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RECENT DEVELOPMENTS IN THE THEORY OF MULTIPLE 

ZETA VALUES IN POSITIVE CHARACTERISTIC 

TUAN NGO DAC 

ABSTRACT. Thakur introduced MZV's in positive characteristic as analogues 
of the classical multiple zeta values of Euler. This manuscript reports our 
recent results on these values in [33, 34, 38]. 
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1. CLASSICAL MULTIPLE ZETA VALUES 

1.1. Multiple zeta values of Euler. 

Throughout this text, let N = {1, 2,... } be the set of positive integers and 
z::>o = {O, 1, 2,... } be the set of non-negative integers. The multiple zeta values 
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(MZV's for short) studied by Euler some centuries ago are the following convergent 
senes 

知 1,...心）＝区 1 

0＜柘く・・・<KR
砕...k庄

where ni are positive integers with ni ~ 1 and nr ~ 2. Here r is called the depth 
and w := n1 +・・・十nris called the weight of the presentationく(n1,...，加）． When
r = 1, we recover the zeta values 

く（）
1 

n) = L "'0,'where n EN and n ~ 2, 
k>O 

which were studied well before Riemann studied them as a functionく(s)of a com-
plex variable s, and its links with the distribution of primes. 

The even zeta values have been extensively studied and are well understood. As 

early as 1735, Euler proved that when n is even,〈（n)is a rational multiple of 1r匹
Since Lindemann's proof of the transcendence of 1r, it has been established that all 
these numbers are transcendental. However, the odd zeta values remain a mystery. 

A folklore conjecture in the field suggests that: 

Conjecture 1.1. The numbers 1r, ((3), ((5),... are all algebraically independent 
over Q. 

As far as our understanding goes, we currently have no knowledge about the 
transcendence of odd zeta values. However, with regards to their irrationality, it 

has been shown thatく(3)is irrational by Apery [5], while Ball-Rivoal [6] showed 
that there are infinitely many irrational numbers among the remaining odd zeta 

values (see [42, 43, 56] for related works). 

1.2. Ihara-Kaneko-Zagier's conjecture. 

1.2.1. A .z.1. An overview. 

Euler showed that the product of two multiple zeta values can be expressed as a 
linear combination, with integral coefficients, of multiple zeta values. An example 

of this is the identity: 

く(m)((n)= ((m,n)＋く(n,m)＋く(m+n)

for all integers m, n ~ 2. The space of multiple zeta values, denoted by Z, is a 
Q-vector space that possesses an algebraic structure due to the previous fact. The 
primary objective of this theory is to comprehend all Q-linear relations that exist 

among multiple zeta values. Unlike the algebraic structure generated by zeta values, 

the space Z has a rich combinatorial structure due to the presence of many linear 
relations among its elements. One effective approach to generating these linear 

relations is through the application of extended double shuffie relations introduced 

by Ihara-Kaneko-Zagier [32]. This process involves defining Hoffman's algebra ~' 
and its subalgebras ~o and ~1, which are endowed with specific algebraic structures. 
Two particular cases of quasi-product algebras introduced by Hoffman, namely the 

stuffie algebra (~1, *) and the shuffie algebra (~, w), are used to construct two 
algebraic structures. By means of regularization [32, §2], zeta maps can be defined, 
which are Q-algebra homomorphisms: 

<* :（h¥＊）→応，
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and 

<w :(h，山）→応，
which give rise to a generalization of the stuffle product and the shuffle product. 

The extended double shuffle relations arise by comparing the stuffle and shuffle 
products on ~1, as detailed in [32, Theorem 2]. Moreover, Ihara, Kaneko, and Zagier 
put forward a significant conjecture known as Ihara-Kaneko-Zagier's conjecture 

(see [32, Conjecture 1]), which states that all Q-linear relations among MZV's can 

be obtained from the extended double shuffle relations. This conjecture implies 
Goncharov's conjecture, which asserts that all Q-linear relations among MZV's can 
be deduced from those among MZV's of the same weight. 

We now give precise details in the rest of this section. 

1.2.2. Quasi-shuffle algebras. 

The quasi-shuffle product, introduced by Hoffman, is a notion we will review. 

It involves a field k and a countable set疋＝ ｛叩｝杞N of letters, each of which is 
assigned a weight w(xi) E N. Tensor products will be taken over k. Additionally, 

for each n EN, we assume that the set知 ofletters with weight n is finite. 

