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ABSTRACT 

Shield tunnel segmental linings are critical components of underground transportation 

infrastructures, providing stability and support to tunnel structures. However, they are 

vulnerable to corrosion damage due to exposure to harsh environmental conditions during the 

long-term service period. Corrosion damage in shield tunnel linings can lead to various 

structural issues, including reduced load-bearing capacity, increased vulnerability to collapse, 

and compromised safety for both structures and passengers. By implementing structure health 

monitoring (SHM), engineers can ensure the safety, durability, and economic viability of shield 

tunnels. Real-time monitoring allows for timely interventions, while the insights gained from 

SHM data enable the development of effective corrosion prevention strategies. Ultimately, 

SHM enhances the overall performance and longevity of shield tunnel infrastructure, 

contributing to the sustainable development of transportation and utility systems. As a 

promising nondestructive testing (NDT) technique, the PZT-based active sensing method has 

been extensively applied to many aspects in structure health monitoring. In this paper, this 

method was employed to monitor the corrosion damage of reinforced concrete (RC) tunnel 

lining segments. Due to the fact that in practical situations, tunnel lining segments are both 

subjected to corrosion and external loads simultaneously, the coupling of loading and corrosion 

effects result in more severe damage and deterioration of segments. Therefore, accelerating 

corrosion tests of bended RC lining segments were performed. Firstly, the damage behaviors of 

RC segments were investigated according to corrosion and loading tests. Subsequently, the 

variation of collected stress wave signals of PZT sensors was interpreted primarily based on the 

wavelet packet analysis. The highlight of this study is that a two-dimensional convolutional 

neural network-based (CNN) deep learning (DL) hybrid network was constructed and well 

trained to identify different damage phases from image-based datasets of continuous wavelet 

packet (CWT) spectra. The results well demonstrate the effectiveness and high accuracy of the 

DL model, which facilitates smart monitoring and automatic classification of corrosion damage 

of RC tunnel linings without manual feature extraction. 
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1. INTRODUCTION  

Monitoring of the corrosion damage of reinforced concrete (RC) shield tunnel linings plays a 

pivotal role in ensuring the structural integrity and operational safety of underground 

transportation systems, given that a huge amount of shield tunnels have been extensively 

constructed in many coastal cities in China (He, He, Kang, Huang, Wang and Xu, 2023, He, He, 

Ma, Yang and Kang, 2023). Shield tunnels serve as lifelines for urban infrastructure, facilitating 

the smooth operation of subways, metro networks, and utility conduits. However, these critical 

infrastructures are easily susceptible to the corrosion-induced deterioration in marine corrosive 

environments, which can compromise their long-term performance and stability. Moisture, 

excessive loads, chemical agents, coupled with various environmental factors, can accelerate the 

corrosion process, leading to material degradation and potential structural failures (He,  He, 

Ma, Yang and Xu, 2023). Therefore, effective monitoring of corrosion in shield tunnel 

segmental linings is crucial for early detection, timely intervention, and appropriate 

maintenance. 

Up to now, numbers of advanced approaches have demonstrated the effectiveness and 

reliability in detecting the corrosion damage of RC structures, mainly including the acoustic 

emission (AE) (He, He, Ma, Wang and Huang, 2022, Patil, Karkare and Goyal, 2017, 

Verstrynge, Steen, Vandecruys and Wevers, 2022), digital image correlation (DIC) (Wang, Jin, 

Liu, Chen, Feng and Tang, 2021), X-ray computed tomography (CT) (Steen, Pahlavan, Wevers 

and Verstrynge, 2019), etc. Despite that these methods could provide accurate measurements, 

most of them necessitate bulky and costly data acquisition devices, greatly limiting their 

practical applications. Thus, it is in great demand to develop more applicable sensing techniques. 

In recent years, there has been significant progress in various nondestructive testing (NDT) 

methods applied in the realm of structural health monitoring (SHM). One prominent technique 

is known as the wave propagation-based method, utilizing piezoelectric lead zirconate titanate 

(PZT) smart materials with robust piezoelectric properties. This method leverages both the 

direct and inverse piezoelectric effects and employs at least a pair of PZT transducers to actuate 

and receive stress wave signals through to-be-tested structures. As the excited waves travel 

through the transmission medium, any property changes or damages within the medium will 

influence the wave propagation and energy attenuation characteristics. By using mainstream 

signal processing methods such as the wavelet packet transform and the windowed Fourier 

transform, the accurate damage detection and evaluation of tested structures could be realized. 

