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1 Introduction and summary

The entanglement entropy has played essential roles in studying the dynamical properties of
quantum field theories, especially conformal field theories (CFTs) [1–6]. Its significance stems
from its ability to quantify the degrees of freedom and provide a non-equilibrium and local
extension of thermal entropy, particularly in scenarios involving non-trivial time evolution,
such as quantum quenches [7–9]. Moreover, the entanglement entropy has a geometric
description in terms of AdS/CFT correspondence [10–12], referred to as the holographic
entanglement entropy [13–15].

Recently, a novel generalization of entanglement entropy called pseudo entropy was
introduced in [16]. As opposed to the entanglement entropy, this quantity is defined for a
pair of quantum states |ψ⟩ and |φ⟩ as follows. First, we introduce the transition matrix:

T ψ|φ := |ψ⟩⟨φ|
⟨φ|ψ⟩ . (1.1)

The reduced transition matrix for subsystem A is given by tracing out the degrees of freedom
in B, the complement of A, from the transition matrix:

T ψ|φ
A := TrB

[
T ψ|φ

]
. (1.2)

The n-th pseudo Rényi entropy S(n)(T ψ|φ
A ) is defined as

S(n)(T ψ|φ
A ) := 1

1− n
logTr[(T ψ|φ

A )n]. (1.3)

We are interested in the n → 1 limit, the pseudo entropy [16]:

S(T ψ|φ
A ) := lim

n→1
S(n)(T ψ|φ

A ) = −Tr[T ψ|φ
A log T ψ|φ

A ]. (1.4)

For cases in which |ψ⟩ = |φ⟩, the pseudo entropy is equal to the entanglement entropy:

S(T ψ|ψ
A ) = S(ρψA), ρψA := TrB

[
ρψ
]
= TrB [|ψ⟩⟨ψ|] . (1.5)

In this sense, the pseudo entropy is a generalization of the entanglement entropy.
A remarkable feature of pseudo entropy is its gravity dual description [16] via AdS/CFT,

which can be viewed as a natural extension of holographic entanglement entropy. The
minimal area in a Euclidean time-dependent asymptotically AdS space, divided by 4GN ,
coincides with the pseudo entropy. Furthermore, this quantity has a peculiar property that
it takes complex values. This is because transition matrices are not hermitian in general
as opposed to density matrices. This property is vital in holography for de Sitter spaces,
or dS/CFT [17, 18]. The holographic entanglement entropy for dS3/CFT2 [19, 20] takes
complex values, as there are no space-like geodesics but only time-like ones that connect
two boundary points. This complex valued entropy should be regarded as a noteworthy
example of pseudo entropy [21–27]. We also encounter such complex-valued pseudo entropy
when considering time-like extensions of entanglement entropy [21, 24, 28–31]. Motivated
by pseudo entropy, a modified quantity called SVD entropy was introduced in [32]. SVD
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X
X1

|JQ(x1,t)〉

|JQ(x1,0)〉

e-iHt

A

ξ

L

Joined

Figure 1. A sketch of the quantum state created by a joining local quench. Initially, the left and
right semi-infinite systems are each in their respective ground states. These are joined at position
x = x1 at time t = 0. The state of the whole system, evolving with the Hamiltonian that acquired
additional interaction terms due to the quench, is the joining quenched state |JQ(x1, t)⟩. For this
state, we calculate the entropy of a subsystem with a center of mass position x = ξ and a length L.

entropy always takes non-negative real values and has an intriguing interpretation in quantum
information theory. However, it lacks its direct gravitational dual.

Moreover, pseudo entropy can be used as an order parameter of quantum phase tran-
sition [33–36]. In particular, the excess of the pseudo entropy above the average of the
entanglement entropy, the entropy excess ∆SA, plays an important role:

∆SA := Re
[
S(T ψ|φ

A )
]
− 1

2S(ρ
ψ
A)−

1
2S(ρ

φ
A). (1.6)

This quantity is always non-positive when |ψ⟩ and |φ⟩ belong to the same quantum phase.
However, it can take positive values when the states are in different quantum phases. For
other properties of pseudo entropy, refer to, e.g., [37–56].

Despite these advancements in understanding pseudo entropy in quantum field theories
and its importance in AdS/CFT, its precise physical interpretation still needs to be clarified.
In this paper, we aim to explore this fundamental question by studying its dynamical
properties, focusing on a class of excited states in two-dimensional CFTs generated through
joining local quenches. Local quenches, in general, are used to describe local excitations
(for classification, see [57]). A joining local quench is triggered by joining two semi-infinite
systems, each hosting a two-dimensional CFT [8], as illustrated in figure 1. The gravity dual
of joining quenches was developed in [58] and later examined in detail in [57]. Joining local
quenches have a crucial technical advantage that allows universal computation of the time
evolution of physical quantities using conformal mapping techniques. This advantageous
feature enables us to calculate the pseudo entropy for both the free Dirac fermion CFT and
the holographic CFT (i.e., a maximally strongly coupled CFT) in this paper (refer to table 1).

The pre-quench total Hamiltonian Hpre is a sum of CFT Hamiltonians on the left and
right CFTs, while the post-quench total Hamiltonian Hpost is the usual CFT Hamiltonian
that includes an additional interaction term between the left and right subsystems:

Hpre = HL ⊗ IR + IL ⊗HR, Hpost = HL ⊗ IR + IL ⊗HR +Hint. (1.7)

– 2 –
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EE in Joining Quench (i) PE in Single-slit (ii) PE in Double-slit
|ψ⟩ |JQ(0, t)⟩ |JQ(0, t)⟩ |JQ(−x1, t)⟩
|φ⟩ |JQ(0, t)⟩ |Ω⟩ |JQ(x1, t)⟩

Table 1. Three setups for entanglement entropy (EE) and pseudo entropy (PE) calculations. We
consider the pseudo entropy S(T ψ|φ

A ) defined from the transition matrix for the two different states,
|ψ⟩ and |φ⟩, in each case.

We are particularly interested in the time evolution, which we refer to as the joining quenched
state, after the joining quench with the ground state of Hpre prepared as the pre-quench
state. The quantum state created by joining two CFTs at x = x1 is represented as

|JQ(x1, t = 0)⟩ = |Ω⟩L ⊗ |Ω⟩R , (1.8)

where |Ω⟩L,R is the ground state of HL,R. Due to the interaction term, this state is not an
eigenstate of Hpost, especially the ground state |Ω⟩, so the joining quenched state is non-trivial:

|JQ(x1, t)⟩ = e−iHpostt |JQ(x1, t = 0)⟩ . (1.9)

We will investigate two distinct setups for pseudo entropy:

(i) Select |ψ⟩ = |JQ(0, t)⟩ and |φ⟩ = |Ω⟩ described by the path integral on a single-slit
geometry in Euclidean path integral (see figure 2).

(ii) Select |ψ⟩ = |JQ(−x1, t)⟩ and |φ⟩ = |JQ(x1, t)⟩ described by the path integral on a
double-slit geometry in Euclidean path integral (see figure 3).

Our primary focus will be on the entropy excess (1.6) and a comparative analysis of its
behavior in the two distinct CFTs. It is worth noting that the evolution of pseudo entropy
for operator local quenches [9, 59–65] has been computed for integrable CFTs in [46, 52, 55].

This paper is organized as follows. Section 2 presents a toy analysis of four-qubit models
that mimic the joining local quenches. In section 3, we review the details of the field-theoretic
analysis of joining local quenches and the calculation of entanglement entropy. In section 4,
we examine the behavior of entanglement entropy in joining local quenches, including a review
of earlier works and introducing our new findings. In section 5, we present the calculation of
the time evolution of pseudo entropy for (i) the single-slit setup. In section 6, we compute
the time evolution of pseudo entropy for (ii) the double-slit setup. In section 7, we discuss
the final results and future problems.

1.1 Summary of main results in this paper

For the convenience of readers, we summarize the key findings of this paper. Our primary
quantity of interest is the pseudo entropy S(T ψ|φ

A ) for (i) single-slit setup and (ii) double-slit
setup. Furthermore, we revisit the analysis of entanglement entropy of a joining quenched
state. Refer to table 1 for the definitions of the respective transition matrices.

We consider a two-dimensional CFT on a flat space with the time-like and space-like
coordinates t and x. Our analysis concentrates on the subsystem A(ξ), which takes the form
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Re{w}

Im{w}

−δ + ix∗

A

σn(w1)

σn(w2)

f(w)

f−1(z) Re{z}

Im{z}

0

σn(z1)

σn(z2)

Figure 2. The imaginary time-space region with single-slit geometry for the transition matrix under
a local quench at x = x∗ (left) is mapped to the upper half-plane (right) by z = f(w). This geometry
corresponds to the path integral calculation of pseudo entropy of |JQ(x∗, t)⟩ and |Ω⟩.

