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Deep learning in combination with fluorescence excitation-emission spectroscopy was studied to quantitatively 
analyze vitamin A (retinol) in cattle blood. The neural network model being obtained with the deep learning 
predicted the vitamin-A levels with a coefficient of determination (R2) of 0.93 with respect to the experimental 
values. The combination of the deep learning and fluorescence excitation-emission spectroscopy has a potential 
to predict the vitamin-A level in the cattle blood accurately, rapidly and inexpensively and to improve production 
of marbled beef with maintaining cattle health. It could also be applied to quantitative vitamin-A assays of 
various biological tissues, foods and so on as well as to those of blood samples besides cattle.
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1 INTRODUCTION

Vitamin A (retinol, Figure 1) is a natural retinoid found in 
various biological tissues and foods, and plays a key role 
in vision and growth [1, 2]. Vitamin A is also linked to de-

velopment, maintenance and/or function of most of organ systems 
in a body, and imparts color to our food. Although a variety of ana-
lytical techniques were used for vitamin A in various foods, blood 
samples and so on [3], high-performance liquid chromatographic 
(HPLC) technique has proven to be by far the method of choice [4].

Regulation of vitamin-A level in blood of Japanese black 
cattle “Wagyu” plays an important role in maintaining the status 
of “gourmet food” [5]. Meat of the Japanese black cattle is famous 
for presenting the highest degree of marbling, and they are fed with 
high-starch diets with vitamin-A deprivation to achieve the de-
sired marbling. However, low or deprived vitamin-A diet induces 

multiple negative outcomes such as occurrence of blindness and 
muscular edema, severe hepatic disease and swelling. Accordingly, 
while maintaining cattle health, a minimal blood vitamin-A level 
must be kept to ensure production of the marbled beef, and so Wa-
gyu farmers monitor and regulate the level by outsourcing HPLC 
analysis of the blood sometimes during the fattening period.

However, the outsourcing of the conventional HPLC analysis 
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Figure 1.  Molecular structure of vitamin A (retinol).
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is expensive and time-consuming, which makes regular frequent 
analysis and precise cattle-health management very difficult; the 
outsourcing costs about 4000 yen per one sample, and it usually 
takes one week. As a result, the Wagyu farmers are all eagerly 
looking forward to a new, accurate, rapid and inexpensive analysis-
method of vitamin-A in the cattle blood, but such a convenient 
method is currently absent.

Accordingly, we studied fluorescence excitation-emission 
spectra of cattle whole blood for the quantitative vitamin-A as-
say, and found that fluorescence properties of vitamin A in the 
cattle blood were affected by internal quenching effects caused by 
coexisting species [6, 7]. As a result, we could perform no reli-
able quantitative-analysis by observing the fluorescence intensity 
only at a single pair of the fluorescence excitation and emission 
wavelengths, and we needed to use some multivariate analyses for 
the vitamin-A assay. On the other hand, application of deep learn-
ing with neural network to chemistry is a topic of current interest 
[8, 9], and its rapid spreading is remarkable [10, 11]. Therefore, to 
quantitatively analyze the vitamin-A we have here studied the deep 
learning in combination with the fluorescence excitation-emission 
spectroscopy, and propose a new, accurate, rapid and inexpensive 
method to improve the production of the marbled beef with main-
taining the cattle health. Such a method could also be applied to 
quantitative vitamin-A assays of various biological tissues, foods 
and so on as well as to those of blood samples besides cattle.

2 MATERIALS AND METHODS

Sample cattle used in our study were described in detail else-
where [6, 7] together with our experimental methods. Briefly, a to-
tal of 152 Japanese black Wagyu cattle at Tajima Agricultural High 
School (Yabu, Japan) were evaluated for the blood vitamin-A level 
during their fattening period (7−32 months). This study was carried 
out in strict compliance with the regulation of animal experiments 
at Kyoto University stated in the Guide for the Care and Use of 
Laboratory Animals. The regulation was approved by the Kyoto 
University Animal Experimentation Committee (Permit Number: 
R2-60). All efforts were made to minimize cattle suffering.