This serves as the fundamental principle of the wave propagation method in SHM. Due to its 

real-time, remote, and autonomous monitoring capabilities, along with its cost-effectiveness, 

this method has broadly been applied to many SHM aspects. More impressively, through the 

coordination of latest artificial neural networks in processing stress wave signals, it has great 

potentials to be evolved into a more intelligent sensing technique, which enables automatic 

signal identification and accurate damage assessment (Kong, Ji, Gu, Chen and Yuan, 2022, Yan, 

Liao, Zhang, Zhang, Luo and Zhang, 2022). So far, very rare literature could be found regarding 

the monitoring and assessment of the corrosion damage of RC tunnel linings through the 

integration of the wave propagation method with DL networks. 

The aim of this study is to demonstrate the applicability of the DL-aided wave propagation 

method for monitoring and assessing corrosion damage in reinforced concrete (RC) tunnel 

linings. To achieve this, we conducted a series of experiments, including an accelerated 

corrosion test on a prototype RC segment subjected to sustained loads. We thoroughly 

investigated the deformation characteristics and corrosion-induced cracking behaviors of the 

bended RC segment. Additionally, we analyzed the time-domain stress wave signals and 

continuous wavelet transform (CWT) spectra throughout the accelerated corrosion process. 

Notably, our research introduced a hybrid DL framework designed to automatically identify 

CWT spectra, enabling accurate classification of corrosion damage without the need for manual 

feature extraction. 
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2. EXPERIMENTAL INVESTIGATION  

2.1. Specimen preparation  

The accelerated corrosion test and SHM measurements were performed on a fabricated 

prototype RC segment with the width, thickness and curved length of 1500.0 mm, 350.0 mm 

and 3533.3 mm, respectively. The detailed geometric parameters and layouts of steel 

reinforcements are exhibited in Figure 1. In addition, ordinary Portland cement, fine sands, 

gravels with a maximum aggregate size of 30.0 mm were evenly blended with pure water and 

water reducer to cast the concrete. The water to cement ratio is controlled at 0.40, and the 

specific proportions of concrete mixtures are listed in Table 1. The compressive and tensile 

strengths of concrete are 41.6 MPa and 2.85 MPa, respectively. Moreover, different steel grades 

were selected for longitudinal steel bars and stirrup, the main mechanical properties are given in 

Table 2.  

 

Figure 1 Design of the bended RC tunnel lining segment. 

Table 1 Concrete mix proportion(kg/m3). 

w/c ratio cement fine sand gravel water reducer water 

0.40 325 677 1167 6.3 130 

Table 2 Material properties of reinforcements. 

category type 
diameter  

(mm) 

yield strength  

(MPa) 

tensile strength  

(MPa) 

longitudinal HRB400 22 400 540 

stirrup HPB300 12 300 420 

2.2. Experiment setup and procedures  

The entire experimental setup is displayed in Figure 2. As is shown, before the initiation of the 

accelerated corrosion of the RC segment, a constant load of 465.0 kN was first applied to both 

ends of the segmental specimen, so as to simulate the practical conditions of axial force and 

bending moment. Later, the electrochemical accelerated corrosion was performed on the RC 

segment via a current-through plastic container filled with 3% sodium chloride (NaCl) solution. 

The rectangular container with a dimension of 800×1500×10 mm was located at the center area 
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of the top surface of the segment. In addition, a stainless-steel mesh immersed in the electrolyte 

served as the cathode, meanwhile two tensile steel rebars embedded in test segmental specimen 

were chosen as the anode. To assure the target corrosive damage of the longitudinal rebars in 

tension zone within a designed period, a constant current of 1.10 A was continuously passed 

through the tensile rebars in the tested segment. In this experiment, the corrosion test lasted 30 

days, and the targeted corrosion damage degree was roughly set to 10%, which could be 

characterized by the average loss of the diameter of the tensile rebars based on the Faraday’s 

second law. Moreover, a displacement gauge was placed at the mid-span bottom of the 

specimen to acquire the load-deformation curve.  

 
Figure 2 Experimental setup. 

For the implementation of the wave propagation-base method, a pair of circular-shaped 

processed PZT patches with a diameter of 10.0 mm and a thickness of 1.0 mm (covered with a 

thin coating of electricity-resistant and waterproof liquid tapes) were epoxy-pasted along the 

center lines within both the side surfaces, 20.0 mm away from the upper surface of the segment. 

