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SATO-TATE DISTRIBUTIONS FOR SOME FAMILIES OF 

HYPERGEOMETRIC VARIETIES 

KEN ONO, HASAN SAAD, AND NEELAM SAIKIA 

ABSTRACT. At the 2022 RIMS workshop "Algebraic Number Theory and Related Topics," the 
first author discussed recent work [18, 20] by the authors on Sato-Tate type distributions for 
two families of elliptic curves and one family of K3 surfaces. This is a survey of these results. 

1. INTRODUCTION AND STATEMENT OF RESULTS 

In the'80s, Greene [11, 12] developed the foundation of a theory of hypergeometric functions 
over finite fields where these functions possess many properties that are analogous to those of 

classical hypergeometric functions. Here we study the value distribution of these functions in 

the context of Sato-Tate distributions for various families of varieties. We first recall Greene's 

definition. If A1, A公...,An and Bi, Bぁ...,Bn-l are multiplicative characters of the finite field 
lF'q, where q = pr, then we have the Gaussian hypergeometric function 

ぶー1(ふ，盆 ：ぶ:1 lx)q :=~~（い）（芯） ( B~::x)x(x), 

where the summation is over the multiplicative characters of『;,andwhere (~) is the normalized 
Jacobi sum J(A, B), defined by 

(1.1) （力：＝ B（-1)J(A豆）：＝ B（-1)~A(x)恥— x).
q q 

xElFq 

We consider those functions where the characters have order 1 and 2 for 1Fq when q =が is
odd. The simplest example of these functions are the 2Fi-Gaussian hypergeometric functions 

(1.2) 出（以：＝］1(の，:I入） q＝ q [ l芦り）（ぐ）x（入），
where¢(・) is the quadratic character and c is the trivial character of lFq. 

In [18], the authors computed the moments of these Gaussian hypergeometric functions. 

Theorem 1. 1. If r and m are fixed positive integers, then as p→ +oo we have 

pr(m/2-1) A~ 出（入）悶＝ ｛゚？ぶ{!1) ifmis odd 
叫 ~+om,r(l) if m = 2n is even. 
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The non-zero moments in Theorem 1.1 are Catalan numbers, which also arise [10] as the 
moments of traces of the Lie group SU(2). In other words, we have 

J mX)2”dX= （2n)！ 
SU(2) n!（n+ 1)！' 

where the integral is with respect to the Haar measure on SU(2). Using these moments, we 
obtain the following limiting distribution. 

Corollary 1.2. If翌：：：：： a<b：：：：： 2,and r is a fixed positive integer, then 

lim 
| ｛入 ElFPr :../i.戸．2Fi（入）prE [a, bl} I 1 t 

p→oo pr ＝云［』コt.
Theorem 1.1 may be interpreted in terms of the Legendre normal form elliptic curves 

Eteg: 炉＝ x(x-l)(x —入）．

If入E1Fq ¥ {O, 1}, then (see Theorem 11.10 of [17]) q • 2Fi（入）q= -cp(-1) • a~eg(q), where 

(1.3) 亭 (q):= q + 1 -IEteg(JF砂I=一Lcp(x(x -l)(x —入））．
xEl'q 

Corollary 1.2 refines classical work of Birch [3] which established this distribution for all elliptic 
curves over finite fields. These distributions coincide with the Sato-Tate distribution that was 
famously proved by Clozel, Harris, Shepherd-Barron and Taylor in [5]. In their (more difficult) 
setting, the elliptic curve is fixed and the distribution is taken over all primes p. 
We also consider the迅 Gaussianhypergeometric functions 

(1.4) 3凡（入）q:= aF2 (¢, :: : I入）q＝ q [ lごり）（¢xx)り）x（入）
In [18], the authors obtained the following moment asymptotics. 