The cattle whole-blood sample was collected via jugular veni-
puncture. Within 15 min after the blood collection, the surface 
fluorescence emitted from the blood sample was obtained with a 
spectrofluorometer (JASCO (Hachioji, Japan), FP-8300) [6, 7], and 
an excitation-emission matrix (EEM) [12] was produced. It took 
about five minutes to obtain the EEM. In the EEM, a fluorescence-
intensity contour-map was shown as a function of the excitation 
wavelength (vertical axis) and the emission wavelength (horizontal 
axis). Since the spectrofluorometer, together with the software given 
below, would be shared among agricultural cooperative members 
after industrialization, the financial burden on each farmer would 
not be so heavy. In order to extract the EEM caused by only vita-
min A, from every observed EEM we subtracted the EEM that had 
been obtained from the whole-blood sample containing the lowest 
concentration of vitamin A. Details of this background subtraction 
are given in supplementary material. The experimental vitamin-A 
level in the cattle whole-blood was obtained by outsourcing the 
HPLC analysis to Wadayama Service Center of Hoken Kagaku 

(Asago, Japan).
By using OriginPro 2024b (OriginLab (Northampton, USA)) 

[13], every extracted EEM was fitted with a two-dimensional 
Gaussian function given below.
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(1)

where x and y denote the fluorescence emission and excitation 
wavelengths, respectively. z stands for the fluorescence intensity 
at (x, y) in the EEM. A corresponds to extracted fluorescence peak-
intensity. The emission and excitation wavelengths of the fluores-
cence peak are represented by xc and yc, and the spectral widths 
along the horizontal and vertical axes are represented by w1 and w2, 
respectively. z0 refers to background intensity.

Our deep learning analysis was performed with the holdout 
method [14] using Multi-Sigma Ver. 1 (Aizoth (Tsukuba, Japan)) 
[15]. To clarify key factors influencing prediction of the vitamin-A 
level, sensitivity analysis by means of the partial derivative method 
[16] was made using ensemble predictive models built with Multi-
Sigma. Multi-Sigma performs in-cloud calculation without using a 
high-performance computer and without a need of programming. 
Because Multi-Sigma can achieve data analysis on a dataset as 
small as 20 and can improve accuracy of the prediction even with a 
small amount of sample data, the number of cattle samples could be 
reduced to 152 in our deep learning analysis. This reduction was in 
accordance with the “The Three Rs” guiding principle of replace-
ment, reduction and refinement [17] for appropriately conducting 
animal experiments.

In the current study, the 152 cattle samples were divided into two 
groups. One group consisted of 114 samples and was used for train-
ing and validation. 12 samples randomly selected from the group 
were used for the validation, and the remaining 102 samples were 
used for the training. The second group consisted of 38 samples and 
was used for an independent test. The five feature values obtained 
from the EEM of the cattle blood (A, xc, w1, yc and w2 in equation 
1) constituted the explanatory variables, and the vitamin-A level 
was the objective variable. In Multi-Sigma, preprocessing con-
figuration and predictive models were selected so as to maximize 
the prediction accuracy with maintaining an auto setting for the 
artificial intelligence configuration. It took a few hours to obtain 
the prediction with Multi-Sigma.

For comparison, a similar regression analysis for the prediction 
was performed with random forest algorithm [18] using Python and 
scikit-learn [19]. Random forest is an ensemble learning method 
and consists of multiple tree-like models of decisions (decision 
trees [14]) just as a forest has a lot of trees. Our random-forest 
analysis was performed at the default setting. Variable importance 
in partial least-squares (PLS) regression was evaluated by using 
OriginPro 2024b [13]. In principle, the model fitting with Multi-
Sigma is more efficient than those with PLS and random forest, 
because Multi-Sigma uses a neural network algorithm. Further-
more, since Multi-Sigma tunes hyper-parameters with confirming 
the prediction accuracy for unknown validation data, overfitting to 
the training data is suppressed even in the prediction using a small 
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amount of sample data, whereas PLS and random forest are liable 
to overfitting.