The wave propagation measurement was conducted simultaneously with the corrosion test. 

During the measurement, the PZT actuator was excited by an input electric signal to emit a 

sweep sine wave signal, the frequency of which increases linearly from 1.0 to 500.0 kHz in a 

duration of 1.0 s and the amplitude is 10.0 V. Furthermore, the excited signal was amplified 

threefold by a power amplifier. In each test, the sampling rate is controlled at 1.0 MHz and the 

data was repetitively recorded five times. A total of 10 measurements were performed 

throughout the corrosion process. 

3. NEURAL NETWORK ARCHITECTURE  

In this paper, a 2D CNN-BiLSTM hybrid model was developed to detect corrosion damage of 

prototype segment via wave propagation technique, continuous wavelet transform (CWT) and 

DL algorithms. 

For the purpose of establishing the dataset, the following signal preprocessing work was 

carried out. The initial signals were captured through wave propagation technique and further 

augmented by adding Gaussian noise with five SNRs. Subsequently, a common signal time-

frequency conversion method, CWT, was introduced to convert the augmented signals into 

time-frequency spectra, which makes its calculation according to the Eq. (1) below (Zhang, Yan, 

Zhang, Liao and Zhong, 2023): 
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where  𝑥 𝑡  1  is the original signal, 𝑢 1  denotes scale parameter, 𝜏 1  refers to position parameter 

and 𝜓∗ 𝑥  1  signifies complex conjugate of wavelet function 𝜓 𝑥  1  And Morl was chosen to 

serve as the wavelet for CWT. To increase the computational efficiency, the spectra were grayed 

out and saved as a dataset for model training. 

In terms of the 2D CNN-BiLSTM hybrid model, it was designed as the fusion of CNN 

module, BiLSTM module and output layer successively. This model inherited the strengths of 

both CNN and BiLSTM. As the very beginning of the 2D CNN-BiLSTM hybrid model, CNN 

was originally applied as a powerful image recognition network, and the formulas of the 

convolution calculation could be expressed as Eq. (2) and (3) (Liao, Yan, Zhong, Zhang and 

Zhang, 2023): 

 𝑥𝑘
𝑙 =  conv2D(

𝑁

𝑖=1

w𝑖𝑘
𝑙−1 , s𝑖

𝑙−1) + 𝑏𝑘
𝑙  1  (2) 

 𝑦𝑘
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where 𝑥𝑘
𝑙  1  represents the output before activation, w𝑖𝑘

𝑙−1 1  is the filter, s𝑖
𝑙−1 1  refers to the output 

of previous layer, 𝑏𝑘
𝑙  1  signifies the bias, 𝑐𝑜𝑛𝑣2𝐷(. ) 1  denotes 2D convolution, 𝑦𝑘

𝑙  1  is the output 

after activation, 𝑓(𝑥) 1  is defined as activation function. The addition of CNN module could 

provide great machine visualization for the network. Thus, a total of four convolutional layers, 

two max-pooling layers and one flatten layer are set into the network as CNN modules. 

BiLSTM, on the other hand, could provide the network with the ability to efficiently process 

excess data as well as address gradient vanishing. The internal workflow of BiLSTM is 

expressed as the following Eq. (4), (5) and (6): 

 ℎ  𝑡 = 𝑓𝑓 𝑥𝑡 , ℎ  𝑡−1  1  (4) 

 ℎ  𝑡 = 𝑓𝑏 𝑥𝑡 , ℎ  𝑡+1  1  (5) 

 𝑦𝑡 = 𝑊𝑦  ℎ  𝑡 , ℎ   + 𝑏𝑦  1  (6) 

where ℎ  𝑡  1  and ℎ  𝑡  1  represent the outputs of the forward and backward hidden layers, respectively. 

𝑥𝑡  1  denotes the input vector. 𝑓𝑓(∙) 1  and 𝑓𝑏(∙) 1  signify the activation functions in the forward and 

backward directions, respectively.  𝑊𝑦  1  and 𝑏𝑦  1  are the weight and bias matrices, respectively.  
 ,   1  denotes the concatenation of vectors. With the help of BiLSTM module, the network can 

make fuller use of the information from the input data. Hence, 128 BiLSTM cells were added as 

BiLSTM modules in 2D CNN-BiLSTM hybrid model. At the end of the hybrid model, output 

layer was arranged as a fully connected (FC) layer and a Softmax function, which was utilized 

to output the classification of the corrosion damage. The 2D CNN-BiLSTM hybrid model was 

implemented in Python 3.6 language environment with Tensorflow library and Keras API. The 

detailed flowchart and parameters are illustrated in Figure 3 and Table 3, respectively. 

