SURVEY ON THE GEOMETRIC BOGOMOLOV CONJECTURE

KAZUHIKO YAMAKI

INTRODUCTION

In Diophantine geometry, there is a notion of heights of points of algebraic varieties. The
heights estimate a kind of arithmetic complexity of points, and points of “small” height are
considered as the “arithmetically simple” points.

Focusing on the points of small height, one can formulate conjectures of “Bogomolov type”
for classes of algebraic varieties in various settings. Those conjectures predict that closed
subvarieties with many points of small height should be very special kinds of subvarieties.

The geometric Bogomolov conjecture, which is our main topic in this note, is one of such
conjectures of Bogomolov type for abelian varieties over function fields. It was formulated
in 2013 by the author inspired by Gubler’s theorem. Then the author gave several partial
answers to the conjecture, and Xie and Yaun gave a final answer by solving the remaining
special case.

In this note, we formulate the geometric Bogomolov conjecture and explain its background.
Further, we outline how it was solved.

Acknowledgment. I thank the organizers for giving me the opportunity to contribute this
note. This work was partially supported by JSPS KAKENHI 18K03211.

Notation and conventions.

e Throughout the note, we fix an algebraically closed field k£ and a smooth projective
curve B over k. When we say a “function field”, this means the function field of 8.
e Let K always denote a number field or a function field. We fix an algebraic closure
K of K. A finite extension of K will be always taken in .
e Assume that K is a function field. For a finite extension K’ of K, there exists a
Cartesian product
Spec(K') —— %/

! !

Spec(K) —— B,
where 28’ — B is a finite covering of smooth projective curves over k and Spec(K’) —
Spec(K) is a morphism induced from the canonical inclusion K < K’. Such a
diagram is unique up to canonical isomorphism. We call this diagram, or simply 98’,
the normalization of %6 in K.
e Let K be a number field or a function field. For a finite extension K’ of K, we define
the set of places My of K as follows.
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— When K is the function field of B, we take the normalization B’ of 98 in K’ and
set Mg := B'(k), the set of closed points of B'.
— When K is a number field, we set

MK/ = (Spec OK/ \{ HK

where Ok is the ring of integers of K’ and K'(C) is the set of embeddings of K’
into C. An element in Spec(Og/) \ {(0)} is called a finite place, and an element
in K'(C) is called an infinite place.
e For each v' € My, we define an absolute value |-|,», which is called the normalized
absolute value on K' associated to v', as follows.
— Assume that K is a function field. Then the local ring Og v is a discrete
valuation ring, and hence we have the order function ord, : K’ — Z U {400}

arising from Og . We set |al, = e~ 4@ for a € K'.
— Assume that K is a number field. When v’ is a finite place, then the local ring
Ox . is a discrete valuation ring, and we set |a|, = |Ox:/py|” % (@) where p,

is the prime ideal of Ok corresponding to v" and ord,, : K — Z U {—i—oc} is the
order function. When v’ is an infinite place K’ < C, we set |v'(a)|, where |-| is
the usual absolute value on C.

1. HEIGHTS

In this section, we quickly review the notion of heights and the canonical height functions
on abelian varieties. See [2, 14] for details on height theory.

1.1. Heights. Let K be a function field or a number field. First, we recall the Weil height
function on the projective space. It is classically known that there exists a unique function
Y . P*(K) — R that has the following property: for any p € P*(K) and for any finite

extension K'/K with p € ]P’"(K’) if we write p = (ag : -+ : a,) with ao,...,a, € K’, then
W (p) = ——— Z log max{|a|, | i =0,...,n}.
vEM /

This function A" is called the Wesl height function on P%. It depends on the choice of the
homogeneous coordinates on the projective space.

To define the notion of heights, we fix a notation. For a set .S, let F'(S) denote the set of
real valued functions on S and let BF(S) denote the subset of F'(.S) consisting of bounded
functions. For an h € F(S), let [h] denote the class in F(S)/BF(S) to which h belongs.

Let X be a projective variety over K. Then it is classically known that there exists a group
homomorphism by : Pic(X) — F(X(K))/BF(X(K)) that has the following property: if L
is a very ample line bundle and if ¢ : X — P2 is a closed embedding with ¢*(Op%(1)) =7,
then hx (L) = [hp]. We call hx(L) the height associated to L. A function hy € F(X(K))
that represents hy (L) is called a height function associated to L.

Remark 1.1. The Weil height function is a nonnegative function. It follows that if L is
an ample line bundle on a projective variety X over K, a height function associated to L is
bounded below.



For a set S and for hy, hy € F(S), we write hy ~ hq if [h1] = [he] in F(S)/BF(S). Let hy,
and hy; be height functions associated to line bundles L and M on X, respectively. By the
definition of height functions,

(1.2) hr + har ~ hrgm-

As for the relationship between the morphisms and line bundles, we have the functoriality
in the following sense.

Proposition 1.3. Let f : Y — X be a morphism of projective varieties over K and let L
be a line bundle on X. Let hy and hy-(r) be height functions on X and Y associated to L
and f*(L), respectively. Then hpy ~ f*(hr).

From here to the end of this subsection, assume that K is a function field, i.e., the function
field of 9. We recall that a height function can be constructed from a model.

Let X be a projective variety over K. Let K’ be a finite extension of K and let B’ be
the normalization of B in K'. A model (over B') of X means a flat morphism X — B’
equipped with an isomorphism X xg Spec(K) = X. We sometimes simply write X' for a
model X — B’. We say that a model X — B’ is proper if it is a proper morphism. Let L
be a line bundle on X. A model (X, L) over B’ of (X, L) means a pair of a model X — B’
of X and a line bundle £ on X equipped with an isomorphism L], & L.

Suppose that we are given a proper model (7 : X — B', L) of (X, L). We define a function
hx,c) : X(K) — R as follows. For any « € X(K), let A, denote the Zariski closure of the
point x in the mordel X; the natural morphism A, — B is a finite morphism, and let
[A; : B] denote the degree of this finite morphism. Then we set

_ deg(e1(£) - [Ad])
(A, : B] ‘

Proposition 1.4. Let X and L be as above. Let (X, L) be a proper model of (X,L). Then
hix ) is a height function on X associated to L.

We call hx ) the model height function induced from (X, £)*.

h(/\{'ﬂﬁ) (.L') .

