翫F:A→Bcoincides with ¢. 

Let A be an F/k-constant abelian variety. Let A1 and A2 be models over k of A. Applying 

Chow's theorem to idA : A→A, we get a unique isomorphismふ→ A2whose basec~ぎnge

to F ~quals idA. Thus, a model of A is unique up to canonical isomorphism. Further, A1(k) 

and A2(k) are naturally regarded as subgroups of A（冗）， andthey coincide with each other. 
We write A(k) for this subgroup and call a point of it a constant point. 

An F/k-trace of A is a pair (AFlk, TrA) of an F/k-constant abelian variety AF/k and a 

homomorphism TrA : AF/k→A that has the following universal property: for any F / k-
constant abelian variety B and for any homomorphism ¢ : B→A, there exists a unique 
homomorphism ¢': B→AF/k such that TrA 0(¢1釦 F)= ¢. For an abelian variety over F, 
its F / k-trace is unique up to canonical isomorphism by the universal property. Further, it 
is classically known that any abelian variety over F has an F/k-trace (cf. [13]). 

Let B be an F/k-constant abelian variety. A closed subvariety Y of Bis said to be F/k-

const:1:,nt if there exist a model B over k of B and a closed subvariety Y C B such th叫
Y=Y叡 F.By Chow's theorem, this notion does not de匹ndon the choice of a model B. 
For an F/k-constant abelian variety B, we set Y(k) := Y(K) n B(k) 

Definition 3.9 (F/k-special subvariety, [30] when F =酌． LetA be an abelian variety 
over F. A closed subvariety X CA  is said to be F/k-special if 

X = T+TrA(Y) 

for some torsion subvariety TC  A and some F/k-constant closed subvariety Y C AF/k_ 

Remark 3.10. Let X = T + TrA(Y) be an F/k-special subvariety, where Tis a torsion 
subvariety and Y C AF/k is an F/k-constant subvariety. Then if Fis algebraically closed, 
then T(F) + TrA(Y(k)) is dense in X. 

We should mention that, using the notion of F / k-special subvarieties, we have a positive 
characteristic version of the Manin-Mumford conjecture. 

Theorem 3.11 (Manin-Mumford conjecture in positive characteristic, [21, 24]). Let F be an 
algebraically closed field and let k。bethe algebraic closure in F of the prime field. Assume 
that char(F) > 0. Let A be an abelian variety over F. Then for any closed subvariety 
X C A, if X has dense small points, then it is F / k。-special.

Let k be an algebraically closed field with FつkつK。.Ifan abelian variety A over F has 
trivial F/k-trace, then it has trivial F/k。-trace.Thus, we have the following. 

Corollary 3.12. In the setting of Theorem 3.11, assume further that A has trivial F / k-
trace. Then for any closed subvariety X C A, if X has dense small points, then it is a 
torsion subvariety. 
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3.3. Geometric ~ogomolov conjecture. We use what we explained in the previous sub-
section with F = K. Then the set of height O points is illustrated as follows. 

-trace of an abelian variety A over K. Theorem 3.13 ([14]). Let (A衣／k,TrA) be the万／k-traceof 

Then 

A（万）h=O= A（万）＋TrA(AKfk(k)).

By Remark 3.10 and Theorem 3.13, we see that a冗k-specialsubvariety has dense small 
points. In 2013, the author formulated the geometric Bogomolov conjecture, which asserts 
that the converse should also hold. 

Conj~cture 3.14 (Geometric Bogomolov conjecture, [30]). Let A be an abelian variety 

竺erK. Then for any closed subvariety X of A, if X has dense small points, then it is 
K / k-special. 

Since the notion of万／k-specialsubvarieties and that of torsion subvarieties are the same 

when the万／k-traceis trivial, the geometric Bogomolov conjecture should generalize Gubler's 
theorem. The author proved in [30] that the geometric Bogomolov conjecture holds for 
abelian varieties that satisfy some milder condition of degeneracy than the total degeneracy, 
which generalized Gubler's theorem. 

4. REDUCTION THEOREMS 

In this section, we explain the reduction theorems of the geometric Bogomolov conjecture 
by the author. First, we reduce the geometric Bogomolov conjecture in full generality to 
that for nowhere degenerate abelian varieties. Next, we reduce that for nowhere degenerate 
abelian varieties to that for nowhere degenerate abelian varieties with trivial万／k-trace.
Those results will play a crucial role in the final solution of the conjecture. 