 
Figure 3 Flowchart of the 2D CNN-BiLSTM hybrid model in corrosion damage detection.  
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Table 3 Detailed parameters of the 2D CNN-BiLSTM hybrid model. 

Layer Type Parameter settings 

L1 Conv2D Filters=32, kernel size=3×3, strides=2×2, padding=“same”, activation=“ReLU” 

L2 Conv2D Filters=32, kernel size=3×3, strides=2×2, padding=“same”, activation=“ReLU” 

L3 Max-pooling Kernel size=2×2, strides=1×1, padding=“valid” 

L4 Conv2D Filters=64, kernel size=3×3, strides=1×1, padding=“same”, activation=“ReLU” 

L5 Conv2D Filters=64, kernel size=3×3, strides=1×1, padding=“same”, activation=“ReLU” 

L6 Max-pooling Kernel size=2×2, strides=1×1, padding=“valid” 

L7 Flatten Feature serialization 

L8 BiLSTM Cells=128, merge mode=“concat” 

L9 FC Units=500, dropout rate=0.1, activation = “ReLU” 

L10 FC Units=300, dropout rate=0.1, activation = “ReLU” 

L11 FC Units=3, activation=“Softmax” 

4. NEURAL NETWORK ARCHITECTURE  

4.1. Corrosion damage evolution 

The mid-span deformation of the corroded RC segment is presented in Figure 4. As is shown, 

three stages could be evidently observed, including the acceleration stage, stable stage, and 

uplift stage. Soon after the initiation of the corrosion process, the deformation presents a 

significantly increasing trend, later followed by a roughly constant tendency from 9 to 21 d. 

Subsequently, the curve continues to go upwards with the proceeding corrosion of the steel 

reinforcements. It is known that the cracks along the longitudinal direction are viewed as the 

results from the corrosive swelling within the RC specimen. Thus, to better characterize the 

corrosion damage of the RC segment, the progression of longitudinal cracks within both side 

surfaces was explored, the results are also exhibited in Figure 4. The curve of the corrosion 

crack length also shows three stages, well conforming to the mid-span deformation curve. 

 
Figure 4 Progressive corrosion damage of the bended RC tunnel segment.  

4.2. Signal variation  

The variations of raw time-domain signals and CWT time-frequency spectra throughout the 

corrosion test are given in Figure 5, in which a total number of 10 signals corresponding to 

specified moments are displayed. As is displayed, there are multiple clusters in the original 

stress wave signals. As the corrosion proceeded from t1-t3, the amplitude and energy of the 

signals declined greatly, suggesting the accelerating corrosion damage. Afterwards, the wave 
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signal remains approximately unchanged, which is in good accordance with the stable corrosion 

stage. This is mainly attributed to the phenomenon that the constantly generated corrosion 

products fill in the cracks and prevent them from expansion. Later, as more and more corrosion 

products accumulate, the cracks further grow and propagate due to the swelling effect, which 

greatly impedes the wave propagation through the corroded RC segment. This is also reflected 

from the received stress wave signals, which have very low amplitude and energy. 

 
Figure 5 Variation of stress wave signals and CWT spectra. 

4.3. Model training  

To better train the model, the original data was augmented and Gaussian noise with SNRs of 0, 

5, 10, 15, and 20 were respectively added to each original stress wave signal. As a result, a total 

of 50 × 6 = 300 sets of signals were obtained. Next, the augmented signals were converted into 

time-frequency spectra with single color channel and saved as a dataset. Moreover, the samples 

in the dataset were disrupted and randomly separated into a training set and a testing set, 

following the ratio of 2:1. And the normalization was carried out on every data in the dataset to 

improve the convergence of the training process. 

Subsequently, the training process, containing 30 epochs, was conducted on a computer with 

a CPU of i5-12400F, 2.50GHz, a GPU of GTX 1650S and 16g RAM. The accuracy and loss 

curves of the training process are shown as Figure 6. Overall, the training process did not show 

noticeable overfitting, only exhibiting slight overfitting at the 8th and 13th epochs. The loss of 

training set and validation set basically stopped declining after 18 epochs of training, while both 

of the accuracy curves exceeded 96.30%. And up to the end of model training, the accuracy of 

training set and validation set remained essentially stabilized and finally climbed to 100% and 

99.93%, respectively. It could be obviously indicated that the model was well-trained with high 

accuracy and good convergence. 
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Figure 6 Accuracy and loss curves for training and validation sets. 