Re{w}

Im{w}

−δ + ix1

δ + ix2

A

σn(w1)

σn(w2)

f(w)

f−1(z) Re{z}

Im{z}

0 b−a

σn(z1)

σn(z2)

Figure 3. The imaginary time-space region with double-slit geometry for the transition matrix for the
local quench (left) is mapped to the upper half-plane (right) by z = f(w). This geometry corresponds
to the path integral calculation of pseudo entropy of |JQ(x1, t)⟩ and |JQ(x2, t)⟩.

of an interval defined as ξ − L/2 ≤ x ≤ ξ + L/2 with a fixed length L. We are particularly
interested in the dependence upon the center of mass ξ and the time evolution of the pseudo
entropy. We focus on the difference S(T ψ|φ

A ) − S
(0)
A , where S(0)

A denotes the entanglement
entropy of the ground state |Ω⟩. For an interval A, we have the standard result [3]:

S
(0)
A := S(ρ(0)

A ) = c

3 log L
ϵ
, ρ

(0)
A := TrB [|Ω⟩ ⟨Ω|] . (1.10)

We also examine whether the entropy excess ∆SA defined in (1.6) can take positive values.
We can explicitly and analytically compute the pseudo entropy in these setups in both the free
massless Dirac fermion CFT and the holographic CFT. In the Dirac fermion CFT, we can
express the twist operator in the replica method explicitly via the bosonization method, which
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Entanglement entropy Pseudo entropy Pseudo entropy
SJQ
A S

JQ|Ω
A S

JQ1|JQ2
A

SA(ξ)(t) Figure 10 Figure 15/Figure 16 Figure 21/Figure 22
∆SA(ξ)(t) 0 Figure 17 Figure 23

Table 2. A summary of entanglement/pseudo entropy plots in this paper. Here, figure A/figure B
means that the real/imaginary part of the entropy is described in figure A/figure B.

|φ〉＝

|Ψ〉＝

B1 B2 B3 B4A1 A2 A3 A4
Ex. (a)

|φ〉＝

|Ψ〉＝

B1 B2 B3 B4A1 A2 A3 A4Ex. (b)

Figure 4. A sketch of examples (a) and (b), that are states in an eight-qubit system with only
bipartite quantum entanglement. The red/blue dots and green links represent the qubits (in A/B) and
quantum entanglement between two qubits. The state |ψ⟩ represents the original state, in which A2
and A3 are disentangled. On the other hand, |φ⟩ is the one after the joining quench which connects
A2 and A3. We find ∆SA = 0 for (a) and ∆SA < 0 for (b).

enables us to evaluate the pseudo entropy exactly. In the holographic CFT, the two-point
function of the twist operators can be computed from simple Wick contractions by combining
the mirror image method and generalized free field properties. For a detailed description of
these analytical methods, refer to, e.g., [57] and the references therein. The plots of pseudo
entropy presented in this paper are summarized in table 2.

As a warm-up, we consider the entropy excess ∆SA in a quantum spin system with only
bipartite quantum entanglement. This preliminary investigation serves as a foundation for
our later exploration of the single-slit setup in CFTs. We choose subsystem A so that the
joining procedure is performed in it. We find that the entropy excess is non-positive for
such simple structures of quantum entanglement. For example, in the examples shown in
figure 4, it is straightforward to find ∆SA = 0 for (a) as S(T ψ|φ

A ) = S(ρψA) = S(ρφA). On the
other hand, we have ∆SA < 0 for (b) as S(T ψ|φ

A ) = S(ρφA) < S(ρψA). The non-positive nature
arises because the pseudo entropy decreases when we flip1 (or swap) the bipartite quantum
entanglement, which follows from the fundamental property that the pseudo entropy vanishes
when either |ψ⟩ or |φ⟩ has no entanglement between A and B. Therefore, ∆SA > 0 implies
the presence of non-trivial multi-partite quantum entanglement2 in the given quantum states,
as we will provide qubit examples in section 2.

1Here, by flipping or swapping, we refer to the scenario where the entangled partner of a specific spin is
exchanged. For the state |ψ⟩ shown in (b) of figure 4, for instance, spin A2 is entangled with B1, whereas for
the state |φ⟩, A2 is entangled with A3. When such a flipping occurs, pseudo entropy is reduced, as first noted
in [16].

2In the context of holographic entanglement entropy, we can find a basic property of multi-partite
entanglement, namely monogamy of mutual information [66]. However, for holographic pseudo entropy, it is
unclear if such a quantity has any definite meaning because even strong subadditivity is not valid [16].
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Now, we consider joining local quenches in two-dimensional CFTs, where we join two
semi-infinite systems at x = 0. In (i) the single-slit setup, where the transition matrix is
defined by the joining quenched state and the CFT vacuum, it turns out that the entropy
excess ∆SA is always non-positive in the Dirac fermion CFT, while it becomes positive for
a large enough subsystem A in the holographic CFT, as can be seen from figure 17. Note
that ∆SA > 0 occurs in the holographic CFT when the joining point x = 0 is included in
the subsystem A, which is consistent with the result mentioned above in the qubit model.
We also found an intriguing upper bound ∆SA(t = 0) ≤ (c/6) log 2.

Moreover, we find ∆SA > 0 can occur in (ii) the double-slit setup only for the holographic
CFT from figure 23 when we take the size of A to be large enough compared with the
displacement x1. We argue that the positive entropy excess is due to the multi-partite
entanglement in holographic CFT, which is missing in the free Dirac fermion CFT.

Next, we turn to the time evolution of pseudo entropy. The pseudo entropy generally
becomes complex-valued except for the initial time t = 0. First, let’s focus on (i) the single-slit
setup. Similar to the evolution of entanglement entropy under local quenches depicted in
figure 10, the real part of the pseudo entropy for the single-slit setup grows in the time interval
when the excitation created at x = 0 by the joining quench propagates to the subsystem A,
as in figure 15. Since this excitation consists of a pair of entangled modes, each located at
x = t and x = −t, propagating at the speed of light, they contribute to the entanglement
during the time interval when one of them is within the interval A. However, at the edges of
this time interval, the real part of pseudo entropy decreases, unlike the entanglement entropy
under the joining quenches. These qualitative profiles of pseudo entropy are common to both
the free Dirac fermion and holographic CFTs. We expect this dip behavior is caused by the
fact mentioned above that the pseudo entropy decreases when the quantum entanglement is
flipped. Indeed, the value at the peak is also much smaller than that of the joining quenches.
Another way to understand this behavior is to look at the expectation value of energy density.
This is because the first law relation of entanglement entropy [67, 68], which relates energy
to entanglement entropy, can also be applied to pseudo entropy [33]. The energy density
in the joining quench and the single-slit setup is obtained in figure 8 and figure 9. These
also show that the dip appears only in the latter case.

We also compute the evolution of pseudo entropy in (ii) the double-slit setup. Notice
that when x1 = 0, the pseudo entropy coincides with the entanglement entropy for the joining
quenches. In the limit of x1 → ∞, it reduces to the single-slit result. At t = 0, we observe
that the real part of pseudo entropy exhibits a dip, particularly when either of the two
endpoints of the interval A approaches the joining points, as shown in figure 21. The standard
property can explain this behavior: pseudo entropy decreases when quantum entanglement is
flipped. The time evolution of pseudo entropy can be explained by the excitations created
at two joining points x = ±x1 propagating at the speed of light, which leads to two peaks
as in figure 21. Also, we again find a dip when these excitations reach the boundaries of
the interval A, similar to (i) the single-slit setup.
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2 Simple qubit models

Before delving into the analysis of pseudo entropy in two-dimensional CFTs, we will begin by
examining simpler qubit examples. In the context of the spin model setup in figure 4, it is
noteworthy that qubit system states with solely bipartite entanglement between two spins
cannot yield positive entropy excess ∆SA > 0. This limitation arises from the fact that if
the spins at A2 and A3 get entangled as a pure state |φ⟩A2A3

within the state |φ⟩ after the
quench, then the reduced transition matrix factorizes as T ψ|φ

A = TA2A3 ⊗ TA1A4 . Here, TA2A3

takes a ‘pure state form,’ TA2A3 ∝ |ψ̃⟩⟨φ|A2A3 . Therefore the contribution from TA2A3 to the
pseudo entropy S(T ψ|φ

A ) vanishes and we find ∆SA ≤ 0. Below are examples of four-qubit
models with multi-partite entanglement, where we observe positive entropy excess.

2.1 Example 1: spins with four-body entanglement

We consider a four-qubit system with the spins denoted as B1, A1, A2, and B2, arranged from
left to right. We choose a pair of states that emulate the pre- and post-quench states in CFTs.
In this toy model, we would like to examine if we can probe multi-partite entanglement after
joining quench. We initially start with two decoupled spin systems B1A1 and A2B2. Thus,
we choose the state before the quench as follows:

|ψ⟩ = (cos θ′ |00⟩+ sin θ′ |11⟩)B1A1 ⊗ (cos θ′ |00⟩+ sin θ′ |11⟩)A2B2 , (2.1)

where we take into account the entanglement between Bi and Ai for i = 1, 2. This initial
state exhibits no entanglement between A1 and A2.