4.1. Reduction to the nowhere degenerate case. One might wish to prove the geomet-
ric Bogomolov conjecture along the same line as Zhang and Gubler. However, the equidis-
tribution method seems helpless to prove the geometric Bogomolov conjecture for nowhere 
degenerate abelian varieties. As we mentioned in Remark 3.5, if the support of the canonical 
measure is a finite number of points, then no contradictions appear from (3.7). In fact, if an 
abelian variety has good reduction at a place v E MR, the support of the canonical measure 
on any closed subvariety is a finite number of points over v. Therefore, the possible maximal 
contribution of the equidistribution method to the conjecture should be the reduction of the 
conjecture in full generality to that for nowhere degenerate abelian varieties. 

In 2016, the author established such a reduction theorem, as we are going to explain. Let 
A be an abelian variety over K. Then we can show that A has a unique maximal nowhere 
degenerate abelian subvariety m. 

Theorem 4.1 ([31]). With the notation above, the geometric Bogomolov conjecture holds 
for A if and only if that holds form. 

Remark 4.2. In general, if two abelian varieties A1 and A2 are isogeneous to each other, 
then the geometric Bogomolov conjecture holds for A1 if and only that holds for A2. 
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Note that A is isogeneous to A/m x m. By Remark 4.2, we can show that Theorem 4.1 is 
deduced from the following theorem. 

Theorem 4.3 ([31]). Let A and m be as above. Assume that m = 0. Then the geometric 
Bogomolov conjecture holds for A. 

If one tries to prove Theorem 4.3 by deducing a contradiction from equality (3.7), then 
there arises a nontrivial task. In Gubler's setting, the canonical measures are smooth in 
the sense that they are Lebesgue measures on positive dimensional space, and hence a 
contradiction comes out from (3.7) automatically. Does the same hold, in general? Here, we 
recall Gubler's structure theorem of the canonical measures. 

Theorem 4.4 ([12]). Let A be an abelian variety over K and let X be a closed subvariety 
of A of dimension d. Let v EM衣..Thenthere exists a subset S xin C X茫 thatsatisfies the 
following conditions: 

(i) Sx;;n has a canonical structure of polyhedral set; 
(ii) there exists a polyhedral decomposition~ of Sx;:n such that for any ample even line 

bundle L on A, μx炉，L is the pushout by the canonical injection S x炉→ x:n。fa
measure of form 

Lrふ
6EX 

with ra 2". 0. 

We notice that c, E ~ with r。>0may have various dimensions. If the canonical measure 
on the right-hand side in (3.7) is not a sum of non-equidimensional Lebesgue measures, we 
cannot get an immediate contradiction form (3. 7). 

To overcome such a difficulty, we analyzed the canonical measures in detail. The key was 
the following result on the canonical measures. 

Proposition 4.5 ([31]). Let¢ : A→B be a homomorphism of abelian varieties. Let X be 
a closed subvariety of A. Assume that ¢Ix is a generically finite morphism. Let v be a place 

of K. Let μx;:n be the canonical measure on X炉associatedto an ample even line bundle on 
A. We write ~aEE rふ， where~ is a polyhedral decomposition of the canonical subset of 
X炉． Then,for any c, E刃 withra > 0, ¢ザ inducesa homeomorphism c,→年((Y).

Assume that the maximal nowhere degenerate abelian subvariety of A is trivial and that 
dim(A) =/ 0. Then we note that A has trivial K/k-trace. Further, we can show the following. 

(1) There exists a place v at which A is degenerate. 
(2) Let X be a closed subvariety of A of positive dimension. Let v be a place as in (1). 

Then the canonical measure on x;n associated to an ample even line bundle on A 
has positive dimensional support. 

(3) The canonical measure on z;n = (XN炉 acertain ample even line bundle can be 
regarded as the product of the N copies of a canonical measure on Xザ・

We outline the proof of Theorem 4.3. To prove this by contradiction, assume that there 
exists a counterexample to the theorem. Then there exist an abelian variety A and a non-
special closed subvariety X of A that has dense small points and has trivial stabilizer. We 
take a place v as in (1) above. By the same argument as Gubler's, we obtain the same equality 
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as (3.7). By (2) above, the canonical measures in this equality have positive dimensional 
support. We write 

誓＝区rふ
咋 X

as in Theorem 4.4. Since the diagonal contracts to a point and we have (3) above, we can 
show that there exists(JE ~ such that r u > 0 and the map(J→心（CJ)induced by a~n is 
not injective. However, this contradicts Proposition 4.5. 