Theorem 1.3. If r and m are fixed positive integers, then as p→ +oo we have 

Pr(m-1)と知）悶＝ ｛゚：：：，r（1)t m(2i)＇ 
入€和

区(-1)（。）叩＋i)T+ Om,r(l) 
i=O 

These are moments [19] of traces of the real orthogonal group 0(3) as 

J 
m 

(TrXrdx＝ど（ー1)iJm¥ (2i)! 
0(3) i=0 (i) i!（i + 1)！＇ 

if mis odd 

if m zs even. 

where the integral is with respect to the Haar measure on 0(3). In analogy with Corollary 1.2, 
we obtain the limiting distribution. 

Corollary 1.4. If -3 S a < b S 3, and r is a fixed positive integer, then 

lim 
| ｛入 EJFpr : pr • 3的（入）p"E [a, bl} I 1 rb 

P→oo pr =石1"f(t)dt, 
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where 

>[2
+
 

t
 

」
、1
,t
 

,
1
、f
 

ifl < ltl < 3, 

if ltl < 1, 
othe加 ise.

Theorem 1.3 can be interpreted in terms of the K3 surfaces whose function fields are 

ふ： 討＝ xy(x+ l)(y + l)(x十入y),

where入E1Fq ¥ {O, -1}. It is known (see Theorem 11.18 of [17] and Proposition 4.1 of [2]) that 

IX忍）I=1＋砂＋l9q+q2.迅(-心＝ 1+q2 + l9q+q・ふ(p),
where A入(p):= q. 3的(—入）q· Corollary 1.4 gives the limiting distribution for the A入(p).

Example. For p = 93283, the histograms of the values yP ・ 2F1（入）P and p ・ 3凡（入）Pillustrate 
Corollary 1.2 and Corollaryl.4 (i.e. the near match with the "Batman distribution" f(t)). 

2凡 histogramfor p = 93283 

-3 -2 -1 

0.2 

3凡 histogramfor p = 93283 

In recent work, the second author [20] obtained an explicit version of Theorem 1.3. 

Theorem 1.5. If -3::; a< b::; 3 and p 2 5 is a prime, then 

| ｛入 ElFP A;（p) E[a,b]｝ | ＿土1bf(t)dtl ::; ~ 
This theorem is motivated by the vertical asymptotes at t =士1of the Batman distribution. 
For example, if T > 0, then one can ask how large a prime p must be so that the density of 
A入(p)near t =土1is larger than T? As the example above illustrates, p = 93283 is not large 
enough for T = 1. More generally, numerical data suggests that the size of such p must grow 
very rapidly with T. Despite this growth, we have the following explicit bound. 

Corollary 1.6. If T > J 戸 5> 0, and x(T, 5) = I+fii炉(T+.5)2,then the following are true. 

(1) If p 2（贔，］）， then
1 | ｛入 ElFP: A入(p)E [1 -x(T, 5), 1]} I 
x(T,6)． p > T. 
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(2) If p 2:（贔，応）， then
1 | ｛入 E恥： A入(p)E [-1, -1十x(T,6)]} I 
x(T,6)． p > T. 

凡rthermore,the lower bound on p is minimal when 6 = V167r2匹＋14,r 

V1600召＋1Example. Suppose that T = 10 and 6 = ~- Corollary 1.6 gives that if p 2: 3.45 x 1014 is 4,r 

a prime and x = 0.00006..., then we have 

1 I ｛入€恥：ふ(p) E [1 -x, 1]} I 
> 10. 

X p 

As these results are explained in [18] and [20], here we only outline (without proof) the main 
tools required to obtain Theorems 1.1 and 1.3. The proof of Theorem 1.5 is a significant technical 
refinement to Theorem 1.3, and we invite the reader to read [20] for the details of its proof. 
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Leg 
2. THE 2Fi（砧 ANDTHE ARITHMETIC OF E入

2.1. Facts about Legendre normal forms. Here we recall important facts about the 2Fi（入）q
values as traces of Frobenius (1.3) of the Legendre normal form elliptic curves E『[

Theorem 2.1 (Th. 11.10 of [17]). If 入€恥＼ ｛0, 1} and char(lF砂2:5, then 

q· 出（以＝ー¢(-l)a~eg(q).