After the joining quench, we add an interaction between A1 and A2 to the Hamiltonian,
whose ground state has quantum entanglement between them. In general, this leads to a
quantum state with complicated entanglement between each of the four spins, whose details
will soon be analyzed numerically in the following subsection. Instead, we would like to
simplify the problem by considering an example of a state only with four-body entanglement.
In other words, we are amplifying the effect of multi-partite entanglement as we are interested
in detecting multi-partite entanglement from pseudo entropy. Motivated by this, we consider
the following quantum state with four-body entanglement as the one after the joining quench:

|φ⟩ = cos θ |0000⟩B1A1A2B2
+ sin θ |1111⟩B1A1A2B2

. (2.2)

In the cases where θ = π/4, this state corresponds to the GHZ state.
The calculation of entropy excess is carried out straightforwardly. As depicted in figure 5,

positive values of ∆SA are detected within regions where θ is small (or large) and θ′ is large
(or small). These conditions are satisfied when the two states, |ψ⟩ and |φ⟩, exhibit significant
dissimilarity. This is consistent with the observation in quantum spin chains [33, 34] that
positive entropy excess is realized only when the two states are in different quantum phases.

2.2 Example 2: Ising spin chain model

We consider a spin-1/2 Ising chain with both transverse and longitudinal fields. The Hamil-
tonian for an L-qubit system is given by

H(L) =
L−1∑
i=1

Jσ
(z)
i σ

(z)
i+1 +

L∑
i=1

hσ
(z)
i +

L∑
i=1

gσ
(x)
i , (2.3)

– 7 –
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Figure 5. A plot of entropy excess ∆SA for the four-qubit states (2.1) and (2.2). The horizontal and
vertical coordinates are θ and θ′, in the range 0 ≤ θ, θ′ ≤ π/2.

where σ(x)
i and σ

(z)
i are the x and z components of the Pauli matrices of the spin at site

i. This model has been previously examined in the context of entanglement spreading in
chaotic systems, as discussed in [69, 70].

A joining quench in CFT can be understood as adding the interaction term between
the left and right subsystems to the pre-quench CFT Hamiltonian, resulting in the post-
quench Hamiltonian. We aim to mimic the CFT Hamiltonian during the joining quench by
considering the pre- and post-quench Hamiltonians for the 2l-qubit system as

Hpre = H(l) ⊗ IR + IL ⊗H(l), Hpost = H(2l). (2.4)

We set l = 2 and focus on the ground states of Hpre and Hpost for a four-qubit system
B1A1A2B2:

|ψ⟩ = |Ω⟩B1A1
⊗ |Ω⟩A2B2

, (2.5)
|φ⟩ = |Ω⟩B1A1A2B2

. (2.6)

Entropy excess of A = A1A2 for these two states is plotted in figure 6. Due to the presence of
Z2 symmetry, ∆SA exhibits symmetry about h = 0 and g = 0. For J = −1, the entropy excess
∆SA can take positive values only in the region |h| < |g|, h ̸= 0. In systems exhibiting chaotic
behavior, multipartite entanglement is expected to increase compared to non-chaotic systems.
It is intuitively plausible that such behavior is associated with the positive entropy excess.

3 General calculation methods in conformal field theory

We consider two-dimensional CFTs and choose a pair of quantum states represented as |ψ⟩
and |φ⟩. Pseudo entropy is calculated employing the replica method, which involves a path
integral on a plane with a geometric shape corresponding to the selected pair of quantum
states. The replica method for pseudo entropy of general states is discussed in section 3.1.
The geometries corresponding to each pair of states are described in detail in section 3.2.
The energy stress tensor is also calculated and discussed in section 3.3.
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Figure 6. Plots of entropy excess ∆SA for the four-qubit states (2.5) and (2.6). The horizontal and
vertical coordinates are h and g in the Hamiltonian (2.3) with J = 1 (left) and J = −1 (right).

3.1 Pseudo entropy calculation for general setups

The complex coordinate w = τ + ix describes the Euclidean spacetime of the two-dimensional
CFT with the Euclidean time τ and the spatial coordinate x. The Lorentzian time evolution
is realized through Wick rotation τ = it. Note that the complex conjugate of w after Wick
rotation is represented as w̄ = it − ix, leaving the sign of it unchanged.

A joint subsystem A at a fixed Euclidean time τ = τ0 is represented as the interval
A := {(τ0, x)|x1 ≤ x ≤ x2}. We also write the x-coordinate of the center of such A as ξ, and
the length as L, i.e., x1 = ξ − L/2 and x2 = ξ + L/2. Subsystems consisting of a general
number of intervals are similarly represented.

Pseudo entropy is obtained by taking the limit of the n-th Rényi entropy, a process
known as the replica method:

S(n)(T ψ|φ
A ) := 1

1− n
logTr[(T ψ|φ

A )n] n→1−−−→ S(T ψ|φ
A ). (3.1)

For a subsystem A consisting of k intervals, the trace is given by the 2k-point function of
twist operators σn situated at the edges of A within the original geometry. To facilitate this
computation, we employ a conformal map z = f(w) that maps the original geometry into the
upper half-plane. The explicit form of this map is provided in subsection 3.2. Using such a
conformal map, the trace is represented using the k-point function in the upper half-plane:

Tr[(T ψ|φ
A )n] = ⟨σn(w1)σ̄n(w2) · · ·σn(w2k−1)σ̄n(w2k)⟩original

=
∣∣∣∣ dz1
dw1

∣∣∣∣2hn
∣∣∣∣ dz2
dw2

∣∣∣∣2hn

· · ·
∣∣∣∣ dz2k−1
dw2k−1

∣∣∣∣2hn
∣∣∣∣ dz2k
dw2k

∣∣∣∣2hn

× ⟨σn(z1)σ̄n(z2) · · ·σn(z2k−1)σ̄n(z2k)⟩UHP, (3.2)

where zi = f(wi), and hn = (c/24)(n − 1/n) denotes the chiral dimension of the twist
operator σn.

The explicit form of the 2k-point functions depends on the type of CFT under consider-
ation. For simplicity, we consider single intervals (k = 1) and present the explicit form of
pseudo entropy in the holographic CFT and free Dirac fermion CFT, respectively.

Since the pseudo entropy is complex-valued in general, we need to deal with the branch
cut when we take the logarithm in (3.1). We consistently employ a configuration in which
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the pseudo entropy assumes a non-negative real value at t = 0, avoiding the branch cut issue
at the initial time. As we progress into the subsequent time evolution t > 0, we can uniquely
select the branch that smoothly connects with the t = 0 result.

3.1.1 Pseudo entropy in holographic CFTs

In the holographic CFTs, the two-point functions on the upper half-plane can be approximated
by either the connected or disconnected contributions:

Connected : ⟨σn(z1)σ̄n(z2)⟩UHP = 1
|z1 − z2|4hn

Disconnected : ⟨σn(z1)σ̄n(z2)⟩UHP = 1
|z1 − z̄1|2hn |z2 − z̄2|2hn

. (3.3)

Note that these results are derived by considering the mirror images of the two twist operators
and applying the saddle point approximation. This prescription follows from the AdS/BCFT
formulation [57, 71, 72]. The AdS/BCFT provides a gravity dual of a boundary conformal
field theory (BCFT), where a CFT is defined on a manifold with a boundary (or boundaries).
In AdS/BCFT, the spacetime of the gravity dual is given by an asymptotically AdS spacetime
surrounded by both the AdS boundary and the end-of-the-world brane (EOW brane). This
EOW brane is a bulk extension of the boundary of the BCFT.