We refer to疋 asan alphabet, and its elements as letters. A word over the 

alphabet疋isa finite sequence of letters, and we denote the empty word by 1. The 
depth of a word a is the number of letters in a, with depth(l) = 0. The weight of 
a word a is the sum of the weights of its letters, denoted by w(a). 

The set of all words over疋isdenoted by〈王〉． Wedefine the concatenation 
product on〈王〉 asfollows: for any words a = Xi,... Xin and b = Xj,... Xjm'we 
have 

ll・ b = Xれ•.． Xin”れ•.． X加・

We denote by k〈疋〉 (resp.k疋） thek-vector space with〈王〉 (resp.X) as a basis. 
The concatenation product extends to k〈疋〉 bylinearity, so that k〈疋〉 isa graded 
algebra with respect to weight. 

We use the notation au to denote the word obtained by appending a letter a E疋

to a word u E〈王〉． Fora non-empty word a E〈王〉， wecan write a= Xall-, where 
Xa is the first letter of a and a_ is the word obtained from a by removing Xa-

We define茂＝疋 U{O} and introduce a commutative and associative product 

◇ ：疋x疋→疋 whichpreserves the grading. This means that for any a, b, c E箕 we
have: 

• a◇0 = 0. 
• a◇b=b◇a. 
• (a◇b)◇c=a◇(b◇c). 
• Either a◇b = 0 or w(a◇b) = w(a) + w(b). 

We define a new operation denoted by＊◇ on the vector space k〈葛 whichis 
generated by words over the alphabet疋． Thedefinition of◇ is recursive: we set 
1 ＊◇U=U＊◇ 1 = u for any word u, and for any letters a, band any words u, tJ, we 
define 

au＊◇btJ = a(u＊◇btJ) + b(au＊◇tJ)+(a◇b)(u＊◇ tJ), 

where◇is a binary operation on疋． Thisoperation is called the quasi-shuffle product 
associated to◇.A theorem due to Hoffman [26, Theorem 2.1] states that the vector 

space k〈王〉 equippedwith＊◇ is a commutative k-algebra. 
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We also define a coproduct map△ : Kぽ〉→ k〈疋〉Rk〈疋〉 anda counit map 
€ : k〈王〉→ k.The coproduct is defined by 

△(u)＝L a@b, 
ab=u 

where the sum is taken over all pairs of words a and b whose concatenation is equal 

to u. The counit is defined as follows: 

E(U) = { ~ ~[［こ~:e,
for all words u E〈X〉.Hoffmanproved in [26, Theorem 3.1] that k〈文〉 equippedwith 
the multiplication＊◇ and the comultiplication△is a bialgebra. Since both＊◇ and 

△respect the grading, this implies that the bialgebra structure of kぽ〉 isgraded. 

Theorem 1.2. The algebra k〈王〉 withthe*◇-multiplication and△-comultiplication 
is a graded Hopf algebra. Further, it is connected and of finite type. 

Moreover, the antipode S: k〈王〉→ k〈王〉 isgiven explicitly in [26, Theorem 3.2]: 
for any word u = Xi1... Xin we have 

S(u) = L (-l)kxれ•.． Xi31%Xi31+1 •.. Xi31+32 ＊◇・・・＊◇Xい ＋jk_,+1... X叫 ＋3K 
(Jl,・・・,Jk) 

where the sum runs through the set of all partitions (j1,..., j砂ofn. 
For recent developments on quasi-shuffle products, we refer the reader to [27, 29, 

30, 31]. 

1.2.3. The Hoffman algebra, stujfie product and shuffie product. 

In this section we take k = (Q). Let X be the alphabet with two letters x0心1
with weight 1, that means w(x0) = w(x1) = 1. We denote Q = (Ql〈X〉andcall it 
the Hoffman algebra. A word in the alphabet X is said to be positive if it is of the 
form x1u and is said to be admissible if it is of the form x1ux。.Wedenote by酎
(resp. Q0) the subspace of Q spanned by positive words (resp. admissible words). 