3 RESULTS AND DISCUSSION

Figure 2 shows an example of EEM together with the result of 
the two-dimensional Gaussian fitting explained in the preceding 
section. The fluorescence peak seen in the EEM is thought to come 
from vitamin A contained in the cattle blood [6, 7]. In fact, the xc 
and yc values are similar to the fluorescence emission- and excita-
tion-peak wavelengths of vitamin A (retinol) [20, 21] although the 
yc value shows a small blue-shift.

Figure 3a shows plots of the vitamin-A levels predicted with 
Multi-Sigma as functions of the experimental level. The neural 
network model predicts the vitamin-A levels of the test data with 
a coefficient of determination (R2) of 0.93 with respect to the ex-
perimental values. The R2 value thus estimated for the test data is 
greater than the one (0.91) [6, 7] obtained with PLS regression by 
using MATLAB (MathWorks (Natick, USA)) [22] and PLS_Tool-
box (Eigenvector (Manson, USA)) [23], which need programming 
in contrast to Multi-Sigma requiring no programming. Figure 3b 
shows similar plots produced with the random forest method, and 
the estimated R2 value is 0.91 in the plot for the test data. In each 
of Figures 3a and b, the plot for the training and validation data is 
also shown and the R2 value is greater than that in the plot for the 
corresponding test data.

Thus, by using Multi-Sigma, the prediction accuracy of the vi-
tamin-A level has been improved, and for farmers the analysis has 
become more convenient than the one reported previously [6, 7] 
because of the absence of programming. The prediction accuracy 
obtained by using Multi-Sigma is also higher than the one by the 
random forest method, which again requires programming. Fur-
thermore, the use of EEM is more convenient than the outsourcing 
of the conventional HPLC analysis, because the EEM measurement 

is more rapid and inexpensive than the outsourcing. Therefore, the 
deep learning of EEM has a potential to predict the vitamin-A level 
in the cattle blood accurately, rapidly and inexpensively and to 
improve the production of the marbled beef with maintaining the 

J. Comput. Chem. Jpn. Int. Ed., Vol. 10﻿﻿ (2024) ©2024 Society of Computer Chemistry, Japan

http://dx.doi.org/10.2477/jccjie.2024-0012

Figure 2.  An example of EEM of cattle blood together with two-di-
mensional Gaussian-fitting result. The plot gives a two-dimensional 
Gaussian fit with A of 82±2, xc of 493.9±0.6 nm, w1 of 36.8±0.8 nm, 
yc of 316.7±0.6 nm, w2 of 23.4±0.7 nm and z0 of –2.6±0.6.

Figure 3.  Plots of predicted vitamin-A levels in cattle blood as 
functions of the experimental level. The filled circles and the solid 
line with the same color denote a plot and its linear fit for the test 
data, respectively. The open squares and the broken line with the 
same color refer to those for the training and validation data. The 
intercepts of the linear fits may be caused by the background sub-
traction containing some errors. (a) Multi-Sigma. The plot for the 
test data (strong-orange filled circles) gives a linear fit with R2 of 
0.93, a slope of 0.91±0.04 and an intercept of 5±3 IU/dL (strong-
orange solid line). The plot for the training and validation data 
(light-orange open squares) gives a linear fit with R2 of 0.96, a slope 
of 0.91±0.02 and an intercept of 6±1 IU/dL (light-orange broken 
line). (b) Random forest. The plot for the test data (strong-violet 
filled circles) gives a linear fit with R2 of 0.91, a slope of 0.89±0.05 
and an intercept of 7±3 IU/dL (strong-violet solid line). The plot for 
the training and validation data (light-violet open squares) gives a 
linear fit with R2 of 0.98, a slope of 0.94±0.01 and an intercept of 
4±1 IU/dL (light-violet broken line).
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cattle health.
Table 1 shows contributions of the explanatory variables (A, 