Remark. Theorem 2.1 is analogous to Gauss'classical hypergeometric formula for the real period 

QLeg（入） ofEげ (forexample, see Chapter 9 of [13]), where for 0く入 <1we have 
1 1 

1r • 2Fi (½ t I入）＝ QLeg（入）．
By Theorem 2.1, the distribution of the hypergeometric values reduces to a study of family the 
Eteg_ We now recall important facts about these curves. 

p ropos北ion2.2 (Proposition 1.7, Chapter III of [22]). Let K be a field with char(K) =/ 2, 3. 
(1) Every elliptic curve E / K is isomorphic over衣 toan elliptic curve Eteg. 

(2) If入＃ 0,1, then the j-invariant of Eteg is 

j(Eteg) = 2s. 
閃—入＋ 1)3

炉（入— 1)2.

(3) The only入forwhich j (Eteg) = 1 728 are入＝ 2,-1, and 1/2. 
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(4) The only入forwhich j(Eteg) = 0 are入＝ 1士p.
(5) For eve内 jr/: {O, 1728}, the map K ¥ {O, 1}→j(Eteg) is six to one. In particular, we have 

｛入， ½,1- 入＇ 1 ]入’入〉 l'入:l }→j(Eteg) 
Since elliptic curves defined over lF q with the same j-invariant are not necessarily isomorphic 
over 1Fq, we must consider their twists. We only require the standard notion of a quadratic twist. 
If d E凡＼｛0, 1 }, and Eis given by 

E: 炉＝企＋a2丑＋四x+aか

then its quadratic twist加 isgiven by1 

恥： y2= d企＋da2叶＋da砂＋da6・ 

If d is a square in 1Fq, then Ed is isomorphic to E over 1Fq. Moreover, if p is a prime of good 
reduction for品 (andhence also E), we have that 

(2.1) q + l -IE(lFq)I = <j;(d) (q + 1 -IEd(lFq)I). 

The next result characterizes the quadratic twists of Legendre curves with common j-invariant. 

p roposition 2.3 (Prop. 3.2 of [1]). For入E1Fq ¥ {O, 1}, the following holds. 

(1) Eteg is the入quadratictwist of E~7f 1／入・
(2) Eteg is the -1 quadratic twist of Eは．
(3) Eteg is the l —入 quadratic twist of E~;~ 

入／（入— 1).

(4) Eteg is the —入 quadratic twist of E~;~ （入— 1)/A・ 

(5) Eteg is the 入— 1 quadratic twist of E~7~ 
1/(1 —入）・

By Theorem 2.1, we can reformulate the moments of the氾 functionsas sums over Legendre 
normal form elliptic curves. As we shall see, this requires dividing these curves into isomorphism 
classes over 1Fq. To this end, for入E均＼｛0, 1 }, we define 

(2.2) L（入） ：＝ ｛9 E恥＼｛0, 1} : E~eg 五 Eげ｝．

The following three lemmas determine IL（入）1-The first concerns j r/: { 0, 1 728}. 

Lemma 2.4. If j(Eりr/:{O, 1728}, then 

3 if q三 3 (mod 4) 

IL(入)|＝{6 dq三 1 (mod 4)入and1 入->. are both squares in lF q 
4 if q三 1 (mod 4), either入or1 —入 is a square in lF q 

2 if q三 1 (mod 4), neither入norl —入 is a square in lF q ・ 

For j = 1728, we have the following lemma. 

Lemma 2.5. Suppose that Eteg /lFq has j(E『り＝ 1728.
(1) If q三 3(mod 4), then a~eg(q) = 0. 
(2) If q三 1(mod 8), then L(2) = {-1, 2, 1/2}. 
(3) If q三 5(mod 8), then L(2) = { -1, 2} and L(l/2) = {1/2}. 