For all i E N we put Zi = x心―1.Then w(zi) = i. Let Z be the alphabet 
with letters｛Zi hEN. Then Q 1 = (Ql〈Z〉.Wenow equip the alphabet Z with the 
commutative and associative product◇ :ZxZ→Z given by 

Zi◇Zj = Zi+j 

for all i,j EN. The associated quasi-product on Q1 = (Ql〈Z〉willbe denoted by * and 
called the stuffie product. A word in酎iscalled admissible if it can be expressed 
as z釘...幻 withse > 1. We note that Qo is the subspace generated by admissible 
words in Q1 and that (Q0, *) is a subalgebra of (Q1, *).Further, the harmonic product 

on MZV's gives rise to a homomorphism of (Qi-algebras 

<* :h° →匝
which sends an admissible word z釘...Zse to the associated zeta value〈(s1,...,sr),
that means 

(*(u *ti)= (*(u)(*(tJ) 

for all words u, tJ E Qo. This map is called the stuffie zeta map. 
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We now recall the shuffle algebra. We endow X with the trivial product◇ : 

XxX→X given by 
a◇b=O 

for all a, b E X. The associated quasi-product on ~ = (Ql〈X〉willbe denoted by山
and called the shuffle product. We see that (~0, 山） and (h1，山） aresubalgebras of 
(h，山）． Theshuffle product on MZV's defines a homomorphism of (Qi-algebras 

<w : h° →屈
which sends an admissible word z釘...Zse to the associated zeta valueく(s1,.．．， Sr)，
that means 

くw(U山 o)= (w(u)(w(tl) 

for all words w, v E ~0. This map is called the shuffle zeta map. 

Using these zeta maps yield the so-called double shuffle relations in the conver-

gent case: for all words u, tJ E ~o, 

(*(u *り） ＝ ＜w(uwo). 

1.2.4. Regularized zeta maps. 

Following Ihara-Kaneko-Zagier [32], we note that the homomorphism of (f)0, *)-
algebrasら： fJO[T]→が whichsends T to z1 is an isomorphism. Further, the 
following homomorphisms of (f)0, 山）—algebras

知： fJo[T]→酎， T→X1, 

五： f)0[T,U]→h, T→X1, U→Xo, 

are isomorphisms. 

Now we define the stuffie regularized zeta map 

(1.1) 

as the composition 

く＊ ：酎→匝

が→ fJo[T]→町[T]→匝

where the first map is c.p:;-1, the second map is induced by the stuffle zeta map and 

the last one is the evaluation at T = 0. Similarly, we define the shuffle regularized 
zeta map 

(1.2) 紐： h→屈

as the composition 

h → ~0[T,U] →屈[T,U] →罠

where the first map is <p計， thesecond map is induced by the shuffle zeta map and 
the last one is the evaluation at T = U = 0. 

In the study of MZV's, Ihara, Kaneko, and Zagier [32] used the maps discussed 
earlier to extend the double shuffle relations among MZV's. They formulated the 

following influential conjecture: 

Conjecture 1.3 (Ihara-Kaneko-Zagier's conjecture). The extended double shuffie 
relations exhaust all Q-linear relations among MZV's. 
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1.2.5. Stuffie Hopf algebra and shuffie Hopf algebra. 

By the work of Hoffman [26] the above algebras can be endowed with a richer 

structure, i.e., that of Hopf algebras. In fact, as a direct consequence of Theorem 1.2, 
we get two Hopf algebras for classical MZV's. 

The first graded Hopf algebra 

H*=(ryl,*) 

comes from the stuffie product. We note that it is related to the algebra of quasi-

symmetric functions over k (see [19, 27]). For some applications of Hopf algebra 

structure, we refer the reader to [27] (see also [36]). 

The second graded Hopf algebra 

Hw =(ry，山）

is the shuffle algebra (see [ 41]). Explicitly, 

• h = Q〈Xo,X1〉.
• The coproduct is given by the shuffle product山．
• The unit is given by the empty word 1. 
• The coproduct△ : h →ry C>9 ry is given by the deconcatenation 

△(u)＝区砂b
ab=u 

for any words u E ry. 

• The counit E : ry→(Q is given by 

E(U) = { ~二二．
• The antipode S: ry→ry is given by 

S(xi1...叫）＝ （ーl)n叫...x紅・

This Hopf algebra and its motivic version introduced by Goncharov [21] lie in 
the heart of the works of Brown [7], Deligne-Goncharov [18] and Terosoma [45] (see 

also [9]). 

1.3. Zagier-Hoffman's conjectures. 

It is remarkable that Zagier [54] and Hoffman [25] were able to guess the dimen-
sion and provide a conjectural explicit basis for the (()!-vector space益， whichis the 
span of MZV's of weight k for k E N. 