By substituting these into (3.2), we obtain the pseudo Rényi entropy S(n)
A . In the limit

of n → 1, we find the connected contribution

Scon(T ψ|φ
A ) = c

6 log |z1 − z2|2
ϵ̃1ϵ̃2

= c

6 log
[
|f(w1)− f(w2)|2
|f ′(w1)||f ′(w2)|ϵ2

]
, (3.4)

and the disconnected contribution

Sdis(T ψ|φ
A ) = c

6 log z1 − z̄1
ϵ̃1

+ c

6 log z2 − z̄2
ϵ̃2

+ 2Sbdy

= c

6 log
[
|f(w1)− f(w1)||f(w2)− f(w2)|

|f ′(w1)||f ′(w2)|ϵ2

]
+ 2Sbdy, (3.5)

where ϵ is the UV cut-off (or lattice constant) in the original geometry, and Sbdy is the
boundary entropy. Pseudo entropy for an interval A is approximated by the smaller of
these two contributions:

S(T ψ|φ
A ) = min

{
Scon(T ψ|φ

A ), Sdis(T ψ|φ
A )

}
. (3.6)

This holographic CFT calculation reproduces the gravity dual calculation, which is
obtained by combining the holographic pseudo entropy computation [16] with the holographic
entanglement entropy calculation in the AdS/BCFT [71, 72]. Note that it has been shown
in [16] that replica theoretic calculations of pseudo entropy in holographic CFTs generally
reproduce the minimal surface computation exactly in the same way as done for the standard
entanglement entropy [73].
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More explicitly, this correspondence is expressed as

S(T ψ|φ
A ) = min

{
A(Γcon

A )
4GN

,
A(Γdis

A )
4GN

}
. (3.7)

In this equation, Γcon
A represents the length of the connected geodesic that links two endpoints

of subsystem A through the bulk AdS space. On the other hand, Γdis
A consists of two

disconnected geodesics that connect each endpoint of A to a point on the EOW brane, which
is dual to the boundary of the BCFT. As our calculations for the two-dimensional BCFT
can provide all the required results using the field-theoretical approach described in this
section, there is no need to rely on the gravity dual picture. Therefore, we will forgo providing
the details of the gravity dual calculation.

3.1.2 Pseudo entropy in free Dirac fermion CFTs

In the free Dirac fermion CFTs, the two-point functions on the upper half-plane can be
approximated as

⟨σn(z1)σ̄n(z2)⟩UHP = d̃n

(
|z1 − z̄2|2

|z1 − z̄1||z2 − z̄2||z1 − z2|2

)2hn

, (3.8)

where d̃n is the normalization factor of the two-point function on the upper half-plane. Since
c = 1 for the free Dirac fermion CFTs, pseudo entropy is given as follows:

S(T ψ|φ
A ) = 1

6 log
[
|z1 − z̄1||z2 − z̄2||z1 − z2|2
|z1 − z̄2|2|f ′(w1)||f ′(w2)|ϵ2

]
+ const.. (3.9)

3.2 Geometries of path integral

To calculate pseudo entropy in a given setup, it is necessary to substitute the explicit form
of the corresponding conformal map f . In the following, we will provide the expressions for
conformal maps applicable to the opposing-slit, single-slit, and double-slit geometries.

3.2.1 Opposing-slit geometry: entanglement entropy of JQ state

Firstly, we choose |ψ⟩ = |φ⟩ = |JQ(x∗, t)⟩ and consider the entanglement entropy under
joining quenches. The corresponding geometry in the path integral formalism is the opposing-
slit geometry shown in figure 7. This is identical to the local quench setup considered in
the pioneering work of [8].

By the Schwarz-Christoffel formula, we obtain the inverse map f−1(z) as

f−1(z) = z + δ2

4z + ix∗, (3.10)

where δ is the regularization parameter of the joining local quench such that
|ψ⟩ = e−δ·HCFT |JQ(x∗, t)⟩. We can analytically solve for z and get

f(w) = w − ix∗ ±
√
(w − ix∗)2 − δ2

2 . (3.11)

We have to choose the sign to make the imaginary part of f(w) positive.
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Re{w}

Im{w}

−δ + ix∗ δ + ix∗
A

σn(w1)

σn(w2)

f(w)

f−1(z) Re{z}

Im{z}

0 b−a

σn(z1)

σn(z2)

Figure 7. The imaginary time-space region with opposing-slit geometry for the density matrix under
a local quench at x = x∗ (left) is mapped to the upper half-plane (right) by z = f(w). This geometry
corresponds to the path integral calculation of the entanglement entropy of |JQ(x∗, t)⟩.

3.2.2 Single-slit geometry: pseudo entropy of JQ state and ground state

Secondly, we choose |ψ⟩ as the joining quenched state |JQ(x∗, t)⟩, while |φ⟩ as the CFT
vacuum |Ω⟩. In the path integral formalism, the corresponding geometry is the single-slit
geometry shown in the left picture of figure 2.

This geometry is conformal mapped into the upper half-plane depicted in the right
of figure 2 by the map

f(w) = i
√
w + δ − ix∗. (3.12)

3.2.3 Double-slit geometry: pseudo entropy of different JQ states

Thirdly, we choose |ψ⟩ = |JQ(x1, t)⟩ and |φ⟩ = |JQ(x2, t)⟩. In the path integral formalism,
the corresponding geometry is the double-slit geometry shown in the left picture of figure 3.
If x1 = x2, this geometry reduces to the opposing-slit geometry, and then the corresponding
pseudo entropy equals the entanglement entropy of |ψ⟩.

By the Schwarz-Christoffel formula, we obtain the inverse map as (see appendix A)

f−1(z) = z −ALog z + a∗(a∗ +A)
z

+ (2a∗ +A+A log a∗ − δ + ix2) , (3.13)

where A := (x2 − x1)/π and a = a∗ > 0 is the unique solution of

4a+ 2A−A log
(
1 + A

a

)
= 2δ. (3.14)

Since it is generally not possible to find analytical solutions for z, we will employ the
numerically obtained results in the following sections.

3.3 Energy stress tensor

Before we move on to the evaluation of pseudo entropy, here we calculate the energy stress
tensor, which is relatively more accessible and will aid in our subsequent discussions concerning
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Figure 8. Plots of the energy stress tensor Ttt(x, t) under a joining quench. The left/right/bottom
row represents the spatiotemporal/spatial/temporal dependence. We chose δ = 0.1 and c = 1.

pseudo entropy. The expectation value of the energy stress tensor can be computed via
the conformal map from the original setup (with coordinates w) to the upper half-plane
(with coordinates z):

T (w) =
(
dw

dz

)−2 [
T (z)− c

12{w : z}
]
, (3.15)

where we defined the Schwarzian derivative:

{w : z} = ∂3
zw

∂zw
− 3

2

(
∂2
zw

∂zw

)2

. (3.16)

The anti-chiral component T̄ (w̄) is given similarly. Since the energy stress tensor on the
upper half-plane vanishes, we can set T (z) = 0.

For the joining quenched state, the conformal map reads w = z + δ2/(4z), we obtain

T (w) = c

8 · δ2z4

(z2 − δ2/4)4 ,

T̄ (w̄) = c

8 · δ2z̄4

(z̄2 − δ2/4)4 . (3.17)

It is straightforward to confirm that Ttt = T (w) + T̄ (w̄) is always real-valued and localized
at x = ±t. This profile is depicted in figure 8.
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For the single-slit geometry, where the conformal map reads z2 = −w − δ, we obtain

T (w) = c

32 · 1
(w + δ)2 ,

T̄ (w̄) = c

32 · 1
(w̄ + δ)2 . (3.18)

Under the time evolution, we set w = it+ix and w̄ = it−ix. Thus the energy density Ttt reads

Ttt = T (w) + T̄ (w̄) = − c

32 ·
[ 1
(t+ x− iδ)2 + 1

(t− x− iδ)2

]
. (3.19)

This profile is depicted in figure 9. It shows that the real part has a dip, a negative contribution,
in addition to the peak at x = |t|. The propagation at the speed of light looks analogous
to what we found in the time evolution of pseudo entropy.

4 Entanglement entropy under joining quenches

In this section, we take the opposing-slit geometry, |ψ⟩ = |φ⟩ = |JQ(x = 0)⟩, and consider
the entanglement entropy of joining quenches at x = 0. Many authors have studied this
type of joining local quenches since the pioneering work in [8]. Hence, in the following,
we reanalyze certain aspects of entanglement entropy that are helpful for comparison with
our subsequent pseudo entropy calculations. We will also study the behavior of mutual
information to manifest the difference between the holographic CFT and the free Dirac
fermion CFT (see also [61] for a relevant analysis).

4.1 Entanglement entropy for joint subsystems

We take the subsystem A to be the interval

A(ξ) = [ξ − L/2, ξ + L/2] (4.1)

and analyze entanglement entropy for A as a function of ξ, L and time t. We obtain
the entanglement entropy in the holographic CFT by selecting the smaller contribution,
as indicated by the formula (3.6). For plots of each contribution, refer to appendix B.
Together with the free Dirac fermion CFT result, we plotted the result of entanglement
entropy in figure 10.

The qualitative behavior depicted in figure 10 highlights a fundamental feature of the
picture: relativistic propagation of entangled pairs, which is consistent in both holographic
and free Dirac fermion CFTs.3 Initially, the joining quench creates entangled pairs localized
at x = 0. One of the quasiparticles consisting of the pair propagates at the speed of light
from the left to the right while the other moves opposite. The entanglement entropy increases
when only one member of these pairs enters subsystem A. The derivative of the entanglement

3The quasiparticle picture, where quasiparticles propagate at the speed of light, is known to break
down particularly in holographic CFTs, for instance, when subsystems are disjoint intervals [61, 74, 75] or in
dimensions higher than three [76]. Here, we conduct a zeroth-order approximation and discuss the quasiparticle
picture in two dimensions to gain an intuitive understanding. The breakdown of the quasiparticle picture for
mutual information is also discussed in section 4.2.
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Figure 9. The real/imaginary part of energy stress tensor Ttt(x, t) for the single-slit setup (i.e., for the
joining quenched state and the ground state) is shown in the left/right column. The top/middle/bottom
row represents the spatiotemporal/spatial/temporal dependence. We chose δ = 0.1 and c = 1.

entropy is discontinuous in the holographic CFT, which arises from the phase transition
between the connected and disconnected contributions.