4.2. Reduction to the nowhere degenerate and with trivial trace case. Recall that 

(AKI¥ TrA) denotes the冗k-traceof an abelian variety A over K. In 2018, the author 
proved the following reduction theorem. 

Theorem 4.6 ([33]). Assume that A is nowhere degenerate. Then the geometric Bogomolov 
conjecture holds for A if and only if that holds for Coker(TrA). 

Let A be any abelian variety over万 andlet m be the maximal nowhere degenerate 

abelian subvariety. Then the trace homomorphism 宜~:A衣／k →A factors through m, 
and m/Im(Tr心isnowhere degenerate and has trivial K /k-trace. It follows that the above 
theorem together with Theorem 4.1 implies the following corollary. 

Corollary 4.7 ([33]). The geometric Bogomolov conjecture holds for A if and only if that 
holds for m/Im(TrA)-In particular, the geometric Bogomolov conjecture is reduced to that 

for nowhere degenerate abelian varieties with trivial瓦／k-tmce.

To outline the proof of Theorem 4.6, we recall some properties on the canonical height of 
a closed subvariety. 

Remark 4.8. Let X be a closed subvariety of A. Then we have a notion of canonical height 

hL(X) of X, where Lis an ample even line bundle on A. It is known that X has dense small 

points if and only if X has canonical height 0, i.e., hL(X) = 0 (cf. [11]). 

If A is nowhere degenerate, the canonical height of a closed subvariety can be described 
as an intersection number on a model. More precisely, the following is known to be true. 

Proposition 4.9 ([11]). Let K'be a finite extension of K over which A, X, and L can 
be defined. Let労 bethe normalization of 2, in K'. Let (1r : A→23', L) be a model of 
(A, L) such that 1r : A→23'is an abelian scheme model of A and L satisfies condition 
Proposition 1. 7 (1) (ii). Let X be the Zariski closure of X in A. Then 

位(X)= 
[K':K] 

degパX).

Let us outline the proof of Theorem 4.6. Let A be a nowhere degenerate abelian variety. 

Then it is easy to see that A is isogeneous to Coker(Tr心x A万／k. It suffices to prove 
the theorem for this abelian variety (cf. Remark 4.2). Thus we may and do assume that 

A=  Bx  C, where Bis a nowhere degenerate abelian variety that has trivial K/k-trace 

and C is a constant abelian variety with model C over k. Set C := C Xspec(k)咽． Then

the second projection C→咽 isan abelian scheme model of C. Let N be an ample even 

line bundle on C and let N and N be the pullbacks of N by the first projections C→ C 
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and C⑭国→ C,respectively. Then (C→四N)is a model of (C, N) that satisfies the 
conditions in Proposition 1.7 (1). Let Z C C be a closed subvariety and let Z be the Zariski 
closure of Z in C. 

Suppose that Z has dense small points. Then Z has canonical height O (Remark 4.8). By 
Proposition 4.9, degN(Z) = 0. From this, we can prove that there exists a closed subvariety 

Z of C such that Z = Z羞 K.This is a special subvariety of C, and thus the geometric 
Bogomolov conjecture holds for C. 

Next, let X be a closed subvariety of B x C and suppose that X has dense small points. 
Suppose that Z C C is the image of X by the canonical projection B x C→C. Let 
f: X →Z be the morphism given by restricting the second projection B x C →C. 
Then.'....since X has den~e Sll!:,all points, so does Z. It follows from what we saw above that 
Z=Z翫 Kfor some Z CC. 

Let Z(k) denote the image of Z(k) by the canonical map Z(k)→ Z（K). Then, for any 
z E Z(k), we can show that any irreducible component Y of J-1(z) has canonical height O; 
we use Proposition 4.9 here. Note that Y is a closed subvariety of B. Since the geometric 
Bogomolov conjecture holds for B by the assumption, Y is a torsion subvariety. Furthermore, 
we can show that Y = 1-1(z) and the family u-1(z)} z)}zEZ(k) is constant in the sense that 
there exists a torsion subvariety T C B such that f―1(z) = T x {z} = T; here we use the 

assumption that B has trivial K / k-trace. This proves that X = T x Z, and this is a special 
subvariety of Bx C. 