Conjecture 1.4 (Zagier's conjecture). We define a Fibonacci-like sequence of in-

tegers dk as follows. Letting d。=1,d1 = 0 and d2 = 1 we define dk = dk-2 + dk-3 
fork 2". 3. Then fork EN we have 

dimiQI益＝ dk・

Conjecture 1.5 (Hoffman's conjecture). The (()!-vector space益 isgenerated by 
the basis consisting of MZV's of weight k of the formく(nい...,nr)withni E {2,3}. 

The question of determining upper bounds for dim砂 kin the conjectures men-
tioned above, which is an algebraic aspect, was resolved using the theory of mixed 
Tate motives by Terasoma [45], Deligne-Goncharov [18], and Brown [7]. 

Theorem 1.6 (Deligne-Goncharov, Terasoma). Fork EN we have dimiQI Zk s; dk. 
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Theorem 1. 7 (Brown). The ())-vector space Zk is generated by MZV's of weight k 

of the formく(n1,...,nr)with ni E {2,3}. 

Indeed, the determination of lower bounds for dimlQI Zk is a major problem in 
the theory of multiple zeta values. While upper bounds have been obtained using 

the theory of mixed Tate motives, lower bounds remain completely out of reach. 

2. MULTIPLE ZETA VALUES IN POSITIVE CHARACTERISTIC 

2.1. Multiple zeta values of Thakur. 

There is a well-known analogy between number fields and function fields (see 

[35, 37, 53]). Inspired by Euler's work on multiple zeta values and that of Carlitz 
[10] on zeta values in positive characteristic, Thakur [50] introduced multiple zeta 
values attached to the affine line over a finite field. Multiple zeta values over function 
fields have been extensively studied in recent years. They share many properties 
with their classical counterparts, and are closely related to certain algebraic varieties 

over finite fields, such as Drinfeld modular varieties. 

We now need to introduce some notations. Let A = lF q[0] be the polynomial ring 
in the variable 0 over a finite field恥 ofq elements of characteristic p > 0. We 
denote by A+ the set of monic polynomials in A. Let K = lFq(0) be the fraction 
field of A equipped with the rational point oo. Let K00 be the completion of K 
at oo. We denote by v00 the discrete valuation on K corresponding to the place 

oo normalized such that v00 (0) = -1, and by I・ I 00 = q―v00 the associated absolute 
value on K. 

In [10] Carlitz introduced the Carlitz zeta values (A(n) for n EN given by 

(A(n)：＝〉
1 
- EK  
砂

CX) 

aEA+ 

which are analogues of classical special zeta values in the function field setting. 
For any tuple of positive integers,s = (s1,..., Sr) E Nr, Thakur [46] defined the 
characteristic p multiple zeta value (MZV for short) (A (,s) or (A (s1,..., Sr) by 

<A(S) ：＝〉
1 

a 
S1 ST E KCX) 
(... ar 

where the sum runs through the set of tuples (a1,..., ar) E A+ with deg a1 > ・ ・ ・ > 
degar. We call r the depth of (A(,s) and w(s)：＝釘＋・・・+sr the weight of (A(,s). We 
note that Carlitz zeta values are exactly depth one MZV's. Thakur [47] showed that 

all the MZV's do not vanish. We refer the reader to [3, 4, 20, 22, 40, 46, 48, 49, 50, 51] 
for more details about these objects. 

Thakur proved that the product of two MZV's is a K-linear combination of 

MZV's and we call it the shuffie product in positive characteristic. As in the classical 

setting, the main goal of the theory is to understand all linear relations over K 
among MZV's. 

2.2. Analogues of Zagier-Hoffman's conjectures. 

In positive characteristic, Thakur in [50, §8] and Todd in [52] formulated ana— 

logues of Zagier-Hoffman's conjectures, which aim to understand all linear relations 
over K among MZV's. 
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Recently, the fourth author provided a solution to these conjectures for small 
weights in [38], using tools from Chen [14], Thakur [49, 50] and Todd [52] as well as 
the theory oft-motives and d叫 motivesof Anderson [1, 8, 24], and the Anderson-
Brownawell-Papanikolas criterion in [2] (see [39, 11, 12] for further development). 
Later, the authors of [33] developed a new approach and were able to solve these 
conjectures for all weights. In particular, they proved Theorem Bin [33]: 

Theorem 2.1 (Zagier's conjecture in positive characteristic). For w EN we denote 
by Zw the K -vector space spanned by the MZV's of weight w. Letting 

d(W) ＝ ｛:W-1 :;［二’<'.q -I, 
2w-l -1 if W = q, 

we put d(w)＝四＝1d(w -i) for w > q. Then for any w EN, we have 
dimK Zw = d(w). 