Explaining this result from the gravity dual via the AdS/BCFT is also helpful. The
behavior of the connected contribution Scon

A(ξ)(t) can be understood from the shock wave
geometry, which is triggered by the gravitational quench at t = x = 0. As the gravitational
shock waves propagate outward, the backreaction to the metric is suppressed, reducing the
minimal area. The disconnected contribution Sdis

A(ξ)(t) diverges in the limit of |ξ| → ∞. In
the context of AdS/BCFT, this divergence of Sdis

A(ξ)(t) is explained by that of the minimum
geodesic length connecting the endpoints of A(ξ) to the EOW brane [57, 58]. The divergence
of Sdis

A(ξ)(t) in the limit of t→ ∞ is also explained in the context of AdS/BCFT. The EOW
brane is heavy, and as time passes, it falls toward z → ∞ in the extra dimension, almost at
the speed of light. Consequently, also in this case, the minimum geodesic length connecting
the endpoints of A(ξ) to the EOW brane diverges.
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Figure 10. The entanglement entropy SA(ξ)(t)− S
(0)
A(ξ) under joining quenches in the holographic

CFT/the free Dirac fermion CFT for A(ξ) = [ξ − 10, ξ + 10] is shown in the left/right column. The
top/middle/bottom row represents the spatiotemporal/spatial/temporal dependence. We chose c = 1,
ϵ = 1, δ = 0.1, and Sbdy = 0.

4.2 Entanglement entropy and mutual information for disjoint subsystems

We take a disjoint subsystem A(ξ) ∪ B(ξ), where

A(ξ) = [ξ −D/2− L, ξ −D/2], B(ξ) = [ξ +D/2, ξ +D/2 + L]. (4.2)

In figure 11 (L = 10, D = 2) and figure 12 (L = 2, D = 20), we show plots of entanglement
entropy for subsystem A(ξ) ∪B(ξ) in the holographic CFT and the free Dirac fermion CFT.
When approximating the entanglement entropy in the holographic CFT using the asymptotic
form of two-point functions, we consider all possible ways of contracting eight twist operators,
including the mirror images. We extend (3.6) to two intervals and select the one that yields the
minimum contribution. We obtain the free Dirac fermion CFT result by directly evaluating
the four-point function of twist operators.
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The difference between the results in the two CFTs is particularly pronounced near
the region where two inward-propagating waves intersect in figure 12. In the context of
AdS/BCFT, the results in the holographic CFT are explained by considering the shock wave
propagations to the minimal surface ΓA for A and ΓB for B. This effect is enhanced when
each of the two shock waves simultaneously reaches ΓA and ΓB . Conversely, in the case of the
free Dirac fermion CFT, the results can be explained using the quasi-particle picture. The
entanglement entropy gets canceled in this region because both quasi-particles of entangled
pairs exist within subsystem A(ξ) ∪ B(ξ). This signifies that the quasi-particle picture is
not entirely correct for the holographic CFTs, as first pointed out in the context of global
quantum quenches [74] (see also [61] for local quenches).

We also illustrate the mutual information for the same subsystems in figure 13 (L =
10, D = 2) and figure 14 (L = 2, D = 20). In the holographic CFTs, the mutual information
is always zero when D is larger than the scale of L.

4.3 Analytical results

In the following, we present analytical expressions for entanglement entropy in two distinct
scenarios, each achieved by taking a specific limit. Refer to [8, 57] for the earlier work.

4.3.1 Entanglement entropy for finite subsystem at t = 0

Here, we take the limit of δ → 0 and provide the explicit expressions for the entanglement
entropy at t = 0 for joint subsystem A(ξ) = [ξ − L/2, ξ + L/2].

For the holographic CFTs, the connected and disconnected contributions are

Scon
A(ξ)(t = 0) δ→0−−−→


c

3 log L
ϵ

(|ξ| > L/2)
c

3 log
[
2|ξ2 − L2/4|

δϵ

]
(L/2 > |ξ|)

, (4.3)

Sdis
A(ξ)(t = 0) δ→0−−−→ c

12 log
[
24(ξ2 − L2/4)2

ϵ4

]
+ 2Sbdy. (4.4)

For the free Dirac fermion CFTs, we get

SDir
A(ξ)(t = 0) δ→0−−−→



1
12 log

[
L4(ξ2 − L2/4)2

ξ4ϵ4

]
(ξ > L/2)

1
12 log

[
24(ξ2 − L2/4)2

ϵ4

]
(L/2 > ξ > −L/2)

1
12 log

[
L4(ξ2 − L2/4)2

ξ4ϵ4

]
(−L/2 > ξ)

. (4.5)

They are consistent with the results in figure 10 (δ = 0.1).

4.3.2 Time dependence for semi-infinite subsystem

For finite-size subsystems, it is difficult to determine the time dependence analytically.
Therefore, here we consider the subsystem size L to be infinity. In other words, we assume
a situation where w1 = τ + il and w2 = τ + i∞ in figure 7. In this case, w2 is no longer
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Figure 11. The entanglement entropy SA(ξ)∪B(ξ)(t)− S
(0)
A(ξ)∪B(ξ) in the holographic CFT/the free

Dirac fermion CFT for A(ξ) = [ξ − 11, ξ − 1], B(ξ) = [ξ + 1, ξ + 11] is shown in the left/right column.
The top/middle/bottom row represents the spatiotemporal/spatial/temporal dependence. We chose
c = 1, ϵ = 1, δ = 0.1, and Sbdy = 0.

a boundary, so we only need to compute a one-point function at w2. Then, we get the
entanglement entropy:

S[l,∞[(t) =


c

6 log 2l
ϵ

(l > t)
c

6 log 2(t2 − l2)
ϵ2

+ c

6 log 2ϵ
δ

(l < t)
. (4.6)

5 Pseudo entropy of JQ state and ground state: single-slit geometry

Now, we move on to our main example, the single-slit geometry, choosing |ψ⟩ = |JQ(x = 0)⟩
and |φ⟩ = |Ω⟩. We compute the pseudo entropy of a joining quenched state and the
ground state.
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Figure 12. The entanglement entropy SA(ξ)∪B(ξ)(t)− S
(0)
A(ξ)∪B(ξ) in the holographic CFT/the free

Dirac fermion CFT for A(ξ) = [ξ− 12, ξ− 10], B(ξ) = [ξ+10, ξ+12] is shown in the left/right column.
The top/middle/bottom row represents the spatiotemporal/spatial/temporal dependence. We chose
c = 1, ϵ = 1, δ = 0.1, and Sbdy = 0.

5.1 Pseudo entropy

We take an interval subsystem

A(ξ) = [ξ − L/2, ξ + L/2]. (5.1)

In figure 15 and figure 16, we present the pseudo entropy4 in the holographic CFT, taking
the contributions with smaller real parts, alongside the pseudo entropy in the free Dirac
fermion CFT.

4In terms of spatial dependence, we specifically focus on the ξ-dependence of pseudo entropy to investigate
how the quasiparticles propagate. Analyzing other dependencies [77, 78], e.g., the L-dependence in our setup,
is interesting. The L dependence is influenced by the ratio with the regularization parameter δ. If L/δ is larger,
the details of the quench dynamics become blurred and pose a greater challenge to capture with precision.
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Figure 13. The mutual information IA(ξ):B(ξ)(t) in the holographic CFT/the free Dirac fermion
CFT for A(ξ) = [ξ − 11, ξ − 1], B(ξ) = [ξ + 1, ξ + 11] is shown in the left/right column. The
top/middle/bottom row represents the spatiotemporal/spatial/temporal dependence. We chose c = 1,
ϵ = 1, δ = 0.1, and Sbdy = 0.

The imaginary parts of SJQ|Ω
A(ξ) (t) are non-zero in general due to the Wick rotation, while

they are zero at t = 0. In the limit of |ξ| → ∞, the connected contribution converges to
the entanglement entropy of the ground state S(0)

A since the effect of the quench can be
neglected. When the edge of A coincides with the joining point, the connected contribution
takes minima. The disconnected contribution diverges in the limit of |ξ| → ∞. This can be
explained in the context of AdS/BCFT by considering the minimal geodesic length with the
EOW brane, similar to the discussion for entanglement entropy.

