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1. INTRODUCTION  

Pavement monitoring is crucial for ensuring safety, economic efficiency, and the longevity 

of infrastructure. By regularly assessing pavement conditions, hazardous issues such as potholes, 

cracks, or uneven surfaces can be identified and addressed promptly, preventing accidents and 

enhancing road safety. Economically, early detection of problems allows for cost-effective 

maintenance, optimizing resource allocation and avoiding expensive major repairs or complete 

reconstructions. This proactive approach significantly extends the lifespan of pavements by 

addressing minor issues before they escalate. It also ensures a smooth and comfortable driving 

experience, reducing vehicle wear and tear and minimizing noise pollution for nearby residents. 

Environmentally, routine monitoring promotes sustainability by reducing the need for extensive 
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ABSTRACT 

Pavement monitoring is essential for ensuring the safety, efficiency, and longevity of 

transportation infrastructure. By regularly assessing pavement conditions, authorities can 

identify hazards such as cracks, rutting and potholes, enabling timely repairs to prevent 

accidents and injuries. Moreover, monitoring allows for the optimization of resources, ensuring 

that maintenance efforts are targeted where they are most needed, thereby extending the lifespan 

of pavements and reducing long-term costs. Non-destructive testing methods valuable data 

without harming the pavement structure, though they may vary in complexity, cost, and the 

depth of information they provide. Imaging technology has been widely applied in pavement 

detection field, there are several types of pavement inspection devices for different pavement 

distress, for example, digital camera to detect the pavement crack, rutting and potholes. This 

study presents the chronological evolution of pavement surface images got by a smartphone 

over a three-year duration. Initially, video footage of the road surface is recorded using a 

smartphone securely affixed to a vehicle's interior windshield at an oblique angle. Given that the 

recorded video is not captured from a top-down perspective, its distortion gives it suboptimal 

for analysis; thus, it is transformed into a bird's-eye view. Subsequently, these images undergo 

sorting and alignment based on GPS segments. However, it is noted that sorting by GPS may 

lack precision due to inherent errors and variations in vehicle speed. Each measurement yields 

its sequence of images, making exhaustive comparison computationally impractical. A method 

for finding potential pairs for each image is developed to solve this. This involves a preliminary 

screening of a select subset of images, which are then matched utilizing AI-based feature 

matching. A stitching procedure is implemented upon identifying the best pairs from two 

distinct measurements. Following this method, variations in pavement surfaces, such as the 

proliferation of crack intersections, enlargement of potholes, emergence of new potholes, or 

instances of repair work, are observed. 
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reconstruction projects that consume considerable resources and energy. The data gathered from 

monitoring aids in informed planning and decision-making, tracking pavement performance, 

and improving construction practices. Moreover, it ensures compliance with regulatory 

standards and maintains the quality of the infrastructure.  

Monitoring pavements involves various methods tailored to assess their condition, 

performance, and structural integrity. Visual inspections conducted by trained personnel remain 

a fundamental approach, allowing for the identification of surface distress such as cracks and 

potholes. Destructive testing methods like coring, plate load testing, and core drilling offer 

accurate insights into pavement properties and structural performance but are invasive, time-

consuming, and may cause pavement damage. Non-destructive testing methods such as ground-

penetrating radar (GPR) (Benedetto (2007)), falling weight deflectometer (FWD) (Mehta 

(2003)), light weight deflectometer (Umashankar (2016)), and visual inspection provide 

valuable data without harming the pavement structure, though they may vary in complexity, cost, 

and the depth of information they provide. GPR and FWD offer comprehensive subsurface data 

but require specialized equipment and expertise, while visual inspection is simple and cost-

effective but may lack depth and subjectivity in the analysis.  

 

In recent years, in-vehicle smartphones have been developed as an alternative for monitoring 

pavement surfaces. Utilizing various sensors such as IMUs, GPS, and components like 

smartphone cameras, indices for monitoring, including IRI, rutting, and potholes, can be 

assessed. The main advantages of using in-vehicle smartphones as an alternative are ease of 

monitoring and data acquisition, cost-effectiveness, and speed, albeit with less accuracy than 

conventional methods. Gao (2023) utilized in-vehicle smartphone images and image processing 

to estimate rut depth. Xue (2020) employed a half-car model and vibrational data from 

smartphones to estimate the IRI. Kyriakou (2019) used inertial data from smartphone sensors 

and ANN to develop a pothole detection model. The frequent availability of data allows for the 

observation of changes in pavement surfaces. 