xc, w1, yc and w2 in equation 1) to the predictions performed with 
Multi-Sigma, PLS and random forest. The contribution values in 
Multi-Sigma [15] have been obtained from the sensitivity analysis, 
and those in PLS [13] and random forest [19] correspond to the vari-
able importance and feature importance, respectively. In the results 
from all the prediction methods given in Table 1, the A value (fluo-
rescence peak intensity) shows the greatest contribution among all 
the explanatory variables. In the result of the sensitivity analysis 
made with Multi-Sigma, the positive contribution of the A value 
is much greater than the negative contribution. Accordingly, the 
fluorescence peak intensity is thought to positively correlate with 
the vitamin-A level, which is consistent with our premise that the 
fluorescence comes from vitamin A contained in the cattle blood. 
Since the positive contributions of the xc, w1, yc and w2 values are 
greater than the negative ones, the vitamin-A level would increase 
as the fluorescence emission and excitation show red-shift and 
the spectral widths increase, which is consistent with the results 
obtained previously [6, 7].

In each of the columns of PLS and random forest in Table 1, 
the listed importance values were summed, each of the importance 
values was divided by the summation, and the result was multiplied 
by 100; that is, the importance was represented in the unit of %. The 
value thus obtained was regarded as the normalized contribution of 
the corresponding explanatory variable to the prediction, together 
with the total contribution value estimated and normalized with 
Multi-Sigma (Table 1). Figure 4 shows comparison among these 
normalized contributions obtained with Multi-Sigma, PLS and 
random forest. In random forest (violet bar charts), the prediction 
seems to be basically made on the basis of only the A value, because 
the normalized contribution of A is over 80%. In Multi-Sigma and 
PLS (orange and green bar charts, respectively), the normalized 
contributions of A and yc are much greater than those of the other 
explanatory variables (xc, w1 and w2), and the contributions of A and 
yc in Multi-Sigma are less than those in PLS. In contrast to these 
relatively-great normalized-contributions (A and yc), the contribu-
tions of the explanatory variables xc, w1 and w2 to the predictions 
are relatively-small, and those in Multi-Sigma are greater than, or 
close to, the ones in PLS. These results may suggest that Multi-
Sigma does not overlook even such relatively-small contributions.

4 SUMMARY

The deep learning in combination with the EEM measurement 
was studied to quantitatively analyze vitamin A (retinol) in the 
cattle blood. The neural network model being obtained with the 
deep learning predicted the vitamin-A levels with an R2 of 0.93 
with respect to the experimental values. The deep learning of EEM 
has a potential to predict the vitamin-A level in the cattle blood ac-
curately, rapidly and inexpensively and to improve the production 
of the marbled beef with maintaining the cattle health. Further-
more, this method could also be applied to quantitative vitamin-A 
assays of various biological tissues, foods and so on as well as to 
those of blood samples besides cattle.

5 SUPPLEMENTARY MATERIAL

The method and procedure for extracting the EEM intensity of 
only vitamin A are provided as supplementary material and avail-
able online.

J. Comput. Chem. Jpn. Int. Ed., Vol. 10﻿﻿ (2024) ©2024 Society of Computer Chemistry, Japan

http://dx.doi.org/10.2477/jccjie.2024-0012

Table 1.  Contributions of explanatory variables to predictions performed with Multi-Sigma (result of sensitivity analysis), PLS (vari-
able importance) and random forest (feature importance)

Multi-Sigma PLS Random forest
Total contribution/ % Positive contribution/ % Negative contribution/ % Variable importance Feature importance a

A 32.99 32.38 0.6 1.760 0.8160
xc 18.31 17.42 0.9 0.420 0.0252
w1 9.76 7.03 2.73 0.416 0.0171
yc 24.66 22.24 2.42 1.200 0.1204
w2 14.27 12.54 1.73 0.338 0.0214
a The contribution of explanatory variables to prediction performed with random forest is called feature importance and 

variable importance in scikit-learn [19] and reference [18], respectively.

Figure 4.  Comparison among normalized contributions of ex-
planatory variables to predictions performed with Multi-Sigma, 
PLS and random forest.