We note that this choice is equivalent to the usual convention where one has Ed : dy2 =企＋a2呼＋叩＋a6•
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For j = 0, we have the following lemma. 

Lemma 2.6. Suppose Eteg/lFq has j(Eけ） ＝0. 
{ 1) There are no such Eteg when q三 2(mod 3). 

{2) If q = l (mod 12), then IL (~土汀） I= 2, and~土[

{3) If q三 7(mod 12), then IL(~土戸） I= 1, and~士←

are squares in lFq. 

are both not squares in lF 

To obtain the power moments of the 2Fi hypergeometric functions, we make use of the fact 
that Z2 x Z2 <;;: Eteg (JF q) and the fact that certain Hurwitz class numbers enumerate isomorphism 
classes of elliptic curves with prescribed subgroups and fixed Frobenius traces. 

Lemma 2.7. If q = 3 (mod 4), and E/lFq is an elliptic curve for which Z2 x Z2 <;;: E（恥）， then
E is isomorphic to a Legendre normal form elliptic curve over lFq. 

As this lemma indicates, if q = 3 (mod 4), then every E／凡 withZ2 x Z2こE(lFq)is 
isomorphic over lFq to a Legendre normal form curve. Unfortunately, this is not the case when 
q三 1(mod 4), and we call those E without such isomorphic Legendre forms inconvenient. 

Lemma 2.8. Suppose that q二 1(mod 4) and that E/lFq is inconvenient. 

{1) We have that IE(lF砂I圭0(mod 8). 
{2) There is a入ElFq ¥ {O, 1} and d E lFq, where d rf. lF~, such that Z4 x Z4こE『立） and
Ed竺 Etegover lFq. 

{3) The phenomenon in {2) induces a bijection between lFq―isomorphism classes of inconvenient 
curves and those classes for which Z4 x Z4 is a subgroup of lF q―rational points. 

We conclude with a classification of those Legendre normal form with Z4 x Z4 <;;: Eteg(JF孔

Lemma 2.9. Suppose that q三 1(mod 4) and入ElFq ¥ {O, 1}. Then we have that Z4 x Z4こ
E『訊） ifand only if入andl —入 are both squares in lFq. 

2.2. Isomorphism classes of elliptic curves with prescribed subgroups. We have refor-
mulated the moments as sums over isomorphism classes of elliptic curves for which Z2 x Z2こ
E(lFq), and so we seek formulas for the number of such classes. These numbers are known due 
to work of Schoof [21], and they involve Hurwitz class numbers. 
We make this precise. If -D < 0 such that -D 三 0,1 (mod 4), then denote by 0(-D) the 
unique imaginary quadratic order with discriminant -D. Let h(D) = h(O(-D)) denote2 the 
order of the class group of 0(-D) and let w(D) = w(O(-D)) denote half the number of roots 
of unity in 0(-D). Furthermore, define 

(2.3) H(D)：＝ L h(O') and 
0こ〇’こOm訟

H*(D)：＝こ h(CJ') 

0こ〇’こOm訟
w(CJ')' 

where the sum is over all orders O'between O and the maximal order Omax・ The following 
theorem of Schoof [21] gives the results we require. 

Theorem 2.10 (Section 4 of [21]). If p 2 5 is prime, and q = pr, then the following are true. 
(1) If n 2 2 ands is a nonzero integer for which pis and s2 =J 4q, then there are no elliptic 
curves E /JF q with IE (JF』=q+ 1 -s and Zn x Zn<;;; E(lF孔

2We note that H(D) = H*(D) = h(D) = 0 whenever -Dis neither zero nor a negative discriminant. 
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(2) If r is even ands=土2pr/2,then the number of isomorphism classes of elliptic curves over 
凡withZ2 x Z2 ~ E(lFq) and IE(lFq)I = q + l -s is 

(2.4) S(p)：＝立 (p+6-4（~)—臼）），
where (:;;) is the Legendre symbol. 