Theorem 2.2 (Hoffman's conjecture in positive characteristic). We keep the above 
notation. A K -basis for Zw is given by'J w consisting ofくA(s1,---,sr)ofweightw 
with Si :=::; q for 1 ::::; i < r, and Srく q.

The findings of [33] have been extended to alternating multiple zeta values, 
which were introduced by Harada [23]. These values have been studied by several 
mathematicians in the classical setting due to their connections in various contexts. 

Interested readers can refer to [13, 15, 23, 28, 55] for further details. However, there 
is currently no knowledge of any algebraic structures of multiple zeta values in pos-

itive characteristic (see [38, Remark 2.2, Part l]). The proofs of the aforementioned 
theorems use new tools, such as the operations introduced by Todd [52] and the 
fourth author [38], as well as the Anderson-Brownawell-Papanikolas transcendence 
criterion [2]. 

2.3. Algebraic structures of MZV's. 

In [34] we presented a detailed investigation into the algebraic structures of 
MZV's in positive characteristic. This work was motivated by a question raised by 
a referee of [38] and a suggestion made by Deligne [17] in a private letter to Thakur 
in 2017, proposing the existence of a Hopf algebra structure for MZV's in positive 
characteristic. 

We constructed both the Hopf stuffle algebra and the Hopf shuffle algebra in 

positive characteristic, thus solving the conjectures posed by Deligne, Thakur, and 
Shi in their respective works. The results of lac. cit. provide a complete solution to 

the aforementioned questions and conjectures and we hope that it would open new 
perspectives in the study of MZV's in positive characteristic. 

Let us give now more precise statements of our results. 

2.3.1. Composition space. 

We recall a new structure called the composition space It, which is suggested by 
Shuji Yamamoto (see [50, §5.2]). The composition space plays a similar role to the 
Hoffman algebra ~ in the context of MZV's in positive characteristic. We define疋
as a countable set equipped with the weight w(xn) = n and call it an alphabet. The 
elements of疋arecalled letters. Let It = lF q〈疋〉 bethe free lF q-vector space with 
basis〈王〉．
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 2.3.2. Shuffie algebra and shuffie map. 

We define the unit u : lF q→It by sending 1 to the empty word 1. Next we define 
recursively two products on It as lFq-bilinear maps 

◇: C X C ---+ Cand w: C X C ---+ C 

by setting 1◇a=a◇1 = a,1山 a=a山 1= a and 

a◇b = Xa+b(a_ W b_）十〉凶，b叩(xJw (a_ w L)), 
叶 j=a+b

awb=xa(a_山 b)＋叫(a山 b_)+ a◇b, 

for any words a, b Eぽ〉， Herethe coefficients△;,b are given by 

△五＝ ｛〗ー l)a-1 犀）＋（一1）炉1(にi) if (q-1) | i and 0 < i < a+b, 
otherwise. 

We call◇ the diamond product and山 theshuffle product. 

Our first result provides a positive solution to the questions posed in [38, Remark 
2.2, Part 1] and [44, Conjectures 3.2.2 and 3.2.11]. This result is presented in [34, 
Theorem A]. 

Theorem 2.3. The spaces (It，◇） and (It，山） arecommutative lF q-algebras. Further, 
for all words a, b E It we have 

(A(aw b) = (A(a)(A(b). 

If we denote by Z the K -vector space spanned by MZV's, then the homomorphism 

of K-algebras 

Zw: It気 k→2 
a → <A(a) 

is called the shuffie map in positive characteristic. 

2.3.3. Shuffie Hopf algebra. 

We also define recursively a product on It as a lFq-bilinear map 

I>: C X C ---+ C 

by setting l 1> a = a 1> 1 = a and 

al> b = xa(a_ W b) 

for any words a, b E〈X〉.Wecall I> the triangle product. Inspired by the work of 
Shi [44, §3.2.3] we define a coproduct 

△ : C→CRC. 
using I> rather than the concatenation on recursive steps for words with depth > 1. 
The counit E : It→凡 isdefined as follows: 1:(l) = 1 and 1:(u) = 0 otherwise. 
We note that for quasi-shuffle algebras introduced by Hoffman [26] and their 
generalization, the coproduct is roughly speaking the deconcatenation. The co-

product△defined as above is completely different from the deconcatenation and 
involves complicated combinatorics. 