1.2. Canonical height functions on abelian varieties. In general, height functions are
determined only up to bounded function. However, it is classically known that on abelian
varieties, one has a canonical choice of a height function associated to each line bundle, and
such height functions are called the canonical height functions.

In this section, we will recall the canonical height functions associated to “even” line bun-
dles. Let A be an abelian variety. For an m € Z, let [m] denote the m-times endomorphism
on A. A line bundle L is said to be even? if [-1]*(L) = L. If L is an even line bundle on A,
then for any m € Z, [m]*(L) = L®™ holds by the theorem of cube ([20]).

Theorem 1.5. Let A be an abelian variety over K and let L be a line bundle on A.

1We can show that, for any X and L as above, there exists a proper model of (X, L). It follows that a
height function associated to L can be constructed as a model height function. Also over a number field, we
have a notion of models over the ring of integers of a number field. Further, using the arithmetic intersection
theory in the sense of Arakelov geometry, we can construct height functions in a similar maner.

20ne sometimes says that it is symmetric.
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(1) Fiz an m € Zss. Then there exists a unique height function hr on A associated to L
such that [m]*(hy) = m®hy.

(2) Let hy, be as in (1). Then it is a quadratic form on the Z-module A(K) in the sense
that there exists a bilinear form b : A(K) x A(K) — R such that hy(z) = 1b(z, z)
for all x € A(K).

We call hy, in Theorem 1.5 the canonical height function associated to L. We saw several
equalities and inequalities modulo bounded functions between height functions (cf. Re-
mark 1.1, (1.2), and Proposition 1.3). For the canonical height functions, they are equalities
and inequalities as functions.

Proposition 1.6. Let A be an abelian variety over K.

(1) Let Ly and Ly be even line bundles on A. Then EL@LQ = ﬁLl +/HL2.

(2) If L is an ample even line bundle, then hy, > 0.

(3) Let f: B — A be a homomorphism of abelian varieties over K. Then for any even
line bundle L on A, f*(L) is an even line bundle on B, and f*(/sz) = /}Zf*(L>.

From here to the end of this subsection, we assume that K is a function field. Let A be
an abelian variety over K and let L be an even line bundle on A. In general, the canonical
height function associated to L is not a model height function. However, as we are going to
see, if A is “nowhere degenerate”, then it turns out to be a model height function.

Let K’ be a finite extension of K and let B’ be the normalization of 9B in K'. An abelian
scheme model (over B') of A is an abelian scheme 7 : A — B’ of A equipped with an
isomorphism A x g Spec(K) 2 A of abelian varieties. We say that A is nowhere degenerate
if it has an abelian scheme model for some finite extension K'/K.

Proposition 1.7. Let A be an abelian variety over K and let L be an even line bundle on
A. Suppose that A is nowhere degenerate. Then the following holds.
(1) There exist a finite extension K'/K and a proper model (7 : A — B’ L), where B’
is the normalization of B in K', such that the following hold:
(i) m: A — B is an abelian scheme model of A;

(ii) 05(L) = Ox, where 0 is the zero section of the abelian scheme .
(2) Let (m: A — B, L) be as in (1) above. Then for any m € Z, we have [m]*(L) =
L2 where [m] : A — A is the m-times endomorphism of the abelian scheme.

Let (m : A — %', L) be a model as in Proposition 1.7 (1). By (2) in this proposition
and the projection formula, we see that [m]* (h(A,K)) = mPh(ar). Since hiar) is a height

function associated to L (Proposition 1.4), it follows from Theorem 1.5 that h(az) = hy.

1.3. Height 0 points. Let K be a function field or a number field. Let A be an abelian
variety over K. We define the notion of height 0 points of A(K). Let L be an ample even
line bundle. For an a € A(K), we can show that the property “h;(a) = 0 does not depend
on the choice of ample even L. Thus it makes sense to say that a point a € A(K) has heihgt
0, which means that }ALL(a) = 0 for some and hence any ample even line bundle L on A.



We set A(K)u—o := {a € A(K) | a has height 0}. Let A(K),,, denote the set of torsion
points of the additive group A(K). Since h 1, for an even line bundle L is a quadratic form,
we have A(K ) C A(K)p=o-

One may ask if any height 0 point is a torsion point or not. When K is a number field,
the answer is affirmative.

Theorem 1.8. Assume that K is a number field. Let A be an abelian variety over K. Then
A(K)h:() = A(K)tor~

It is natural to ask about the case of function fields. In fact, it does not hold in general.
Assume that K is a function field. We say that an abelian variety A over K is constant if
there exists an abelian variety A over the constant field k such that A =~ A®, K. Note that,
via this isomorphism, we regard A(k) C A(K). We claim that A(k) C A(K)po: thus this
1mphes that A(K),—o has non-torsion points in general. Indeed, the canonical projection
A X Spec(k) B — B is an abelian scheme model of A; we take an amplo even line bundle L
on A and let £ and L be the pullbacks of L by the first projections A X spec(k) B — A and
A, K — A, respectively. Then (A Xspeck) B — B, L) is a model of (A4, L) that satisfies the
conditions in Proposition 1.7 (1). We take any T € g(k) Regarding this point as a point in
A(K), we take its Zariski closure Az in the model. Then Az = {7} x B, and we see that
deg(ci (L) - Az) = 0. By Proposition 1.7 (1), this shows that 7 € A(K);—o.

We will see later how the height 0 points are characterized over function fields.

2. BACKGROUND

The geometric Bogomolov conjecture has a long history in its background, which we are
going to brief in this section.

2.1. History. We start with the Manin—-Mumford conjecture. Let F' be an algebraically
closed field. Let C be a smooth projective curve over F' of genus g > 2. Fix a divisor D
on C of degree 1, and let 7 : C' — Jace be the embedding of C' into its Jacobian given by
x+— [z — D].
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Conjecture 2.1 (Manin-Mumford conjecture). Assume that char(F') = 0. Then ;7! (Jacc (K )or)

is a finite subset of C'(K).

In 1980, Bogomolov “arithmetized” the Manin—Mumford conjecture. With the above
notation, assume that F := K, where K is a function field or a number field (not necessarily
char(K) = 0). Let h : Jacc(K) — Rsq be the Néron-Tate height function, which is the
canonical height function associated to a certain theta divisor. For an ¢ € R, we set

Cle) = {z € C(K) | h(y(x)) < e}

Conjecture 2.2 (Bogomolov conjecture for curves, [1]). Assume that, when K is a function
field, C' cannot be defined over k. Then there exists an € > 0 such that C(e) is finite.