5

ACKNOWLEDGMENTS

We express our sincere thanks to Mr. Takahiko Ohmae and Mr. 
Norio Nishiki of Tajima Agricultural High School for their kind 
helps in the evaluation of the vitamin-A level in the cattle blood. 
Our thanks are also due to Dr. Kotaro Kawajiri of Aizoth Inc. 
for providing support to our deep learning analyses. S.N. thanks 
Professor Yasushi Minowa of Kyoto Prefectural University for 
his valuable discussion, and also thanks Mr. Tomohiko Tasaka, 
president of Affinity Science Corp., for his continuous encourage-
ment. This work was partly supported by JSPS KAKENHI Grant 
Numbers 20H00439 and 23H00350.

REFERENCES

	 [1]	 C. P. F. Redfern, Methods Enzymol., 637, 1 (2020). https://
doi.org/10.1016/bs.mie.2020.02.002, PMID:32359642

	 [2]	 B. S. Gebregziabher, H. Gebremeskel, B. Debesa, D. Ayal-
neh, T. Mitiku, T. Wendwessen, et al., J. Agric. Food Res., 
14, 100834 (2023). https://doi.org/10.1016/j.jafr.2023.100834

	 [3]	 E.-S. Tee, C.-L. Lim, Food Chem., 41, 147 (1991). https://doi.
org/10.1016/0308-8146(91)90042-M

	 [4]	 P. V. Bhat, R. R. Sundaresan, Crit. Rev. Anal. Chem., 20, 197 
(1988). https://doi.org/10.1080/00078988808048812

	 [5]	 L. Zhao, X. Liu, N. A. Gomez, Y. Gao, J. S. Son, S. A. Chae, 
et al., J. Anim. Sci. Biotechnol., 14, 2 (2023). https://doi.
org/10.1186/s40104-022-00805-0, PMID:36597116

	 [6]	 M. Shibasaki, T. Suzuki, Y. Saito, M. Fukushima, T. Fujiura, 
T. Ohmae, N. Nishiki, N. Kondo, J. Jpn. Soc. Agric. Ma-
chinery Food Eng., 83, 477 (2021) (in Japanese). https://doi.
org/10.11357/jsamfe.83.6_477

	 [7]	 M. Shibasaki, T. Suzuki, Y. Saito, N. Li, M. Fukushima, 
Y. Ogawa, et al., J. Jpn. Soc. Agric. Machimery Food Eng., 
submitted (in Japanese)

	 [8]	 H. Teramae, T. Matsuo, K. Niwatsukino, R. Inoue, S. Nogu-
chi, M. Xuan, T. Yamashita, J. Takayama, M. Okazaki, T. 
Sakamoto, J. Comput. Chem. Jpn., 19, 43 (2020) (in Japa-
nese). https://doi.org/10.2477/jccj.2020-0005

	 [9]	 H. Teramae, J. Comput. Chem. Jpn., 22, 34 (2023) (in Japa-
nese). https://doi.org/10.2477/jccj.2023-0022

	 [10]	 S. Shilpa, G. Kashyap, R. B. Sunoj, J. Phys. Chem. A, 
127, 8253 (2023). https://doi.org/10.1021/acs.jpca.3c04779, 
PMID:37769193

	 [11]	 B. Debus, H. Parastar, P. Harrington, D. Kirsanov, Trends 
Anal. Chem., 145, 116459 (2021). https://doi.org/10.1016/j.
trac.2021.116459

	[12]	 Y. Tamura, H. Inoue, S. Takemoto, K. Hirano, K. Miyaura, J. 
Fluoresc., 31, 91 (2021). https://doi.org/10.1007/s10895-020-
02640-w, PMID:33094367

	[13]	 OriginPro, 2024b; OriginLab: Northampton, MA, USA, 2024. 
https://www.originlab.com/index.aspx?go=PRODUCTS/
Origin (accessed December 23, 2024).

	 [14]	 I. H. Witten, E. Frank, M. A. Hall, Data Mining, Practical 
Machine Learning Tools and Techniques, 3rd ed.; Elsevier: 
Amsterdam, 2011; (a) Chapter 5. (b) Chapter 3.

	[15]	 Multi-Sigma Ver, 1; Aizoth: Tsukuba, Japan, 2023. https://
aizoth.com/en/service/multi-sigma/ (accessed December 23, 
2024).