4.4. Classification of concrete fiber content  

The testing results of the model are presented in the form of a confusion matrix, as shown in 

Figure 7. Larger values on the diagonal in the confusion matrix indicate higher classification 

accuracy. It was obvious that each case had an extraordinary accuracy with case 2 and case 3 

even achieving 100%. On the whole, the testing process was performed with a considerable 

accuracy, 99.00%. In order to visualize the testing result more intuitively, the t-distributed 

Stochastic Neighbor Embedding (t-SNE) technique was applied to show the testing result of the 

model. Each data in the input layer as well as the FC layer was visualized by spotting in the 

figure, as shown in Figure 8. The result indicated that the signals under different cases were 

clearly distinguished from the initial chaotic distribution. All of the above demonstrated that the 

model had a excellent ability to classify concrete corrosion damage based on stress wave signals. 

 
Figure 7 Confusion matrices of classification results of corrosion damage. 

 
Figure 8 Visualization of feature vectors via the t-SNE: (a) denotes the input layer; (b) denotes 

the FC layer. 



9 

 

To exhibit the superiority of the model introduced in this paper, the comparison analysis of 

the 2D CNN-BiLSTM hybrid model with common ML models and DL models was carried out. 

ML models included decision tree (DT), support vector machine (SVM) and back propagation 

neural network (BPNN) and the power spectrum densities (PSD) calculated at ten frequency 

ranges from original signals were selected as their features. The specific frequency ranges and 

the parameters of the ML models are shown in Table 4 and Table 5. DL models included 2D 

CNN and BiLSTM, and their parameters were just set as the CNN module and BiLSTM module 

from 2D CNN-BiLSTM hybrid model. Through comparative analysis, it could be observed that 

the classification accuracy of DL models was higher than that of ML as a whole. The best-

performing ML model, BPNN, still only achieved accuracy of 83.98%, while the best-

performing DL model, 2D CNN-BiLSTM hybrid model, could reach up to 99.00%, 

approximately 5% higher than that of 2D CNN and BiLSTM. Consequently, it could be 

concluded that the classification performance of 2D CNN-BiLSTM hybrid model is better than 

the ML models, 2D CNN and BiLSTM. 

Table 4 Features extracted based on PSD 

Feature name 1 2 3 4 5 6 7 8 9 10 

Frequency 

band (kHz) 

0- 

30 

30- 

60 

60- 

90 

90- 

120 

120- 

150 

150- 

180 

180- 

210 

210- 

240 

240- 

270 

270- 

300 

Table 5 Parameter settings of comparative ML models 

Methods Parameter settings 

DT Depth of tree=100, minimum sample split=2, minimum sample leaf=1 

SVM 
Kernel function=radial basis function, kernel width=5.5, regularization 

parameter=0.05 

BPNN 

Input layer: neuron number=10, activation= “ReLU”. hidden layer: 

neuron number=128, activation= “ReLU”. output layer: neuron 

number=6, activation= “Softmax”. optimizer= “SGD” 
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Figure 9 Comparison of testing accuracies among different DL and ML models. 

5. CONCLUSIONS  

This paper set out to demonstrate the practicality of the DL-aided wave propagation method for 

monitoring and evaluating corrosion damage in RC tunnel linings. To accomplish this, 

accelerated corrosion experiments were carried out on a prototype segment. Simultaneously, 
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PZT-based wave propagation technique was utilized to the experiment to capture the signal 

response of the segment at different levels of corrosion. By analyzing the crack extension of the 

segment at different periods of corrosion, the corrosion process of the prototype segment was 

divided into three stages, which corresponded well with the captured signals and their time-

frequency spectra. On this basis, this paper also innovatively introduced a 2D CNN-BiLSTM 

hybrid model which could realize to classify the signals under different corrosion stages with 

excellent accuracy of 99% and great convergence. The superiority of the 2D CNN-BiLSTM 

hybrid model was further illustrated by comparing the training results with other common ML 

models (DT, SVM, BPNN) and DL models (2D CNN, BiLSTM). In conclusion, the proposed 

model exhibits a strong capability in classifying the corrosion level of the prototype tunnel 

lining. 
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