4.3. Bogomolov conjecture for curves over function fields. As a benefit of the results 
in the previous subsections, the author proved the following theorem in 2017. 

Theorem 4.10 ([32]). Let A be an abelian variety over万 andlet X be a closed subvariety 
of A. Assume that codim(X, A) = l. Then if X has dense small points, then it is special. 

The proof of Theorem 4.10 is based on Corollary 4.7. We may assume that A is nowhere 
degenerate and has trivial万／k-trace.Let X be a closed subvariety of A of codimension 1. 
Then we can prove that X has positive canonical height by using Proposition 4.9. When we 
compute the intersection number on a model, the assumption on the codimension is crucial. 

It is interesting that from Theorem 4.10, which is for codimension 1 subvarieties, we can 
deduce that the conjecture holds for the closed subvariety of dimension l. 

Theorem 4.11 ([32]). Assume that dim(X) = 1. Then if X has dense small points, then 
X is special. 

As an immediate consequence, we got the final answer to the Bogomolov conjecture for 
curves over function fields without any restriction. 

Corollary 4.12 ([32]). The Bogomolov conjecture for cu加 esover function fields holds. 

The idea to deduce Theorem 4.11 from Theorem 4.10 is as follows. Let X be a 1-
dimensional closed subvariety of A. We set Y0 := {O}, and for each positive integer m, 
letぬ bethe sum of m copies of X -X := { x -x'I x, x'E X}. Then Y, ・;,, is an abelian sub-
variety of A for large m, and let N be the smallest positive integer among such m. Suppose 
that X has dense small points. Then we can show that there exists a T E A（万）torsuch that 
YN-1 or Yi止 1+ (X -T) is a closed subvariety of the abelian variety YN of codimension 1, 
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for which we write D. Note that D also has dense small points. By considering these D and 
YN, we can deduce Theorem 4.11 from Theorem 4.10. 

Using the above technique, the author proved a partial result for 5-dimensional nowhere 
degenerate abelian varieties with trivial K/k-trace ([34]). 

5. FINAL SOLUTION 

As we saw in Corollary 4. 7, it now suffices to show the geometric Bogomolov conjecture 
only for nowhere degenerate abelian varieties with trivial万／k-trace.The conjecture for this 
kind of abelian varieties was solved by Xie and Yuan, as we describe in the first subsection. 
In the last subsection, we will give some comments on the related topics. 

5.1. Xie-Yuan's theorem. Assume that K be a function field. In 2022, Xie and Yuan 
proved the following theorem. 

Theorem 5.1 ([27]). Let A be an abelian variety over K. Assume that A is nowhere 

degenerate and has K / k-trivial trace. Then for a closed subvariety X C A, if X has dense 
small points, then it is a torsion subvariety. 

By Theorem 5.1 together with Corollary 4.7, the geometric Bogomolov conjecture was 
completely solved. 

We outline the proof of Theorem 5.1. Let A be as in the theorem and let X be a closed 
subvariety of A. We define a sequence (Xm)mEZ2:o of closed subvarieties inductively, as 

follows: set X。=｛O} C A; for m E Z;:,1, let f m-l : Xm-1 X X →A be the morphism 
induced from the addition and let Xm be the image of fm-l・ 

Lemma 5.2 ([27]). Suppose that X has dense small points. Then there exists an r E砂
such that dim(Xr-i) < dim(Xr) and Xr is a torsion subvariety. 

Let r be as in Lemma 5.2. There exist an x0 E A（万）torand an abelian subvariety A'such 
thatふ＝ A'+rx0. 

Proposition 5.3 ([27]). With the above notation, assume that Xr is an abelian subvariety, 
i.e., rxo = 0 and Xr = A'with the above notation. We write f for fr-1• Set e := dim(Xr-1)+ 
dim(X) -dim(A') and 

Aい：＝｛y EA'I dim(!―l(y))：：：：： e + 1}. 

Lett EA'（万）tor¥Aい（万） andassume that the order oft is not divisible by char(k). Then 
any irreducible component off―1(t) has canonical height 0. 