(3) Su;;ose that n-ands a~e integers such that s2 ~ 4q, pf s,忙|（q + l -s), and n I (q -1). 
Then the number of isomorphism classes of elliptic curves over 1Fq with IE（恥）I=q+ l-s and 

勘 xZn~ E(lFq) is H (¥). 
2.3. Formulas for 2凡 moments.We have the following expressions for the power moments. 

p roposition 2.11. Suppose that p 2': 5 is prime. If r and m are positive integers, then the 
following are true for q = p八wherein each summation we have that -2汲~ s ~ 2.jq. 
(1) If r is odd and m is even. then we have 

心 E（入）？＝ 1 ＋ 3Sーミ： 4） H•(4q; S2)如
(2) If r and m are both even, then there is a rational number C(q) E [O, 6] for which 

qm b2F1（入）';= 1 + C(q)S(p) ・ qmf2 + 3 __ J~, H* (¥)炉．
叫 gcdt;;=l ¥ 4 

B=q+l (mod 4) 

(3) If q三 3(mod 4) and m is odd, then we have qm ~氾（入）'; = 1. 
入EIFq

(4) If q三 1(mod 4) and m is odd, then there is a rational number D(q) E [-6, 6] for which 

qm区2E（入）T
入EIFq

= -1-2 L 
gcd(s,p)=l 

H*(~) 炉-4 こgcd(s,p)=l H*(~) 炉 -D(q)S(p)qm/2_
S三q+l (mod 8) S三q+l (mod 16) 

Remark. The rational number C(q) is the average number of Legendre form curves in an 凡—
isomorphism class with aLeg(q)入＝土2-pr/2.Similarly, D(q) is the average number of such curves 

in an isomorphism class with a~eg(q) = 2pr/2 minus the average number with a~eg(q) = -2pr/2. 

3. THE占（以 ANDTHE ARITHMETIC OF Ef1 

Here we recall important facts about the占（入）qvalues, which are related to the squares of 
the trace of Frobenius for the Clausen elliptic curves Ef1 defined by 

(3.1) 巧：炉＝（X - 1)（丑＋入）．

Theorem 3.1 (Th. 5 of [16]). If入EFq ¥ {0,-1}, char(Fq) 2 5 and a~1(q) := q + 1-IEf'(Fq)I, 
then we have 

q+q%（入＋1)・ 3F2( 入 ~)q= 心(q)2.
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Remark. Theorem 3.1 has a counterpart in terms of classical hypergeometric functions. For 
〇＜入 <1,if印（入） isthe real period of E巳thenMcCarthy [14] proved that 

叫½ r r I>..：』＝0的（入）2
3.1. Certain moments of traces of Frobenius of the Clausen elliptic curves. The goal 
of this subsection is to obtain two types of power moments for the Clausen curves. To this end, 
we first fix some notation. We let C denote a generic isomorphism class of elliptic curves over 
均 wherethroughout p 2 5 is prime and q = pr, where r is a fixed positive integer. We let五
denote the set of all isomorphism classes of elliptic curves over lF'q, and define 

(3.2) I(s, q) := {CE石： VEECwehavelE(lF'q)l=q+l土s}'

(3.3) I2(s, q) := {C E I(s, q) : VEE C we have E（凡）［2]竺 Z2x Z2}, 

where O < s::; 2汲 iseven. We recall that the size of I(s, q) is given by Theorem 2.10 as 

|I(s, q)| ＝ ｛冒：）—茫） ：冒：4q and r is even 
゜

otherwise 

where S(p) is given by (2.4). 
For even O < s ::; 2,/(J, we let 

(3.4) L(s, q) =｛入 E凡＼｛0, -1}：忍(q)＝士s}.