For € > 0, we have 57! (JaCC(F)m) C C(e). Thus the Bogomolov conjecture implies the
Manin-Mumford conjecture when F = Q.
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In 1983, Raynaud proved that the Manin—-Mumford conjecture holds, and moreover, he
established a generalization. To describe this, let A be an abelian variety over an algebraically
closed field F'. A subvariety T of A is said to be torsion if it is the translate of an abelian
subvariety by a torsion point, i.e., if there exist an abelian subvariety A’ of A and a ¢ €
A(K ) such that T = A’ +t. We say that a closed subvariety has dense torsion points
if it has a dense subset of torsion points. Since an abelian variety over an algebraically
closed field has dense torsion points, so does a torsion subvariety. Raynaud proved that the

converse also holds if char(F) = 0.

Theorem 2.3 (Raynaud’s theorem, [22] when dim(X) = 1 and [23] in general). In the above
setting, assume that char(F) = 0. Then for any closed subvariety X of A, if X has dense
torsion points, then it is a torsion subvariety.

Raynaud’s theorem implies the Manin—-Mumford conjecture. Indeed, under the setting of
the conjecture, since j(C) is not a torsion subvariety, it follows from Raynaud’s theorem that
it does not have dense torsion points. Since dim(C) = 1, this means that 5(C') has only a
finite number of torsion points.

In 1995, S.Zhang proposed an “arithmetization” of Raynaud’s theorem over number fields.
To state that, we define the notion of density of small points. Let A be an abelian variety
over K. For an ample even line bundle L on A, a closed subvariety X C A, and an ¢ € R,
set X(e;L) :={x € X(K) | hp(z) < ¢}. Tt is easy to see that the property that X(e; L) is
dense in X for any ¢ > 0 does not depend on the choice of an ample even line bundle L.
We say that X has dense small points if X (e; L) is dense in X for any € > 0 and for some
(hence any) ample even line bundle L on A.

Since a torsion subvariety has dense torsion points, it has dense small points. Zhang
conjectured that, when K is a number field, the converse should also hold.

Conjecture 2.4 (Generalized Bogomolov conjecture, [36]). Assume that K is a number
field. Let A be an abelian variety over K. Then for any closed subvariety X of A, if X has
dense small points, then it is a torsion subvariety.

Note that Conjecture 2.4 generalizes the Bogomolov conjecture for curves (Conjecture 2.2)
over a number field and Raynaud’s theorem when F' = Q.
In 1998, Ullmo proved that the Bogomolov conjecture for curves over number fields holds.

Theorem 2.5 (Ullmo’s theorem, [26]). When K is a number field, Conjecture 2.2 holds.

The key ingredient of the proof is the “equidistribution theorem of small points” by Szpiro—
Ullmo-Zhang ([25]), which will be explained in the next subsection.

Inspired by Ullmo’s idea, Zhang proved the generalized Bogomolov conjecture by using
the equidistribution theorem in the same year.

Theorem 2.6 (Zhang’s theorem, [37]). Conjecture 2.4 holds.

The idea that uses the equidistribution theorem of small points, which was the key in the
proofs of Ullmo’s theorem and Zhang’s theorem, will play a crucial role in the discussion
in the sequel. To figure out the idea, we will outline the proof of Zhang’s theorem in the
following subsections.



2.2. Canonical measures and the equidistribution of small points. In this subsec-
tion, assume that K is a number field. For a projective variety X over K and for any em-
bedding v : K < C (called an archimedean place of K, here), let X, denote the basechange
of X by v. This is a projective variety over C, and let X" denote the associated complex
analytic space. For a line bundle L on X, let L2* denote the induced line bundle on X2".

Let A be an abelian variety over K. A rigidification of a line bundle L on A is an
isomorphism L(0) & K, where L(0) is the fiber of L over the point 0 € A(K). A line
bundle with a rigidification is called a rigidified line bundle. An isomorphism of rigidified
line bundles means an isomorphism of line bundles that respects the rigidifications. Note
that an isomorphism between rigidified line bundles is unique. If the rigidified line bundle
L on A is even, then for any m € Z, there exists a unique isomorphism [m]*(L) = L of
rigidified line bundles.

Theorem 2.7. Let L be a rigidified even line bundle on an abelian variety A over K. Let
v: K — C be an archimedean place. Then there exists a unique metric ||-||can on L™ such
that for any m € Z, we have [m]*(|||lcan) = ||-|72, via the isomorphism [m]*(L2) = (L)@
of rigidified line bundles. This metric is smooth, i.e., C*-class. Further, if L is ample, then

the curvature form ci(L, ||-||can) s positive.

We call the metric ||-||can the canonical metric on L2".

Let X be a closed subvariety of A of dimension d. Then ¢; (L2, ||-|[™)"? is a smooth
d-form, which naturally gives a (signed) Borel measure ci (L3, ||-[|°")"| ., on X2 by re-
striction. The total volume of this measure equals deg; (X). Suppose that Lis ample. Then
deg, (X) > 0, and we have a probability measure

. 1
R g, ()
We call this measure the canonical measure on X" associated to L. By Theorem 2.7, this
measure is positive.

Next, we explain the equidistribution theorem of small points. Let (z;);en be a sequence
of points in X (K). We say that (z;);cx is generic if for any iy € N and for any proper closed
subset Y of X, there exists an i; € N such that i; > iy and z;, ¢ Y. We say that it is
small if limHoo/ﬁ(xi) = 0, where 7 is the canonical height function associated to an ample
even line bundle; note that this property is well-defined and not depend on the choice of the
ample even line bundle.

Since K has countable cardinality, the set of closed subsets of X has countable cardinality,
and hence we see the following.

Ly, |-l

an *
X‘U

Lemma 2.8. If X has dense small points, then there exists a generic and small sequence

on X(K).

We take a finite extension K'/K over which the above A and X can be defined. We fix
a model A" and X’ over K’ of A and X, respectively. Then Gal(K/K') acts on X(K). For
an ¥ € X(K), let Og/(z) denote the Gal(K /K')-orbit of z in X (K). It is a nonempty finite
set.
Theorem 2.9 (Equidistribution theorem, [25, 37]). Let A, X, and v be as above. Let L be
an ample even line bundle on A. Let K' be a finite extension of K over which A and X can
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be defined, and we fix models of them over K'. Let (z;)ien be a generic and small sequence
on X(K). Then on X, we have a weak convergence of measures

0, = [ixan
|OK/ l’l Z ,U‘X ,L

2€0 g1 (x4)

as i — oo, where 0, denotes the dirac measure with support z and |Og/(x;)| is the number
of elements of Ok (x;).