For both the holographic CFT and the free Dirac fermion CFT, we find a dip when the
excitations injected at x = 0 and t = 0 propagate to the two endpoints of A. We expect
that this is due to the property that the pseudo entropy decreases when we flip quantum
entanglement, which is peculiar to the pseudo entropy as first found in [16]. This can also
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Figure 14. Plots of the mutual information IA(ξ):B(ξ)(t) in the free Dirac fermion CFT for A(ξ) = [ξ−
12, ξ−10], B(ξ) = [ξ+10, ξ+12]. The left/right/bottom represents the spatiotemporal/spatial/temporal
dependence. We chose c = 1, ϵ = 1, δ = 0.1, and Sbdy = 0. Note that the mutual information of these
subsystems in the holographic CFT is always zero.

be explained by the first law relation of pseudo entropy [33], which is very similar to the
first law of entanglement entropy [67, 68] that relates energy to the pseudo entropy. The
first law for the pseudo entropy is explicitly given by

S
JQ|Ω
A (t)− S

(0)
A ≃ ⟨Ω|HA|JQ⟩

⟨Ω|JQ⟩ , (5.2)

assuming that the size of the subsystem A is smaller compared with a length scale of the
local quench excitation. Here HA is the modular Hamiltonian for the vacuum state |Ω⟩ for
the subsystem A. The modular Hamiltonian HA is known to be linearly related to the energy
density [68]. Indeed, the energy density in the joining quench and the single-slit setup, shown
in figure 8 and figure 9, also show the dip only in the latter.

5.2 Entropy excess

The behavior of entropy excess ∆SJQ|Ω in the holographic CFT and the free Dirac fermion
CFT is shown in figure 17. Although they exhibit similar relativistic propagation during
time evolution, one notable difference is the behavior in the region |ξ| < L − t. In the
holographic CFT, the entropy excess ∆SA can become positive in this region, while in
the free Dirac fermions CFT, we always have ∆SA ≤ 0. As discussed in section 1.1 and
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Figure 15. The real part of the pseudo entropy SJQ|Ω
A(ξ) (t)−S

(0)
A(ξ) in the holographic CFT/the free Dirac

fermion CFT for A(ξ) = [ξ − 10, ξ + 10] is shown in the left/right column. The top/middle/bottom
row represents the spatiotemporal/spatial/temporal dependence. We chose c = 1, ϵ = 1, δ = 0.1, and
Sbdy = 0.

figure 4, the absence of multi-partite entanglement leads ∆SA ≤ 0 as in the Dirac fermion
case. On the other hand, our results suggest the existence of multi-partite entanglement
in holographic CFTs, which agrees with our expectations. This is consistent with the fact
that the tripartite mutual information vanishes in the free Dirac fermion CFT, while it
does not in holographic CFTs [66].
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Figure 16. The imaginary part of the pseudo entropy SJQ|Ω
A(ξ) (t)−S

(0)
A(ξ) in the holographic CFT/the free

Dirac fermion CFT for A(ξ) = [ξ−10, ξ+10] is shown in the left/right figure. The top/middle/bottom
figure represents the spatiotemporal/spatial/temporal dependence. We chose c = 1, ϵ = 1, and δ = 0.1.
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Figure 17. The entropy excess ∆SJQ|Ω
A(ξ) (t) in the holographic CFT/the free Dirac fermion CFT for

A(ξ) = [ξ − 10, ξ + 10] is shown in the left/right column. The top/middle/bottom row represents the
spatiotemporal/spatial/temporal dependence. We chose c = 1, ϵ = 1, δ = 0.1, and Sbdy = 0.
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Figure 18. A plot of the analytically calculated pseudo entropy SJQ|Ω
A(ξ) (t = 0)− S

(0)
A(ξ) for A(ξ) = [ξ −

10, ξ + 10] in the limit of δ → 0. The red/blue line illustrates the connected/disconnected contribution
in the holographic CFT, while the green line shows the free Dirac fermion CFT result. We chose
c = 1, ϵ = 1, and Sbdy = 0.

5.3 Analytical results

Since the single-slit setup can be examined analytically through a relatively simple conformal
map (3.12), below, we also present analytical expressions for pseudo entropy for the interval
subsystem (5.1).

5.3.1 Pseudo entropy and entropy excess for finite subsystem at t = 0

By the same calculation as entanglement entropy, pseudo entropy SA(ξ)(t = 0) in the limit
of δ → 0 is

Scon
A(ξ)(t = 0)

= c

12 log



∣∣∣∣ξ − L

2

∣∣∣∣+ ∣∣∣∣ξ + L

2

∣∣∣∣− 2
√∣∣∣∣ξ2 − L2

4

∣∣∣∣Θ
(
ξ2 − L2

4

)
2

× 16
ϵ4

∣∣∣∣∣ξ2 − L2

4

∣∣∣∣∣
 , (5.3)

Sdis
A(ξ)(t = 0) = c

12 log

64
ϵ4

(
ξ2 − L2

4

)2
+ 2Sbdy, (5.4)

SDir
A(ξ)(t = 0)

= 1
12 log


{∣∣∣ξ − L

2

∣∣∣+ ∣∣∣ξ + L
2

∣∣∣− 2
√∣∣∣ξ2 − L2

4

∣∣∣Θ (ξ2 − L2

4

)}2

{∣∣∣ξ − L
2

∣∣∣+ ∣∣∣ξ + L
2

∣∣∣+ 2
√∣∣∣ξ2 − L2

4

∣∣∣Θ (L2

4 − ξ2
)}2 × 64

ϵ4

(
ξ2 − L2

4

)2

 . (5.5)

The results are plotted in figure 18. They are consistent with the numerical results in figure 15.
Now we can calculate the entropy excess ∆SJQ|Ω

A (t = 0) in the limit of δ → 0. The
results are plotted in figure 19. They are consistent with the results in figure 17 (δ = 0.1).
Especially for ξ = 0, the pseudo entropy of the joining quenched state and the ground state
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Figure 19. A plot of the analytically calculated entropy excess ∆SJQ|Ω
A(ξ) (t = 0) for A(ξ) = [ξ−10, ξ+10]

in the limit of δ → 0. The red/green line illustrates the holographic CFT/the free Dirac fermion CFT
result. We chose c = 1, ϵ = 1, and Sbdy = 0.

is evaluated in the δ → 0 limit as follows:

S
JQ|Ω
A(ξ=0)(t = 0) = min

{
Scon
A(ξ), S

dis
A(ξ)

}
= min

{
c

3 log L
ϵ
+ c

6 log 2, c3 log L
ϵ
+ c

6 log 2 + 2Sbdy

}
, (5.6)

and the entanglement entropy is

SJQ
A(ξ=0)(t = 0) = min

{
∞,

c

3 log L
ϵ
+ 2Sbdy

}
. (5.7)

The entropy excess ∆SJQ|Ω
A(ξ=0)(t = 0) turns out to be

∆S
JQ|Ω
A(ξ=0)(t = 0) =


c

6 log 2− Sbdy (Sbdy ≥ 0)
c

6 log 2 + Sbdy (Sbdy < 0)
(5.8)

and thus, it has an upper bound:

∆S
JQ|Ω
A(ξ=0)(t = 0) ≤ c

6 log 2. (5.9)

Recall that entropy excess is related to multi-partite entanglement, as elaborated in section 1.1.
It might be intriguing to compare our result with the Markov gap [79, 80], which is

defined by the difference between the reflected entropy SR(A : B) and the mutual information
I(A : B) between two subsystems A and B. This quantity has been raised as a possible
measure of three-partite entanglement between A, B and C, where C is the complement
of AB. In the paper [79], it was shown in AdS3/CFT2 that the Markov gap is bounded as
SR(A : B) − I(A : B) ≥ (c/3) log 2, when A,B and C are all intervals. It is intriguing to
note that this bound of the Markov gap is half of ours (5.9). However, they have opposite
signs of inequalities, and we cannot compare these in a straight manner.

5.3.2 Time dependence for semi-infinite subsystem

We consider the time evolution of pseudo entropy for a semi-infinite subsystem A = [l,∞[.
In the limit of δ → 0, we obtain the following analytical result:

S
JQ|Ω
[l,∞[ (t) =

c

12 log
8
√
l2 − t2

(
it+

√
l2 − t2

)
ϵ2

. (5.10)
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Figure 20. Plots of the real part of pseudo entropy for a semi-infinite subsystem A = [l,∞[. The
left shows the analytically calculated pseudo entropy in the limit of δ → 0. The middle shows the
numerically calculated pseudo entropy with δ = 0.1. The right shows the numerically calculated
entanglement entropy of the joining quench with δ = 0.1 for comparison. We choose c = 1, ϵ = 1,
l = 1 and Sbdy = 0 in all cases.