The following proposition gives the moments that will simplify later calculations. 

Proposition 3.2. If O < sさ2v7Jis even, 1/3, -1/9 rf_ L(s, q), and IE（凡）Irf-{q + 1士s}for 
any elliptic cu切 eE／凡 withj(E) = 1728, then the following is true. 
{1) If n is a positive integer, then 

入EIF苔＿l}a罰q)2n= s2n. G ・ II(s, q)I + II2(s, q)I) 
忍(q)＝士s

(2) If n is a positive integer, then 

叫苫 l}い）心(q色＝ s2n・ (-~ ・ II(s, q)I + 2 ・ II2(s, q)I) 

忍(q)＝士s

The discussion above also provides the following critical bound for IL(s, q) I-

Proposition 3.3. If O < s :S 2⑳ is even, then we have IL(s, q)I :S 3-max {H(4q —茫）， S(p),2}. 
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4. HARMONIC MAASS FORMS AND WEIGHTED SUMS OF FOURIER COEFFICIENTS 

The weighted sums of class numbers above arise naturally in the theory of harmonic Maass 
forms (for background, see [4]). The connection with harmonic Maass forms stems from the 
following well-known theorem about Zagier's weight 3/2 nonholomorphic Eisenstein series. 

Theorem 4.1 ([23]). The function 

00 00 
1 

1-l(T) =--＋L H*(n)q; + ~ + 1 1 Lnr( 1 2 
12 8八厄 4[  2' 

• 47rn y)q―n, 
n=l vu • n=l 

where T = x + iy E lHI and佑：＝ e21riT,is a weight 3/2 harmonic Maass form on「o(4).

This theorem asserts that the generating function for Hurwitz class numbers 3 is the holo-
morphic part of the harmonic Maass form 1-l(T). More generally (for example, see Lemma 4.3 of 
[4]), every weight kヂ1harmonic weak Maass form f (T) has a Fourier expansion of the form 

(41ry)l-k 
(4.1) f(T) = j+(T) + ~c1(0) + f―(T), 

k-l 

where 

(4.2) 『（T)＝文 c1(n)q; and f―(T) = f位）nk-lr(l -k; 41rlnly)q;n. 
n=mo n=no 

n#O 

Here r(a; X) := J,,,00 e―ttx-1dt is the us叫 incompleteGamma-function. The function j+ (T) is 
called the holomorphic part of f. 
Our weighted sums of class numbers appear in the coefficients of certain families of nonholo-
morphic modular forms. These forms are constructed from Zagier's 1-l(T) via the Rankin-Cohen 
bracket operators, which are combinatorial expressions in derivatives of pairs of modular forms. 

4.1. Families of modular forms obtained from Rankin-Cohen brackets. To make this 
precise, let f and g be smooth functions defined on the upper-half of the complex plane lHI, and 
let k, l E股＞oand v EN。.Thevth Rankin-Cohen bracket off and g is 
(4.3) [f, 9]v := L (-1r k+v-l¥(l+v-l¥ dr か

(2m)V r+S-V - (s)  （r)戸石g
These operators preserve modularity. 

p roposition 4.2 (Th. 7.1 of [6]). Let f and g be (not necessarily holomorphic) modular forms 
of weights k and l, respectively on a congruence subgroup r. Then the following are true. 
(1) We have that [f, g]11 is modular of weight k + l + 2v on r. 
(2) If"/ E S£2（艮）， thenunder the usual modular slash operator we have 

[f|訂，glnlv= ([f, g]11)lk+1+211'Y• 

Remark. Proposition 4.2 (2) is important for studying the behavior of Rankin-Cohen brackets 
at cusps. It shows that if f and g are smooth functions that do not blow up at any cusp, and 
[f, g]11 vanishes at the cusp ioo, then it vanishes at all other cusps for v > 0. 