2.3. Idea of the proof of Zhang’s theorem. We outline the proof of Zhang’s theorem
(Theorem 2.6). We note the following lemma, which is easily deduced from Proposition 1.6.

Lemma 2.10. Let X be a closed subvariety of an abelian variety A over K. Let B be an
abelian variety.

(1) LetY be a closed subvariety of B. If X and Y have dense small points, then so does
the closed subvariety X xY of A x B.
(2) Let ¢ : A — B be a homomorphism. If X has dense small points, then so does ¢(X).

The proof of Theorem 2.6 is given by contradiction. Assume that there exists a coun-
terexample to the generalized Bogomolov conjecture; then there exist an abelian variety A
over K and a closed subvariety X C A such that X is not a torsion subvariety but has dense
small points. We call {a € A | X +a C X} the stabilizer of X. Taking the quotient by
the stabilizer, we may assume that there exists a counterexample with trivial stabilizer. By
Theorem 1.8, we note that dim(X) > 1.

For a natural number n, we define the difference homomorphism

A" 5 AN (ag, . an) (A — Aoy Gy — Gy).

Let o : X™ — A" ! be the restriction of this homomorphism to X”. If n is large enough, it
follows from the assumption that X has trivial stabilizer that « is generically injective; in
particular, it is generically finite. We take such an n. Let Y denote the image of o and set
Z = X™. Thus « induces a surjective generically finite morphism Z — Y.

Since X has dense small points, so does Z := X™ by Lemma 2.10 (1). Then by Lemma 2.8,
we can take a generic and small sequence (z;);eny on Z(K). We set y; := a(z;) for all 4. Since
the morphism Z — Y is surjective, the sequence (y;)ien is generic. Since « is a restriction
of a homomorphism of abelian varieties, it follows from Lemma 2.10 (2) that (y;)en is also
small. Let K’ be a finite extension over which A and X can be defined. We note that

‘OK’ Zz Z 5 |OK yz Z 61”

2€0 1 (2;) yeO(yi)

vy

Then by the equidistribution theorem (Theorem 2.9), we get
(2.11) as(pzgnn) = piyn,i,

where L and M are ample even line bundles on A"~ ! and A", respectively.

The right-hand side of equality (2.11) is a smooth measure (in the sense that it comes from
a smooth form). On the other hand, since juzan 3s is a strictly positive smooth measure and
the diagonal A C X™ = Z is contracted to a point by «, it follows that the right-hand side



a(ftzan 1) should be “too dense” to be a smooth measure at «(A). That is a contradiction,
which completes the proof.

3. GEOMETRIC BOGOMOLOV CONJECTURE

In this section, we assume that K is a function field. It is natural to ask if the same
statement as Zhang’s theorem holds also over function fields. In general, this does not hold
because there exists an abelian variety A over K that has a non-torsion height zero point
a € A(K); see the argument just below Theorem 1.8. Indeed, {a} has dense small points
and is not a torsion subvariety. More generally, if A can be defined over the constant field k
of the function field, then a closed subvariety that can be defined over k has dense height 0
points.

Thus, there are two possible options over function fields.

Options 3.1. (1) We restrict ourselves to a certain class of abelian varieties and estab-
lish the same assertion as Zhang’s;
(2) We define a suitable counterpart of torsion subvarieties and formulate a conjecture
for all abelian varieties.

Gubler proved a theorem in the direction of Options 3.1 (1). He considered abelian
varieties that are totally degenerate at some place. More details will be explained in the first
subsection below. On the other hand, the geometric Bogomolov conjecture was an attempt
to establish a theorem in the direction of Options 3.1 (1). The statement will be given in
the last subsection of this section.

3.1. Gubler’s theorem. If K’ is a finite extension of K and K" is a finite extension of K’,
then there is a natural map Myn — My, Thus the family (M), where K’ runs through
the finite extensions (in K) of K, is an inverse system. We set Mz := I’LnK, Mp and call an

element of this set a place of K. Note that the canonical map Mz — My is surjective for
any finite extension K'/K. For each v = (vg/)xs € My, we can put a unique absolute value
|-|, on K such that: its restriction to K’ is equivalent to the normalized absolute value on K’
corresponding to the place vgr; its restriction to K coincides with the normalized absolute
value on K. Further, the completion of K, of K with respect to ||, is an algebraically closed
valuation field with nonarchimedean absolute value |-|,. Let FT, denote the valuation ring of
K,. For an algebraic variety X over K and for a v € Mz, let X,, denote the basechange of
X by the field extension K — K.

Let A be an abelian variety over K. By the Grothendieck semistable reduction theorem,
there exists a semiabelian scheme over FZ with generic fiber A, which we call a semiabelian
scheme model of A,. We say that A is totally degenerate at v € My if A has a semiabelian
scheme model over the valuation ring K, that has torus reduction.

Remark 3.2. Let v € My%. The product of two totally degenerate abelian varieties at v is
again totally degenerate at v. A quotient abelian variety of an abelian variety that is totally
degenerate at v is again totally degenerate at v.

It is classically known that if A is totally degenerate at some place, then A(K)p—o =
A(K)ior. Note that this is the same equality that holds when K is a number field, and in
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particular, there is no non-torsion closed subvariety of A of dimension 0 that has dense small
points. Thus, one may expect that the same statement as Zhang’s theorem should hold for
an abelian variety that is totally degenerate at some place. Indeed, this expectation was
realized by Gubler in 2007.

Theorem 3.3 (Gubler’s theorem, [10]). Assume that K is a function field. Let A be an
abelian variety over K. Assume that A is totally degenerate at some place. Then if a closed
subvariety X C A has dense small points, then X is a torsion subvariety.

The basic strategy of the proof of Gubler’s theorem is the same as Zhang’s in the sense
that the key is the equidistribution theorem. The difference is that: in Gubler’s proof, the
equidistribution theorem is applied on the tropical analytic varieties over the place at which
the abelian variety is totally degenerate, while in Zhang’s proof, it is done on the complex
analytic spaces.