The result of pseudo entropy based on the current analytical and previous numerical calcula-
tions, alongside that of entanglement entropy in joining local quenches, is plotted in figure 20.
The numerical and analytical results agree with each other. Even though the pseudo entropy
exhibits a logarithmic growth SA ∼ (c/6) log t, the coefficient is halved compared with the
entanglement entropy in joining local quenches (SA ∼ (c/3) log t) [8]. This can be thought to
be due to half of the pseudo entropy originating from contributions from the vacuum. Further,
the initial behavior (0 < t < l) differs between the two. This difference is due to a dip at t = l,
which is unique to the pseudo entropy due to the entanglement flipping effect mentioned
before. A similar effect is observed in the energy stress tensor expectation value on the
single-slit setup, as shown in figure 9. In this case, the real part exhibits a negative tail around
the positive peak, a feature absent in the joining local quenches, as presented in figure 8.

6 Pseudo entropy of different JQ states: double-slit geometry

We analyze the pseudo entropy on the double-slit geometry as a final example. This
corresponds to the choice of two different joining quenched states |ψ⟩ = |JQ(x = x1)⟩ and
|φ⟩ = |JQ(x = x2)⟩. For our calculations, we set x1 = −x2 = 10 without loss of generality.

6.1 Pseudo entropy

We take the interval subsystem A as defined in (5.1) for the pseudo entropy. We present
plots of the pseudo entropy for both the holographic CFT and the free Dirac fermion CFT
in figure 21 (real part) and figure 22 (imaginary part). For the holographic CFT, we take
the contribution with a smaller real part.

We note that the qualitative behaviors of pseudo entropy are similar between the
holographic CFT and the free Dirac fermion CFT. In both cases, we observe a dip when
the excitations created at the joining points x = ±10 at t = 0 propagate to the endpoints
of the interval A. This behavior is once again attributed to the unique property of pseudo
entropy when entanglement flippings occur, as we have seen in previous examples.

6.2 Entropy excess

The entropy excess ∆SJQ1|JQ2
A is shown in figure 23 for both the holographic and free Dirac

fermion CFTs. In the holographic CFT, we observed that the entropy excess ∆SJQ1|JQ2
A takes
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Figure 21. The real part of the pseudo entropy SJQ1|JQ2
A(ξ) (t)− S

(0)
A(ξ) in the holographic CFT/the free

Dirac fermion CFT for A(ξ) = [ξ− 5, ξ+5] is shown in the left/right column. The top/middle/bottom
row represents the spatiotemporal/spatial/temporal dependence. We chose c = 1, ϵ = 1, δ = 0.1, and
Sbdy = 0.

positive values when the subsystem A is affected only by one of the two excitations. However,
in the free Dirac fermion CFTs, we always find that the entropy excess is non-positive. As in
the single-slit case, this implies the presence of multi-partite entanglement in the holographic
CFT, while it is absent in the free Dirac fermion CFT.

7 Discussions

In this paper, we have investigated the behaviors of pseudo entropy in two-dimensional
holographic and free Dirac fermion CFT for (i) the vacuum state and the joining quenched
state and for (ii) two different joining quenched states. The pseudo entropy of the joining
quenched states provides further information that is not accessible through conventional
entanglement entropy calculations for single local quenched states alone.
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Figure 22. The imaginary part of the pseudo entropy S
JQ1|JQ2
A(ξ) (t) − S

(0)
A(ξ) in the holographic

CFT/the free Dirac fermion CFT for A(ξ) = [ξ − 5, ξ + 5] is shown in the left/right column. The
top/middle/bottom figure represents the spatiotemporal/spatial/temporal dependence. We chose
c = 1, ϵ = 1, and δ = 0.1.

We have already summarized our main results in section 1.1. In particular, we found the
following two characteristic properties absent in the conventional entanglement entropy under
the joining local quenches. One is that the time evolution of the pseudo entropy exhibits
a dip when the excitations generated by the joining quench propagate to the boundaries of
the subsystem A. This dip arises due to the suppression of pseudo entropy in entanglement
flipping [16]. The other is that the entropy excess, defined in (1.6), can be positive in the
holographic CFTs, while it always remains non-positive in the free Dirac fermion CFTs.
We noted that ∆SA > 0 occurs exclusively in joining quenched states with multi-partite
entanglement based on simple qubit models. This suggests that the holographic CFTs
possess multi-partite entanglement in their vacuum states, whereas the free Dirac fermion
CFTs do not.
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Figure 23. The entropy excess ∆SJQ1|JQ2
A(ξ) (t) in the holographic CFT/the free Dirac fermion CFT

for A(ξ) = [ξ − 5, ξ + 5] is shown in the left/right column. The top/middle/bottom row represents the
spatiotemporal/spatial/temporal dependence. We chose c = 1, ϵ = 1, δ = 0.1, and Sbdy = 0.

We mention a few interesting future directions as we conclude this paper. We currently
lack a comprehensive understanding of the imaginary part of pseudo entropy. In our joining
quench calculations, we found many results for the time evolution of the imaginary parts, and
it would be interesting to explore its physical and quantum information theoretic implications.
It is also an intriguing future problem to understand our results in terms of toy models of
tensor networks, such as the perfect model [81] and random tensor networks [82]. Extending
our analysis to calculate pseudo entropy for local quenched states in diverse quantum spin
chains can provide a deeper understanding of the physical interpretations and implications of
pseudo entropy. It is also intriguing to analyze quantum corrections to the pseudo entropy in
our setups. Finally, it would also be helpful to compute other closely related quantities, such as
the SVD entropy [32] in the present setup, and compare the results with the ones in this paper.
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A Details of CFT calculations

A.1 Conformal map for double-slit geometry

This section derives the conformal map from the double-slit geometry to the upper half-plane.
The conformal map F (z) from the upper half-plane to the interior of a polygon with n

vertices is given by the Schwarz-Christoffel formula

F (z) = C

∫ z n−1∏
k=1

(ζ − ξk)−βk dζ + C ′, (A.1)

where βk’s are the exterior angles of each vertex divided by π, and ξk’s are real numbers
mapped to each vertex.

We define wa = −δ + ix1 and wb = δ + ix2 as in figure 3. In the following, we will show
that, for given x1, x2 and δ, it is possible to construct an appropriate function F (z) such
that F (−a) = wa and F (b) = wb. In this case, we have ξ1 = −a, ξ2 = b, ξ3 = 0 and β1 = −1,
β2 = −1, β3 = 2 for (A.1). Now (A.1) turns to be

F (z) = C

∫ z (ξ + a)(ξ − b)
ξ2 dξ + C ′

= C

(
z + (a− b) log z + ab

z

)
+ C ′′. (A.2)

By imposing the change on the constants C and C ′′, we can take the principal value logarithm

Log z := log |z|+ iArg z (−π < Arg z ≤ π) (A.3)

as the logarithmic function in the equation, so we obtain a general expression for the
conformal transformation

F (z) = C

(
z + (a− b) Log z + ab

z

)
+ C ′′. (A.4)

We choose a, b, C and C ′′ appropriately as shown below.
For x ∈ R \ {0}, F (x) is

F (x) =


C

(
x+ ab

x
+ (a− b) log x

)
+ C ′′ (x > 0)

C

(
x+ ab

x
+ (a− b) log |x|+ iπ(a− b)

)
+ C ′′ (x < 0)

. (A.5)

Here C ′′ corresponds to translation in the w-plane.
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From the constraint that F (R) is parallel to the real axis, we have

∂x Im{F (x)} = 0 (x ∈ R \ {0}). (A.6)

Setting C = Reiθ (R > 0, θ ∈ [0, 2π[), the left hand side of (A.6) is

∂x Im{F (x)} = Im{∂xF (x)}

= R sin θ
(
1 + a− b

x
− ab

x2

)
. (A.7)

Given that F (x) → +∞ as x → +∞, we obtain θ = 0.
From F (b) = wb and F (−a) = wa, we haveR {(a+ b)− (b− a) log b}+ C ′′ = δ + ix2

R {−(a+ b)− (b− a) log a− iπ(b− a)}+ C ′′ = −δ + ix1
. (A.8)

For simplicity, let R = 1. The desired function can be constructed even after making this
assumption. Considering the sum and the difference of the two equations, the conditions
now change to−(b− a) log ab− iπ(b− a) + 2C ′′ = i(x1 + x2)

2(a+ b)− (b− a) log (b/a) + iπ(b− a) = 2δ + i(x2 − x1)
. (A.9)

Defining A := (x2 − x1)/π(> 0), we obtain b = a + A from the imaginary part of the
second equation. Substituting it into the real part of the second equation of (A.9), we obtain

4a+ 2A−A log
(
1 + A

a

)
= 2δ. (A.10)

Defining K(a) as the left-hand side of (A.10), we have

∂aK(a) = (2 +A/a)2

1 +A/a
> 0 (∀a > 0) (A.11)

lim
a↘0

K(a) = −∞ (A.12)

lim
a↗∞

K(a) = ∞, (A.13)

which shows that for any δ > 0, the equation K(a) = 2δ, i.e., (A.10), always has a unique
solution a = a∗ > 0.