3Here we adopt the convention that H*(O) := -1/12. 
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Proposition 4.2 is a procedure for producing many nonholomorphic modular forms from deriva-
tives of a pair of seed forms f and g. We study forms that arise in this way from j(T) := H(T) 
and certain univariate theta functions for g(T). To prove Theorem 1.1 and 1.3, we make use of 
canonical holomorphic modular forms that have coefficients with the same asymptotic properties 
as [f, g]v-These forms are obtained by the method of holomorphic projection. 
To make this precise, suppose f : lHI→C is a (not necessarily holomorphic) modular form of 
weight k 2: 2 on a congruence subgroup r with Fourier expansion 

j(T) = L州n,y)q~尺
nEZ 

where T = x + iy. Let {r;,1,...,立｝ bethe cusps of r, where r;,1 := ioo. Moreover, for each j let 
乃 ESL亭） satisfy1凸＝ioo.Then suppose the following are true. 
(1) There is an E > 0 and a constant c~) EC for which 

f (1;1w) (~ r/2 = C炉＋O(Im(w))-",

for all j = 1,..., M and w =危
(2) For n > 0, we have c1(n, y) = O(y2-k) as y→0. Then, the holomorphic projection off is 

00 

(4.4) (1rhod)(T) := Co 十 Lc(n)q~叫
n=l 

(1) 
where c0 = c。andfor n 2: 1 

(41rn)k-1 roo 
c(n) ＝ J町(n,y)e―4,rnyyk-2 
(k -2)! 。 y dy. 

The following proposition explains the important role of the projection operator. 

p roposition 4.3 (Prop. 10.2 of [4]). Assuming the hypotheses above, if k > 2 (resp. k = 2), 
then 7fhoz(f) is a weight k holomorphic modular form (resp. weight 2 quasimodular form) on r. 
Turning to the setting we consider, suppose that f is a harmonic Ma邸 sform of weight k E昇
on「0(N)with manageable growth at the cusps, and that g is a holomorphic modular form of 
weight l on r 0(N). Moreover, suppose that [f, g]v satisfies the hypothesis in the definition of holo— 
morphic projection. By additivity, the holomorphic modular form obtained by Proposition 4.3 
has the following convenient decomposition 

由）1-k
(4.5)'ifhol([J, g]v) = [j+, g],, + ~Cf (0)1rhol([y1-¥ g]v) +'ifhol([J―,g],,). 

k-1 

For our applications, the weighted class number sums will arise from the first summand [J+, g]v 
of (4.5), when g(r) is a univariate theta function, and f(r) = 1i(r). This term [1i,g]v clearly 
involves weighted sums of class numbers via Theorem 4.1. The other two summands in (4.5) 
must be bounded for our applications. 

5. BOUNDS FOR WEIGHTED SUMS OF CLASS NUMBERS 

Here we state the required asymptotics for the weighted sums of cl邸 snumbers that lead to 
the proofs of Theorems 1.1 and 1.3. The proofs of these asymptotics rely on standard bounds 
for class numbers and coefficients of cusp forms, and the results of Section 4. 
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5.1. Some Standard Bounds. Here we recall class numbers bounds, and the celebrated the-
orem of Deligne which bounds the coefficients of integer weight cusp forms. 

Lemma 5.1. The following are true. 

(1) If -D < 0 is a discriminant, then we have H*(D) <:::⑰(logD + 2)/1r. 
(2) For fixed positive integers r and m, as the primes p→十oo,we have 

互TH*(4pr4-s2)炉＝ ％，r(Pr(m/2+1)), 
where印：＝ ｛s E [-2凶冗2凶］ ：p Is ands＝が＋ 1(mod 4)}. 

Theorem 5.2 (Remark 9.3.15 of [7]). If f = L a(n)q; is a cusp form of integer weight k on 
n21 

a congruence subgroup, then for alls> 0 we have a(n) = 00(nCk-l)/2+0). 