We will later outline the proof of Gubler’s theorem, but we notice that this proof will be
slightly different from Gubler’s original one. The proof that we are going to explain will
use canonical measures and the equidistribution theorem on the Berkovich analytic spaces
as the counterparts of those on the complex analytic spaces in Zhang’s proof. On the other
hand, Gubler’s original proof uses those on tropical varieties ([9, 10]). When Gubler proved
the theorem, the equidistribution theorem was not established on the Berkovich analytic
spaces. Then he proved the equidistribution in the tropical geometric setting and applied
them to prove his theorem. Now, necessary techniques on Berkovich analytic spaces have
been developed enough, and we can argue in terms of Berkovich analytic geometry.

Let us recall the canonical measures and the equidistribution theorem on the Berkovich
analytic spaces. For an algebraic variety X over K and for a v € Mz, let X denote the
Berkovich analytic space over K, associated to X,. Let A be an abelian variety over K and
let X be a closed subvariety of A. Let L be an ample even line bundle on A. Let v € M%.
It is known that the canonical measure fixan ;, on X2* is defined (cf. [4, 12]).

Let (z;)ic; be a net on X (K), where [ is a directed set. Then we can define the notions
of genericness and smallness of (;);c; in the same way as we did in Subsection 2.2 when
K is a number field. Assume that A and X can be defined over a finite extension K'/K.
By fixing models over K’ of A and X, respectively, Autx:(K) acts on X(K). Thus we can
consider Aut g (K)-orbit of a point in X(K). For an € X(K), let Og/(x) denote the
Autg: (K)-orbit of z in X(K). We regard X (K) C X" naturally.

Theorem 3.4 ([10, 11]). Under the setting above, let (x;); be a generic and small net on

X(K). Then, we have a weak convergence of measures on X2

0, — fixan
|OK/ l’l Z ,U‘X ,L

2€0 g1 (x4)

as 1 — oQ.

Remark 3.5. One may think that we have enough ingredients to prove Gubler’s theorem in a
similar way, as we have the canonical measures and the equidistribution theorem. However,
we notice that more properties on the canonical measures should be needed. In fact, it
was important that the canonical measures are smooth positive measure on the positive



dimensional spaces. If the canonical measures in (2.11) were the dirac measures of points,
for example, we could not find any contradiction from this equality.

Therefore, in the proof, some “smoothness” and “positivity” properties on the canonical
measures will be required. Gubler proved that the canonical measures on a d-dimensional
subvariety are d-dimensional Lebesgue measures, as follows.

Theorem 3.6. Assume that an abelian variety A is totally degenerate at v. Let X be a
closed subvariety of dimension d. Then there exists a subspace Sxan of X3 with the following
properties:

(i) Sxan has a canonical structure of polyhedral complex of pure dimension d;

(ii) there exist a finite polyhedral decomposition |, o of Sxan and a positive real number
o for any o of dimension d such that the canonical measure pixa (associated to an
ample even line bundle on A) equals

> " rods,

where o runs through the d-dimensional polytopes in the polyhedral decomposition and
0, is a Lebesgue measure on the polytope o.

We outline the proof of Gubler’s theorem. Suppose that there exists a counterexample to
the theorem. Then one constructs an abelian variety A that is totally degenerate at some
place and a closed subvariety X of positive dimension such that X has trivial stabilizer
(Remark 3.2). By the same construction as Zhang, we have a generically finite morphism
a:Z — AN7L where Z := X", and Z has dense small points. Set Y := a(Z). The same
argument using the equidistribution of small points, we get

(3.7) Qx (Mzgn) = Hygan,

where pizan and pyan are the canonical measures associated to some ample even line bundles
on AN and AN~ respectively.

Since AN and AN~! are totally degenerate at v (Remark 3.2), it follows from Theorem 3.6
that there exist closed subsets Sza C Z3" and Sya.n C Y that have structures of polyhe-
dral complex of pure dimension d = N dim(X). Further, pizan and jizen are d-dimensional
Lebesgue measures on Szan and Syan, respectively.

Then the same argument as Zhang’s leads us to a contradiction. Indeed, since o contracts
the diagonal to a point and fizan is a Lebesgue measure around the diagonal, o, (,u zgn) must
be too dense to be a d dimensional Lebesgue measure around the image of the diagonal. On
the other hand, pryan is a d-dimensional Lebesgue measure. That is a contradiction.

3.2. Special subvarieties. Next, we want to think of Options 3.1 (2). Then we have to
define a counterpart of the notion of torsion subvarieties. To do that, we will use the “K /k-
trace” of an abelian variety.

In this subsection, let F//k be any field extension with k algebraically closed. We recall
the notion of F'/k-trace. For an abelian variety A over F, a model over k is an abelian
variety over k with an isomorphism A = A R F. An abelian variety A over F is said to be
F'/k-constant, or simply constant, if A has a model over k.
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Theorem 3.8 (Chow’s theorem, [13]). Let A and B be abelian varieties over F and let
¢ : A — B be a homomorphism. Assume that A and B are F/k-constant and let A and
B be models over k of A and B, respectively. Then there exists a unique homomorphism
%: A — B such that the basechange $®k F: A— B coincides with ¢.

Let A be an F'/k-constant abelian variety. Let A; and A, be models over k of A. Applying
Chow’s theorem to id4 : A — A, we get a unique isomorphism A; — A, whose basechange
to F' equals id4. Thus, a model of A is unique up to canonical isomorphism. Further, le(kz)
and EQ(IC) are naturally regarded as subgroups of A(K), and they coincide with each other.
We write A(k) for this subgroup and call a point of it a constant point.

An F/k-trace of A is a pair (A%, Tr4) of an F/k-constant abelian variety A"”/* and a
homomorphism Try : A"/* — A that has the following universal property: for any F/k-
constant abelian variety B and for any homomorphism ¢ : B — A, there exists a unique
homomorphism ¢’ : B — Af/* such that Try o(¢/ ®x F) = ¢. For an abelian variety over I,
its F'/k-trace is unique up to canonical isomorphism by the universal property. Further, it
is classically known that any abelian variety over F has an F'/k-trace (cf. [13]).

Let B be an F'/k-constant abelian variety. A closed subvariety Y of B is said to be F/k-
constant if there exist a model B over k of B and a closed subvariety Y C B such that
Y =Y & F. By Chow’s theorem, this notion does not depend on the choice of a model B.