     

In this study, smartphone imagery obtained from in-vehicle is employed to monitor a 

specific section of pavement over three years. Monitoring is conducted biannually, resulting in a 

total of six measurements. Each measurement yields over 550 images, though the number varies 

between measurements. These images must be efficiently matched with subsequent 

measurements to identify the best matches without excessive time and computational resources. 

This paper presents the various methods and tools utilized to achieve optimal image pairing. 

2. MEASUREMENT SETUP AND PRE-PROCESSING 

To conduct the measurements and obtain the images, two items are required: a car and a 

smartphone. The smartphone is positioned on the windshield, as shown in Figure 1(a). The car 

is then driven over the designated section while recording video of the road surface. The 

recorded video is decomposed into frames to obtain the images. These images are not initially in 

the appropriate perspective for observing chronological changes as seen in Figure 1(b). 

Consequently, they are transformed into a top-view perspective using bird's-eye transformation, 

as illustrated in Figure 1(c). This process is repeated for each measurement conducted. 
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Figure 1 Smartphone positioned on the windshield for measurements. 

3. SEARCHING BEST PAIR MATCH  

After obtaining the bird's-eye view images, it is necessary to match all possible images from 

previous measurements to the current measurement. Two issues arise: a) the number of images 

can vary for each measurement as the starting and ending times are not consistent, and b) even if 

the starting and ending points of the section are recorded accurately, GPS errors cause the 

images to be unsynchronized. Therefore, all images must be included to search for the best 

matching pairs. The details of the measurements conducted are summarized in Table 1. 

 

Table 1 Measurement Details 

 

Measurement  Date Time Smartphone 

1 2021.03.11 17:01 iPhone 12 Pro Max 

2 2021.11.30 13:48 iPhone 13 Pro 

3 2022.03.15 17:02 iPhone 13 Pro 

4 2022.11.25 15:19 iPhone 14 Pro 

5 2023.04.19 16:17 iPhone 13 Pro 

6 2023.11.27 14:56 iPhone 13 Pro 

 

To match the images, an AI-based feature-matching algorithm, LightGlue (2023), is utilized. 

LightGlue is a deep neural network designed for efficient and accurate local features matching 

across images. It improves upon the previous state-of-the-art method, SuperGlue, offering 

greater memory and computational efficiency, as well as enhanced accuracy. It is important to 

note that all measurements were conducted under varying weather and sunlight conditions (refer 

to Figure 2), which may affect matching efficacy. The best match pair is identified by the 

highest number of features matched between two image pairs compared to other pairs. For 

example, Figure 3 demonstrates the comparison and matching of two images from the same 

measurement day and two images from different measurement days. It is evident that same-day 

measurements exhibit more feature matches than measurements from different days. The search 

methods discussed in the below subsections were implemented on Nvidia 1080ti GPU device. 

 

In the following subsections, we detail the various methods employed to obtain the best 

match pairs. 

 

 
 

Figure 2 Factors influencing the matching: weather, lighting conditions, shadows, blurring, 

sun position 
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Figure 3 Comparison between same-day and different days feature matching. 

3.1. All images of past measurement compared with all current measurement images  

This method, while basic, is highly time-consuming for finding the best image pairs. Each 

image from past measurements is compared with every image from the current measurements. 

After identifying the best match, the paired images are stored, and the process is repeated for the 

next image from the past measurements. This continues until all images from past 

measurements have been compared with all images from the current measurements. Figure 4 

illustrates the search process. In this example, the first measurement contains 22 images, and the 

second measurement contains 17 images for the same segment length. Due to GPS errors, the 

images are out of sync, meaning the first image of the first measurement does not correspond 

with the first image of the second measurement. After the search, the image indices from the 

first and second measurements with the highest feature match are stored. For instance, the fourth 

image of the first measurement might match with the first image of the second measurement, 

and so on. This entire search process of comparing 22 images to 17 images took 1 minute and 

43 seconds. We refer this search as basic search. 