We outline the proof. Replacing X by X -x0, we may assume that Xr = A'is an abelian 
subvariety of A. Since the morphism f : Xr-l x X →A'induced from the addition is 
surjective, Aい<;;A', and hence 

T:={tEA'（天）tor¥A:+l国） Ichar(k) f ord(t)} 
is dense in A'. 

We argue by induction on dim(X). We note that since dim(Xr-i) < dim(A'), e < dim(X). 
Since the case of dim(X) = 0 is trivial by Theorem 3.13, assume that dim(X)：：：：： 1. We take 
any t ET. By Proposition 5.3 with Remark 4.8, any irreducible component Z Cf―1(t) has 
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dense small points, and since dim(Z):S e < dim(X), it follows from the induction hypothesis 
that Z is a torsion subvariety. Thus, f―1 (t) has dense torsion points. Since T is dense in 
A', this shows that Xr-l x X has dense torsion points. By the Manin-Mumford conjecture 
in positive characteristic (Corollary 3.12), it follows that Xr-l x X is a torsion subvariety. 
Taking the second projection Xr-I x X→X concludes that X is a torsion subvariety. This 
completes the proof of Theorem 5.1. 

We remark that the proof of Theorem 5.1 uses the Manin-Mumford conjecture in positive 
characteristic, so that this conjecture has not yet been a corollary of the geometric Bogomolov 
conjecture. It should be interesting to find a proof of Theorem 5.1 without using the Manin-
Mumford. 

5.2. Comments. We give some comments on topics related with the geometric Bogomolov 
conjecture. 

5.2.1.乃anscendencedegree of the function fields. In this article, we only consider the func-
tion fields of transcendence degree 1 over k. However, the geometric Bogomolov conjecture 
is formulated over function fields of any transcendence degree. In fact, over function fields of 
any transcendence degree, Gubler proved his theorem, the geometric Bogomolov conjecture 
formulated, and every theorem on the geometric Bogomolov conjecture in this note holds. 

5.2.2. Bogomolov conjecture for curves over function fields (of transcendence degree l). Sev-
eral partial results on the Bogomolov conjecture for curves over function fields were proved 
before Corollary 4.12. In 1993, Zhang made a theory of admissible pairing on curves in 
[35]. Using this theory, Moriwaki and Yamaki established several partial answers to the 
Bogomolov conjecture for curves over function fields ([15, 16, 17, 18, 28, 29]); some of them 
need the assumption that char(k) = 0. Later, Zhang developed the theory of height paring 
of the Gross-Schoen cycles in [38]. Using this theory, Faber proved a partial result in 2009 
([6]). Further, Cinkir proved in 2011 that when char(k) = 0, the Bogomolov conjecture for 
curves over function fields holds ([5]). Cinkir's proof uses the positivity of the height of the 
Gross-Schoen cycles, and to see this positivity, one needs a kind of Hodge index theorem 
that is established only when char(k) = 0. That is the main reason why the assumption of 
char(k) = 0 is needed. We remark that the those results on the Bogomolov conjecture for 
curves over a function field deals only with the case where K has transcendence degree 1 over 
k, while the author proved Corollary 4.12 in any characteristic and without any assumption 
on the transcendence degree (cf. Subsubsection 5.2.1). 

5.2.3. Moriwaki's arithmetic height. In 2000, Moriwaki defined in [19] a notion of height over 
finitely generated fields. More precisely, let K be a finitely generated field. Then Moriwaki 
defined a notion of polarizations on K, and after a choice of a polarization, he constructed 
a height theory for projective varieties over K. If the polarization is "big", then the height 
theory has the same property as the height theory over number fields. Moriwaki proved that 
for an abelian variety over K, the same assertion as Zhang's theorem holds. 

Recall that Zhang's theorem can recover Raynaud's theorem when F = ij. We note 
that Moriwaki's theorem recovers Raynaud's theorem (Theorem 2.3) for an arbitrary F (not 
necessarily F = ij). 
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5.2.4. Geometric Bogomolov conjecture in characteristic zero. The geometric Bogomolov 

conjecture under the assumption that char(k) = 0 was proved slightly earlier. In 2019, 

Gao-Habegger [8] proved the conjecture under the assumption that the function field has 

transcendence degree one. Then, in 2021, Cantat-Gao-Habegger-Xie [3] proved it without 

the assumption on the transcendence degree. Their proofs heavily depend on real analytic 

methods, such as Betti-maps. 
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