For an F'/k-constant abelian variety B, we set Y (k) := Y (K) N B(k)

Definition 3.9 (F/k-special subvariety, [30] when F' = K). Let A be an abelian variety
over F. A closed subvariety X C A is said to be F/k-special if

X =T+TraY)
for some torsion subvariety 7' C A and some F/k-constant closed subvariety Y C AF/*,

Remark 3.10. Let X = T + Trs(Y) be an F/k-special subvariety, where T is a torsion
subvariety and Y C Af/* is an F/k-constant subvariety. Then if F' is algebraically closed,
then T'(F) + Tra(Y'(k)) is dense in X.

We should mention that, using the notion of F'/k-special subvarieties, we have a positive
characteristic version of the Manin—-Mumford conjecture.

Theorem 3.11 (Manin—-Mumford conjecture in positive characteristic, [21, 24]). Let F be an
algebraically closed field and let ko be the algebraic closure in F' of the prime field. Assume
that char(F) > 0. Let A be an abelian variety over F. Then for any closed subvariety
X C A, if X has dense small points, then it is F/kq-special.

Let k be an algebraically closed field with F' D k D kq. If an abelian variety A over F' has
trivial F'/k-trace, then it has trivial F'/ko-trace. Thus, we have the following.

Corollary 3.12. In the setting of Theorem 8.11, assume further that A has trivial F/k-
trace. Then for any closed subvariety X C A, if X has dense small points, then it is a
torsion subvariety.



3.3. Geometric Bogomolov conjecture. We use what we explained in the previous sub-

section with ' = K. Then the set of height 0 points is illustrated as follows.

Theorem 3.13 ([14]). Let (A?/’“,Tr/o be the K /k-trace of an abelian variety A over K.
Then B
A(K)j—o = A(K) + Tra (AR5 (K)).

By Remark 3.10 and Theorem 3.13, we see that a K /k-special subvariety has dense small
points. In 2013, the author formulated the geometric Bogomolov conjecture, which asserts
that the converse should also hold.

Conjecture 3.14 (Geometric Bogomolov conjecture, [30]). Let A be an abelian variety
over K. Then for any closed subvariety X of A, if X has dense small points, then it is
K /k-special.

Since the notion of K /k-special subvarieties and that of torsion subvarieties are the same
when the K /k-trace is trivial, the geometric Bogomolov conjecture should generalize Gubler’s
theorem. The author proved in [30] that the geometric Bogomolov conjecture holds for
abelian varieties that satisfy some milder condition of degeneracy than the total degeneracy,
which generalized Gubler’s theorem.

4. REDUCTION THEOREMS

In this section, we explain the reduction theorems of the geometric Bogomolov conjecture
by the author. First, we reduce the geometric Bogomolov conjecture in full generality to
that for nowhere degenerate abelian varieties. Next, we reduce that for nowhere degenerate
abelian varieties to that for nowhere degenerate abelian varieties with trivial K /k-trace.
Those results will play a crucial role in the final solution of the conjecture.

4.1. Reduction to the nowhere degenerate case. One might wish to prove the geomet-
ric Bogomolov conjecture along the same line as Zhang and Gubler. However, the equidis-
tribution method seems helpless to prove the geometric Bogomolov conjecture for nowhere
degenerate abelian varieties. As we mentioned in Remark 3.5, if the support of the canonical
measure is a finite number of points, then no contradictions appear from (3.7). In fact, if an
abelian variety has good reduction at a place v € M7, the support of the canonical measure
on any closed subvariety is a finite number of points over v. Therefore, the possible maximal
contribution of the equidistribution method to the conjecture should be the reduction of the
conjecture in full generality to that for nowhere degenerate abelian varieties.

In 2016, the author established such a reduction theorem, as we are going to explain. Let
A be an abelian variety over K. Then we can show that A has a unique maximal nowhere
degenerate abelian subvariety m.

Theorem 4.1 ([31]). With the notation above, the geometric Bogomolov conjecture holds
for A if and only if that holds for m.

Remark 4.2. In general, if two abelian varieties A; and Ay are isogeneous to each other,
then the geometric Bogomolov conjecture holds for A; if and only that holds for A,.
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Note that A is isogeneous to A/m x m. By Remark 4.2, we can show that Theorem 4.1 is
deduced from the following theorem.

Theorem 4.3 ([31]). Let A and m be as above. Assume that m = 0. Then the geometric
Bogomolov conjecture holds for A.

If one tries to prove Theorem 4.3 by deducing a contradiction from equality (3.7), then
there arises a nontrivial task. In Gubler’s setting, the canonical measures are smooth in
the sense that they are Lebesgue measures on positive dimensional space, and hence a
contradiction comes out from (3.7) automatically. Does the same hold, in general? Here, we
recall Gubler’s structure theorem of the canonical measures.

Theorem 4.4 ([12]). Let A be an abelian variety over K and let X be a closed subvariety
of A of dimension d. Let v € M. Then there exists a subset Sxan C X3" that satisfies the
following conditions:

(i) Sxa has a canonical structure of polyhedral set;
(i) there exists a polyhedral decomposition ¥ of Sxan such that for any ample even line
bundle L on A, pxan g is the pushout by the canonical injection Sxan — X3* of a

measure of form
> 746,

geX
with 4 > 0.

We notice that o € 3 with r, > 0 may have various dimensions. If the canonical measure
on the right-hand side in (3.7) is not a sum of non-equidimensional Lebesgue measures, we
cannot get an immediate contradiction form (3.7).

To overcome such a difficulty, we analyzed the canonical measures in detail. The key was
the following result on the canonical measures.

Proposition 4.5 ([31]). Let ¢ : A — B be a homomorphism of abelian varieties. Let X be
a closed subvariety of A. Assume that ¢|y is a generically finite morphism. Let v be a place
of K. Let pxan be the canonical measure on X3* associated to an ample even line bundle on
A. We write Y, 7,05, where 3 is a polyhedral decomposition of the canonical subset of
X2, Then, for any o € X with r, > 0, ¢2" induces a homeomorphism o — ¢2"(c).

Assume that the maximal nowhere degenerate abelian subvariety of A is trivial and that
dim(A) # 0. Then we note that A has trivial K /k-trace. Further, we can show the following.

(1) There exists a place v at which A is degenerate.

(2) Let X be a closed subvariety of A of positive dimension. Let v be a place as in (1).
Then the canonical measure on X2" associated to an ample even line bundle on A
has positive dimensional support.