 

 
Figure 4 All images of 1st measurement were compared with all images of 2nd measurement.  

3.2. Searching the best pair diagonally 

This search method assumes that the first image from the previous measurement is in the 

vicinity of the first image of the current measurement due to GPS errors. The algorithm searches 

a few images before and after the current image (search window)( Figure 5(b) ), thereby 

avoiding the need to examine all images and saving time and computational power. The best 

match among these few images is recorded. Figure 5 illustrates the implementation of this 

search method with the same example as in Section 3.1. We refer this search method as diagonal 

search. 
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However, this algorithm has critical shortcomings. Since the vehicle speed varied across 

different measurements, the image number offset is not constant throughout the measurements, 

compounded by GPS errors. This results in a drift from the diagonal. Also the size of window 

search is uncertain before search. Additionally, if the search window is not large enough, the 

algorithm may fail to identify the best-matched pair, as shown in the bottom right corner of the 

last plot in Figure 5(c). This entire search process of comparing 22 images to 17 images search 

took 1 minute and 3 seconds. It is also evident that searching within windows (7 images in the 

vicinity) on both sides of the diagonal did not prove useful, further consuming additional time 

and computational resources. This indicates that there is a more efficient method for finding the 

best image pairs. 

 

 
Figure 5 Searching best match pair diagonally.  

3.3. Searching along a most probable best match line 

In this search algorithm, we aim to identify a line that passes through all the best matches, as 

illustrated in Figure 6.a. To establish this line, two points or pivots are required. A pivot is the 

best match image pair at the start or end of a measurement sequence. Specifically, a pivot is the 

sequence number or index of the starting or ending images of the two measurements. Below 

explains the search of the line: 

 

① Search for the best match for 0th index image in 1st measurement in 2nd measurement. 

② Search for the best match for 0th index image in 2nd measurement in 1st measurement. 

③ Register the best match among in step ① and ②. This is the first pivot for the line. 

④ Search for the best match for nth index image in 1st measurement in 2nd measurement. 

⑤ Search for the best match for mth index image in 2nd measurement in 1st measurement. 

⑥ Register the best match among in step ④ and ⑤. This is the second pivot for the 

line. 

⑦ Connecting the two pivots gives the line of best match. 

 

Where n & m are the number of images in 1st and 2nd measurement respectively. 

This search algorithm begins by identifying the two pivots to create a line. One pivot is 

located in the top left corner and the other in the bottom right, as shown in Figure 6(b) & 6(c). 

After identifying the pivots, a line connecting them is drawn (⑦). This line represents the most 

probable best match line. The indices along this line are considered the most probable best 

matches. To enhance robustness, a small search window along the line is implemented, similar 

to the method in Section 3.2. We refer this search as line search. Figure 7 demonstrates the 

completion of the search. Compared to the algorithms described in previous sections, this 

algorithm requires less time and ensures the identification of all best-match pairs. Using the 
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same example as in Section 3.2, this search took only 33 seconds, without missing any best 

match pairs, with a small search window (1 search in the vicinity). 

 

 
Figure 6 Steps for searching the pivots and the line of best match.  

 

 
Figure 7 Searching along the line of best match with a small search window. 

4. RESULTS AND CONCLUSIONS 

After developing the search algorithm, it was implemented on several measurements to extract 

the best pairs for further analysis of chronological changes. An extracted example is shown in 

Figure 8. 

 

 
 

Figure 8 An example of matched pairs and their features. 
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 In the preceding sections, the reduction in search time may not appear significant; however, 

as the number of images in the measurements increases, the time taken to search reduces 

substantially. Table 2 provides a comparison for an example. 

 

Table 2 Time required by the different search techniques. 

 

Measurement size 
Basic 

(s) 

Diagonal search* 

(s) 

Line search** 

(s) 

Time reduced (%) 

(Basic to line search) 

12 x 9 images  31 25 18 41.9 

22 x 26 images 163 69^ 37 77.3 

39 x 32 images 351 101^ 62 82.3 

79 x 89 images 1980 263 134 93.2 

* Window search = 5 images 

** Window search =1 image  

^All image pairs not found 
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