5.2. Asymptotics for weighted sums of class numbers. Using the results from the pre-
vious two sections (i.e. Rankin-Cohen brackets, combinatorial identities, class number bounds, 
Deligne's Theorem, and holomorphic projection), one can derive the asymptotic formulas which 
are crucial for the proof of Theorem 1. 1. A large portion of [18] is devoted to the proof of the 
following three lemmas along these lines. 

Lemma 5.3. If n is a nonnegative integer, then 

3s-q+1尺。d4)H*(¥)茫＝が（~. qn+l + On(qn+l) 
Lemma 5.4. If m is a positive odd integer, then the following are true. 
(1) As q→oo with q三 1(mod 4), we have 

ど H*(4q ; S2)炉＝ ％（qm/2+1). 

B=q+l (mod 8) 

(2) As q→oo with q三 1(mod 4), we have 

ど H*(4q1-6S2)炉＝％（qm/2+1). 

s=q+l (mod 16) 

Lemma 5.5. If n is a nonnegative integer, then as q→ +oo we have 
4 (2n)! L H*(4q —討）茫＝ー・ qn+l + On(qn+l). 
3 n!(n + 1)! 

s even 

6. SOME DISTRIBUTIONS 

To obtain Corollaries 1.2 and 1.4, we will combine Theorem 1.1 and 1.3 with the following 
lemma concerning the semicircular and Batman distributions. To make this precise, we first let 
IP'denote the set of primes, and fix a positive integer r. For each prime p E IP', we have a function 

fp : JFP"→[-1, 1]. 
In this notation, we have the following important lemma. 
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Lemma 6.1. If r is a fixed positive integer, then the following are true. 
(1) Suppose that the following asymptotics hold for every positive integer m : 

とい）m={~+om,r(l) :~::;:d 炉~ + Om,r(l) if if m = 2n is even. 
入EIFpr

If-l'.Sa< bさl,then 

｝四 1｛入 ElFび がい） E ［a,b]｝ | ＝主［v'f=t2dt
(2) Suppose that the following asymptotics hold for every positive integer m : 

互い）m＝ {°11)）で）三＋Om,,(1)

if mis odd 

if mis even. 

If-1さa<b::;; 1, then 

lim 
| ｛入 E均：い） E[a, bl} I 3 rb 

P→oo pr =石1"J(t)dt, 
where 

3-3lt1 

f(l)＝｛ニロ if ½ < ltl < 1 

if ltl < ½ 
othe加 ise.

7. PROOFS OF THEOREMS 1.1 AND 1.3 AND COROLLARIES 1.2 AND 1.4 

We now prove Theorems 1.1 and 1.3, and their corollaries. 

Proof of Theorem 1.1. Proposition 2.11 gives a formula for the power moments of the values of 
the hypergeometric functions 2Fi（入）qin terms of weighted sums of class numbers. Lemma 5.1 
(2) reduces the statement to Lemmas 5.3 and 5.4, thereby concluding the proof. ロ

Proof of Corollary 1.2. After rescaling, the claim follows from Theorem 1.1 and Lemma 6.1 (1). 

ロ

Proof of Theorem 1.3. By Proposition 3.2 and Lemma 5.1 (2), we have that 

区忍(pr杓＝
(2n)! 

入EIFpr
n!(n + 1)! 

. prn+r + On (prn+r) and 区り（一入）忍(p予＝％（prn+r), 
入EIFpr

for all positive integers n. Since 3F2(/3）q = ¢(-/3）3F2(l//3）q for all/3E lF; (see Theorem 4.2 of 
[12]), Theorem 3.1 gives us that 

¢（入＋1）忍(q)2= ¢（入＋l)a竺い(q)2.
Applying the binomial theorem to the equation in Theorem 3.1 concludes the proof. ロ

Proof of Corollary 1.4-After rescaling, the claim follows from Theorem 1.3 and Lemma 6.1 (2). 

ロ
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