(3) The canonical measure on Z2 = (XV) a certain ample even line bundle can be
regarded as the product of the N copies of a canonical measure on X2

We outline the proof of Theorem 4.3. To prove this by contradiction, assume that there
exists a counterexample to the theorem. Then there exist an abelian variety A and a non-
special closed subvariety X of A that has dense small points and has trivial stabilizer. We
take a place v as in (1) above. By the same argument as Gubler’s, we obtain the same equality



s (3.7). By (2) above, the canonical measures in this equality have positive dimensional

support. We write
Hzam = Zraéa

>
as in Theorem 4.4. Since the diagonal contracts to a point and we have (3) above, we can
show that there exists ¢ € ¥ such that 7, > 0 and the map o — a2"(¢) induced by a2 is
not injective. However, this contradicts Proposition 4.5.

4.2. Reduction to the nowhere degenerate and with trivial trace case. Recall that
AK/k7'I‘rA) denotes the K /k-trace of an abelian variety A over K. In 2018, the author
proved the following reduction theorem.

Theorem 4.6 ([33]). Assume that A is nowhere degenerate. Then the geometric Bogomolov
congecture holds for A if and only if that holds for Coker(Tra).

Let A be any abelian variety over K and let m be the maximal nowhere degenerate
abelian subvariety. Then the trace homomorphism Try : AX/® — A factors through m,
and m/Im(Tr,) is nowhere degenerate and has trivial K /k-trace. It follows that the above
theorem together with Theorem 4.1 implies the following corollary.

Corollary 4.7 ([33]). The geometric Bogomolov conjecture holds for A if and only if that
holds for m/Im(Tr4). In particular, the geometric Bogomolov conjecture is reduced to that
for nowhere degenerate abelian varieties with trivial K /k-trace.

To outline the proof of Theorem 4.6, we recall some properties on the canonical height of
a closed subvariety.

Remark 4.8. Let X be a closed subvariety of A. Then we have a notion of canonical height
hi(X) of X, where L is an ample even line bundle on A. It is known that X has dense small
points if and only if X has canonical height 0, i.e., hy(X) =0 (cf. [11]).

If A is nowhere degenerate, the canonical height of a closed subvariety can be described
as an intersection number on a model. More precisely, the following is known to be true.

Proposition 4.9 ([11]). Let K’ be a finite extension of K over which A, X, and L can
be defined. Let B’ be the normalization of B in K'. Let (m : A — B',L) be a model of
(A, L) such that m : A — B’ is an abelian scheme model of A and L satisfies condition
Proposition 1.7 (1) (it). Let X be the Zariski closure of X in A. Then

h(X) = deg,(X).

1

[K': K]

Let us outline the proof of Theorem 4.6. Let A be a nowhere degenerate abelian variety.
Then it is ecasy to see that A is isogeneous to Coker(Try) x ARk Tt suffices to prove
the theorem for this abelian variety (cf. Remark 4.2). Thus we may and do assume that
A = B x C, where B is a nowhere degenerate abelian variety that has trivial K /k-trace
and C' is a constant abelian variety with model C over k. Set C := C Xgpec(k) B’. Then
the second projection C — B’ is an abelian scheme model of C. Let N be an dmple even
line bundle on C and let A/ and N be the pullbacks of N by the first projections C — C
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and C @, K — C, respectively. Then (C — B',N) is a model of (C, N) that satisfies the
conditions in Proposition 1.7 (1). Let Z C C be a closed subvariety and let Z be the Zariski
closure of Z in C.

Suppose that Z has dense small points. Then Z has canonical height 0 (Remark 4.8). By
Proposition 4.9, deg,(Z) = 0. From this, we can prove that there exists a closed subvariety
Z of C such that Z = Z @, K. This is a special subvariety of C, and thus the geometric
Bogomolov conjecture holds for C.

Next, let X be a closed subvariety of B x C' and suppose that X has dense small points.
Suppose that Z C C is the image of X by the canonical projection B x C' — C. Let
f + X — Z be the morphism given by restricting the second projection B x C — C.
Then, since X has dense small points, so does Z. It follows from what we saw above that
Z =7 & K for some Z C C. _ _

Let Z(k) denote the image of Z(k) by the canonical map Z(k) — Z(K). Then, for any
z € Z(k), we can show that any irreducible component Y of f~1(2) has canonical height 0;
we use Proposition 4.9 here. Note that Y is a closed subvariety of B. Since the geometric
Bogomolov conjecture holds for B by the assumption, Y is a torsion subvariety. Furthermore,
we can show that Y = f~!(z) and the family {f*(z)}.czq) is constant in the sense that
there exists a torsion subvariety 7' C B such that f=1(z) = T x {2} = T’ here we use the
assumption that B has trivial K /k-trace. This proves that X =7 x Z, and this is a special
subvariety of B x C.

4.3. Bogomolov conjecture for curves over function fields. As a benefit of the results
in the previous subsections, the author proved the following theorem in 2017.

Theorem 4.10 ([32]). Let A be an abelian variety over K and let X be a closed subvariety
of A. Assume that codim(X, A) = 1. Then if X has dense small points, then it is special.

The proof of Theorem 4.10 is based on Corollary 4.7. We may assume that A is nowhere
degenerate and has trivial K /k-trace. Let X be a closed subvariety of A of codimension 1.
Then we can prove that X has positive canonical height by using Proposition 4.9. When we
compute the intersection number on a model, the assumption on the codimension is crucial.

It is interesting that from Theorem 4.10, which is for codimension 1 subvarieties, we can
deduce that the conjecture holds for the closed subvariety of dimension 1.

Theorem 4.11 ([32]). Assume that dim(X) = 1. Then if X has dense small points, then
X is special.

As an immediate consequence, we got the final answer to the Bogomolov conjecture for
curves over function fields without any restriction.

Corollary 4.12 ([32]). The Bogomolov conjecture for curves over function fields holds.

The idea to deduce Theorem 4.11 from Theorem 4.10 is as follows. Let X be a 1-
dimensional closed subvariety of A. We set Yy := {0}, and for each positive integer m,
let Y;, be the sum of m copies of X — X := {x — 2’ | z,2" € X}. Then Y, is an abelian sub-
variety of A for large m, and let N be the smallest positive integer among such m. Suppose
that X has dense small points. Then we can show that there exists a 7 € A(F)tor such that
Yy_1 or Yn_1+ (X —7) is a closed subvariety of the abelian variety Yy of codimension 1,



for which we write D. Note that D also has dense small points. By considering these D and
Y, we can deduce Theorem 4.11 from Theorem 4.10.