Our second result shows that this construction gives rise to a Hopf algebra struc-
ture of the shuffle algebra (see [34, Theorem Bl). 
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Theorem 2.4. The connected graded bialgebra (It, w, u,△，E) is a connected graded 

Hopf algebra of finite type over 1Fq. 

Next we study the coproduct△for letters in detail and prove some key proper-

ties. As an immediate consequence, we deduce that the coproduct△coincides with 
the coproduct introduced by Shi in [44, §3.2.3] (see [34, Theorem Bl). 

2.3.4. Stujfie algebra and stujfie Hopf algebra. 

The stuffle algebra is easier to define. We introduce the stuffle product in the 

same way as that of (~ 1, *) as above. The * product 

*: C X C ---+ C 

is given by setting 1 * a = a * 1 = a and 

a * b = Xa ((l_ * b)＋叫(a*b_） ＋ %＋b(a_ ＊ b_） 

for any words a, b E〈X〉.Wecall * the stuffle product and see that (It, *) is a 
commutative lF q-algebra. 

Then we define a coproduct△* ： C →It QSl It and a counit E : It→恥 by

ふ(w)＝ど吟 V
UV=W  

and 

1 if w = 0, 
E(w) ={。。therwise,

for any words w Eぽ〉．

We deduce from the work of Hoffman [26] that the stuflle algebra (It,*, u,△戸）
is a connected graded Hopf algebra of finite type over lFq. Using our previous works 

[33, 38] we are able to construct a homomorphism of K-algebras called the stuflle 
map (see [34, Theorem Bl): 

Theorem 2.5. Recall that Z is the K-vector space spanned by MZV's. Then there 

exists a homomorphism of K -algebras 

z*: it気 k→ 2 
called the stujfie map in positive characteristic. 

REFERENCES 

[1] G. Anderson. t-motives. Duke Math. J., 53(2):457-502, 1986. 
[2] G. Anderson, W. D. Brownawell, and M. Papanikolas. Determination of the algebraic relations 
among special r-values in positive characteristic. Ann. of Math. (2), 160(1):237-313, 2004. 
[3] G. Anderson and D. Thakur. Tensor powers of the Carlitz module and zeta values. Ann. of 
Math. (2), 132(1):159-191, 1990. 
[4] G. Anderson and D. Thakur. Multizeta values for lFq[t], their period interpretation, and 
relations between them. Int. Math. Res. Not. IMRN, (11):2038-2055, 2009. 
[5] R. Apery. Irrationalite de (2 et (3. In Asterisque, number 61, pages 11-13. 1979. Luminy 
Conference on Arithmetic. 
[6] K. Ball and T. Rivoal. Irrationalite d'une infinite de valeurs de la fonction zeta aux entiers 
impairs. Invent. Math., 146(1):193-207, 2001. 
[7] F. Brown. Mixed Tate motives over Z. Ann. of Math. (2), 175:949-976, 2012. 



172

IN POSITIVE CHARACTERISTIC 11 

＇ 0. 
numbers to mot,ives. to 

field. Duke Math. J., 

Duke Math. J., 128(2):209 284, 
D. Goss. Basic Structures of function field arithmetic, der Mathe-

Comrrmn. Number Theor;IJ Phys., 

Algebraic combinatorics,だ SU刀ence,

of IRMA Leet. Math. 

1969̀ 



173

12 T。NGO

D.Th叫mr.F11:n,ction field a.rithmcti℃ 

2004み

Math., 

Invent. Math., 119(2):339-369, 

values. Tnt. Math. Not. IMRN, 

Multiple zeta. functions, m11.ltiple polylogarithm.s a.nd 

on Number Theory a.nd its Applica.tions. ¥Vorld 

NJ, 2016. 

N ORMANDIE lJNI¥'ERSIT且じNIVERSIT后DE
:OJ.AS 0RESME (LMNO), UMR 6139, 14000 

Email address: tuan.ngodac@unicaen.fr 

く(9),

J. Theor. Nombres Bordeaux, 

Uspekh-i Mat. Nauk, 

LABORATOIRE DE ivlATHEMATIQじES