	[16]	 M. Gevrey, I. Dimopoulos, S. Lek, Ecol. Modell., 160, 249 
(2003). https://doi.org/10.1016/S0304-3800(02)00257-0

	 [17]	 W. M. S. Russell, R. L. Burch, The Principles of Humane 
Experimental Technique, 1959. https://caat.jhsph.edu/prin-
ciples/the-principles-of-humane-experimental-technique. 
(accessed December 23, 2024).

	 [18]	 L. Breiman, Mach. Learn., 45, 5 (2001). https://doi.
org/10.1023/A:1010933404324

	[19]	 Boritaso. Random Forest, 2024 (in Japanese). https://
boritaso-blog.com/random_forest/ (accessed December 23, 
2024).

	[20]	 S. Futterman, J. Heller, J. Biol. Chem., 247, 5168 (1972). https://
doi.org/10.1016/S0021-9258(19)44953-3, PMID:5066567

	 [21]	 P. A. Peterson, L. Rask, J. Biol. Chem., 246, 7544 (1971). https://
doi.org/10.1016/S0021-9258(19)45809-2, PMID: 5002681

	[22]	 Partial least-squares (PLS) regression in MATLAB; Math-
Works: Natick, MA, USA, 2024. https://jp.mathworks.com/
help/stats/plsregress.html?lang=en (accessed December 23, 
2024).

	[23]	 PLS_Toolbox; Engenvector: Manson, WA, USA, 2024. 
https://jp.mathworks.com/products/connections/product_de-
tail/pls-toolbox.html (accessed December 23, 2024).

J. Comput. Chem. Jpn. Int. Ed., Vol. 10﻿﻿ (2024) ©2024 Society of Computer Chemistry, Japan

http://dx.doi.org/10.2477/jccjie.2024-0012

https://doi.org/10.1016/bs.mie.2020.02.002
https://doi.org/10.1016/bs.mie.2020.02.002
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32359642?dopt=Abstract
https://doi.org/10.1016/j.jafr.2023.100834
https://doi.org/10.1016/0308-8146(91)90042-M
https://doi.org/10.1016/0308-8146(91)90042-M
https://doi.org/10.1080/00078988808048812
https://doi.org/10.1186/s40104-022-00805-0
https://doi.org/10.1186/s40104-022-00805-0
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36597116?dopt=Abstract
https://doi.org/10.11357/jsamfe.83.6_477
https://doi.org/10.11357/jsamfe.83.6_477
https://doi.org/10.2477/jccj.2020-0005
https://doi.org/10.2477/jccj.2023-0022
https://doi.org/10.1021/acs.jpca.3c04779
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37769193?dopt=Abstract
https://doi.org/10.1016/j.trac.2021.116459
https://doi.org/10.1016/j.trac.2021.116459
https://doi.org/10.1007/s10895-020-02640-w
https://doi.org/10.1007/s10895-020-02640-w
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33094367?dopt=Abstract
https://www.originlab.com/index.aspx?go=PRODUCTS/Origin
https://www.originlab.com/index.aspx?go=PRODUCTS/Origin
https://aizoth.com/en/service/multi-sigma/
https://aizoth.com/en/service/multi-sigma/
https://doi.org/10.1016/S0304-3800(02)00257-0
https://caat.jhsph.edu/principles/the-principles-of-humane-experimental-technique
https://caat.jhsph.edu/principles/the-principles-of-humane-experimental-technique
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://boritaso-blog.com/random_forest/
https://boritaso-blog.com/random_forest/
https://doi.org/10.1016/S0021-9258(19)44953-3
https://doi.org/10.1016/S0021-9258(19)44953-3
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=5066567?dopt=Abstract
https://doi.org/10.1016/S0021-9258(19)45809-2
https://doi.org/10.1016/S0021-9258(19)45809-2
https://pubmed.ncbi.nlm.nih.gov/5002681
https://jp.mathworks.com/help/stats/plsregress.html?lang=en
https://jp.mathworks.com/help/stats/plsregress.html?lang=en
https://jp.mathworks.com/products/connections/product_detail/pls-toolbox.html
https://jp.mathworks.com/products/connections/product_detail/pls-toolbox.html