Using the above technique, the author proved a partial result for 5-dimensional nowhere
degenerate abelian varieties with trivial K /k-trace ([34]).

5. FINAL SOLUTION

As we saw in Corollary 4.7, it now suffices to show the geometric Bogomolov conjecture
only for nowhere degenerate abelian varieties with trivial K /k-trace. The conjecture for this
kind of abelian varieties was solved by Xie and Yuan, as we describe in the first subsection.
In the last subsection, we will give some comments on the related topics.

5.1. Xie—Yuan’s theorem. Assume that K be a function field. In 2022, Xie and Yuan
proved the following theorem.

Theorem 5.1 ([27)). Let A be an abelian variety over K. Assume that A is nowhere
degenerate and has K /k-trivial trace. Then for a closed subvariety X C A, if X has dense
small points, then it is a torsion subvariety.

By Theorem 5.1 together with Corollary 4.7, the geometric Bogomolov conjecture was
completely solved.

We outline the proof of Theorem 5.1. Let A be as in the theorem and let X be a closed
subvariety of A. We define a sequence (X,,)mez., of closed subvarieties inductively, as
follows: set Xo = {0} C A; for m € Zs, let fro1 : X1 x X — A be the morphism
induced from the addition and let X,, be the image of f,,_1.

Lemma 5.2 ([27]). Suppose that X has dense small points. Then there exists an r € Z>y
such that dim(X,_1) < dim(X,) and X, is a torsion subvariety.

Let 7 be as in Lemma 5.2. There exist an 2 € A(K )y, and an abelian subvariety A’ such
that X’r = A/ + rZo.

Proposition 5.3 ([27]). With the above notation, assume that X, is an abelian subvariety,
i.e., rrg = 0 and X, = A" with the above notation. We write f for f, 1. Sete = dim(X, 1)+
dim(X) — dim(A’) and

Ay =y € A | dim(F () = e + 1},
Let t € A(K)ior \ AL 1(K) and assume that the order of t is not divisible by char(k). Then

any irreducible component of f=1(t) has canonical height 0.

We outline the proof. Replacing X by X — xg, we may assume that X, = A’ is an abelian
subvariety of A. Since the morphism f : X,_; x X — A’ induced from the addition is
surjective, A, ; C A’, and hence

T:={t € A(K)wr \ AL, (K) | char(k) t ord(t)}

is dense in A’.

We argue by induction on dim(X'). We note that since dim(X,_;) < dim(4’), e < dim(X).
Since the case of dim(X) = 0 is trivial by Theorem 3.13, assume that dim(X) > 1. We take
any t € T. By Proposition 5.3 with Remark 4.8, any irreducible component Z C f~1(t) has
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dense small points, and since dim(Z) < e < dim(X), it follows from the induction hypothesis
that Z is a torsion subvariety. Thus, f~!(¢) has dense torsion points. Since T is dense in
A’, this shows that X,_; x X has dense torsion points. By the Manin—Mumford conjecture
in positive characteristic (Corollary 3.12), it follows that X,_; x X is a torsion subvariety.
Taking the second projection X,_; x X — X concludes that X is a torsion subvariety. This
completes the proof of Theorem 5.1.

We remark that the proof of Theorem 5.1 uses the Manin—Mumford conjecture in positive
characteristic, so that this conjecture has not yet been a corollary of the geometric Bogomolov
conjecture. It should be interesting to find a proof of Theorem 5.1 without using the Manin—
Mumford.

5.2. Comments. We give some comments on topics related with the geometric Bogomolov
conjecture.

5.2.1. Transcendence degree of the function fields. In this article, we only consider the func-
tion fields of transcendence degree 1 over k. However, the geometric Bogomolov conjecture
is formulated over function fields of any transcendence degree. In fact, over function fields of
any transcendence degree, Gubler proved his theorem, the geometric Bogomolov conjecture
formulated, and every theorem on the geometric Bogomolov conjecture in this note holds.

5.2.2. Bogomolov conjecture for curves over function fields (of transcendence degree 1). Sev-
eral partial results on the Bogomolov conjecture for curves over function fields were proved
before Corollary 4.12. In 1993, Zhang made a theory of admissible pairing on curves in
[35]. Using this theory, Moriwaki and Yamaki established several partial answers to the
Bogomolov conjecture for curves over function fields ([15, 16, 17, 18, 28, 29]); some of them
need the assumption that char(k) = 0. Later, Zhang developed the theory of height paring
of the Gross—Schoen cycles in [38]. Using this theory, Faber proved a partial result in 2009
([6]). Further, Cinkir proved in 2011 that when char(k) = 0, the Bogomolov conjecture for
curves over function fields holds ([5]). Cinkir’s proof uses the positivity of the height of the
Gross—Schoen cycles, and to see this positivity, one needs a kind of Hodge index theorem
that is established only when char(k) = 0. That is the main reason why the assumption of
char(k) = 0 is needed. We remark that the those results on the Bogomolov conjecture for
curves over a function field deals only with the case where K has transcendence degree 1 over
k, while the author proved Corollary 4.12 in any characteristic and without any assumption
on the transcendence degree (cf. Subsubsection 5.2.1).

5.2.3. Moriwaki’s arithmetic height. In 2000, Moriwaki defined in [19] a notion of height over
finitely generated fields. More precisely, let K be a finitely generated field. Then Moriwaki
defined a notion of polarizations on K, and after a choice of a polarization, he constructed
a height theory for projective varieties over K. If the polarization is “big”, then the height
theory has the same property as the height theory over number fields. Moriwaki proved that
for an abelian variety over K, the same assertion as Zhang’s theorem holds.

Recall that Zhang’s theorem can recover Raynaud’s theorem when F = Q. We note
that Moriwaki’s theorem recovers Raynaud’s theorem (Theorem 2.3) for an arbitrary F' (not
necessarily F = Q).



5.2.4. Geometric Bogomolov conjecture in characteristic zero. The geometric Bogomolov
conjecture under the assumption that char(k) = 0 was proved slightly earlier. In 2019,
Gao—Habegger [8] proved the conjecture under the assumption that the function field has
transcendence degree one. Then, in 2021, Cantat—Gao—Habegger—Xie [3] proved it without
the assumption on the transcendence degree. Their proofs heavily depend on real analytic
methods, such as Betti-maps.
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