From the first equation of (A.9), we obtain

C ′′ = A

2 log [a∗(a∗ +A)] + i
πA

2 + i
x1 + x2

2
= 2a∗ +A+A log a∗ − δ + ix2. (A.14)

Finally, we obtain the expression for the function F (z) as

F (z) = z −ALog z + a∗(a∗ +A)
z

+ (2a∗ +A+A log a∗ − δ + ix2), (A.15)

where A := (x2 − x1)/π and a = a∗ > 0 is the unique solution of

4a+ 2A−A log
(
1 + A

a

)
= 2δ. (A.16)

The results are plotted in figure 24.

– 32 –



J
H
E
P
0
2
(
2
0
2
4
)
1
1
1

Figure 24. Plots of F (z) and its inverse f(w). Each line corresponds to the image w = F (z) for z
with constant real parts (left), the image w = F (z) for z with constant imaginary parts (center), and
the image z = f(w) for w with constant real parts (right).

A.2 Correlation functions in BCFTs

Correlation functions in BCFTs can be naturally obtained by determining the boundary
conditions of BCFTs due to conformal symmetry.

The boundary conditions in BCFTs are obtained from the Ward-Takahashi identity for
conformal symmetry. After a few calculations, we find that for BCFTs to have conformal
symmetry, the following boundary conditions are required:

T (z) = T̄ (z̄) forz = z̄. (A.17)

This implies no energy flows across the boundary. Since both T (z) and T̄ (z̄) are analytic
functions and satisfy the boundary condition (A.17), we can analytically connect T (z) to
the lower half-plane:

T (z) = T̄ (z̄ = z∗) forz ∈ LHP. (A.18)

Using this, the Ward-Takahashi identity on UHP is

⟨T (z)O(w, w̄)⟩UHP

=
(

h

(z − w)2 + 1
z − w

∂w + h̄

(z − w̄)2 + 1
z − w̄

∂w̄

)
⟨O(w, w̄)⟩UHP. (A.19)

This has the same singularity as the Ward-Takahashi identity for ⟨T (z)O(w, w̄)Ō(w̄, w)⟩C
using a primary field Ō(w̄, w) with weight (h̄, h) in all planes. From these facts, correlation
functions in the upper half-plane are obtained by computing the correlation functions with
operators inserted at the points of the mirror map about the boundary. After inserting the
operators, we consider the BCFTs as CFTs in the whole plane with only holomorphic conformal
transformation. This is called the double trick. Thus, for example, a two-point function in the
UHP becomes a four-point function in the entire complex plane, including its mirror image:

⟨O1(w1, w̄1)O2(w2, w̄2)⟩UHP ∼ ⟨O1(w1, w̄1)O2(w2, w̄2)Ō1(w̄1, w1)Ō2(w̄2, w2)⟩C (A.20)

Note that Virasoro algebra is

Ln :=
∫

0<argz<π,|z|=1

dz

2πiz
n+2T (z) +

∫
−π<argz̄<0,|z̄|=1

dz̄

2πiz
n+2T̄ (z̄) (A.21)

[Ln, Lm] = (n−m)Ln+m + δn+m,0
c

12n(n
2 − 1), (A.22)

which is only the holomorphic part.
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A.3 Analytical calculations in section 5.3

A.3.1 Pseudo entropy and entropy excess for finite subsystem at t = 0

In the limit of δ → 0, we have

f(w) = i
√
w (A.23)

f ′(w) = i

2
√
w
. (A.24)

The connected contribution turns out to be

Scon = c

12 log
[

|f(w1)− f(w2)|4
|f ′(w1)|2|f ′(w2)|2ϵ4

]

= c

12 log
[{
R1 +R2 − 2

√
R1
√
R2 cos

(
θ1 − θ2

2

)}2
× 16R1R2

ϵ4

]
, (A.25)

the disconnected contribution turns out to be

Sdis = c

12 log
[
|f(w1)− f(w1)|2|f(w2)− f(w2)|2

|f ′(w1)|2|f ′(w2)|2ϵ4

]
+ 2Sbdy

= c

12 log
[
162R2

1R
2
2 cos2

(
θ1
2

)
cos2

(
θ2
2

)
× 1
ϵ4

]
+ 2Sbdy, (A.26)

and for free Fermion CFTs, we have

SDir = 1
12 log

[
|f(w1)− f(w2)|4|f(w1)− f(w1)|2|f(w2)− f(w2)|2

|f(w1)− f(w2)|4|f ′(w1)|2|f ′(w2)|2ϵ4

]
,

= 1
12 log

[{
R1 +R2 − 2

√
R1

√
R2 cos ((θ1 − θ2)/2)

}2{
R1 +R2 + 2

√
R1

√
R2 cos ((θ1 + θ2)/2)

}2

×162R2
1R

2
2 cos2

(
θ1
2

)
cos2

(
θ2
2

)
× 1
ϵ4

]
(A.27)

where

Ri :=
√
τ2 + x2

i (A.28)

θi := arctan
(
xi
τ

)
. (A.29)

In the limit of τ → 0, we have

Ri → |xi| =
∣∣∣∣ξ ± L

2

∣∣∣∣ (A.30)

θi →
π

2 sgn(xi) =
π

2 sgn
(
ξ ± L

2

)
, (A.31)

where i = 1, 2 corresponds to the minus and the plus sign, respectively. Now, the pseudo
entropy turns to

Scon = c

12 log



∣∣∣∣ξ− L

2

∣∣∣∣+ ∣∣∣∣ξ+ L

2

∣∣∣∣−2
√∣∣∣∣ξ2− L2

4

∣∣∣∣Θ
(
ξ2− L2

4

)
2

× 16
ϵ4

∣∣∣∣∣ξ2− L2

4

∣∣∣∣∣
 , (A.32)
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Sdis = c

12 log

64(ξ2− L2

4

)2

× 1
ϵ4

+2Sbdy, (A.33)

SDir = 1
12 log


{∣∣∣ξ− L

2

∣∣∣+ ∣∣∣ξ+ L
2

∣∣∣−2
√∣∣∣ξ2− L2

4

∣∣∣Θ(ξ2− L2

4

)}2

{∣∣∣ξ− L
2

∣∣∣+ ∣∣∣ξ+ L
2

∣∣∣+2
√∣∣∣ξ2− L2

4

∣∣∣Θ(L2

4 −ξ2
)}2 ×64

(
ξ2− L2

4

)2

× 1
ϵ4

 .
(A.34)

They are exactly (5.3)–(5.5).

A.3.2 Time dependence for semi-infinite subsystem

Then, we consider a case of the single-slit, where the size of subsystem L is ∞. In other
words, we should consider the situation where w1 = τ + il and w2 = τ + i∞ in figure 1. In
this case, w2 is no longer a boundary, so we need only compute a one-point function on w2,

⟨σn(w1)⟩ =
(∣∣∣∣ dzdw

∣∣∣∣
w1

ϵ

[2Imz1]

)
, (A.35)

where z is the conformal map from w to the upper half-plane,

z = f(w) = i
√
w + δ.

Hence, the pseudo entropy is,

S
JQ|Ω
[l,∞[ = − ∂

∂n
⟨σn(w1)⟩

∣∣∣
n=1

= c

12 log
(
|f(w1)− f(w1)|2

|f ′(w1)|2ϵ2

)
. (A.36)

Substituting w1 = τ + il and δ → 0, we get

S
JQ|Ω
[l,∞[ (t) =

c

12 log

(√τ2 + l2 + τ l√
τ2 + l2

)τ +
√
τ2 + l2 + τ +

√
τ2 + l2√

τ2 + l2
δ

 /ϵ2


δ→0−−−→ c

12 log
[
8
√
τ2 + l2

(
τ +

√
τ2 + l2

)
/ϵ2
]

= c

12 log
8
√
l2 − t2

(
it+

√
l2 − t2

)
ϵ2

. (A.37)

This is (5.10).

B Connected and disconnected contributions to entropy in holographic
CFT

For reference, here we present the plots of the real/imaginary part of the connected and
disconnected contributions to pseudo entropy in the holographic CFT for the three cases
of table 1: EE in joining quench (figure 25), PE in single-slit (figure 26/figure 27) and PE
in double-slit (figure 28/figure 29).
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Figure 25. The connected/disconnected contribution to entanglement entropy SA(ξ)(t)−S
(0)
A(ξ) in the

holographic CFT for A(ξ) = [ξ− 10, ξ+10] is shown in the left/right column. The top/middle/bottom
row represents the spatiotemporal/spatial/temporal dependence. We chose c = 1, ϵ = 1, δ = 0.1, and
Sbdy = 0.
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Figure 26. The real part of the connected/disconnected contribution to the pseudo entropy SJQ|Ω
A(ξ) (t)−

S
(0)
A(ξ) in the holographic CFT for A(ξ) = [ξ − 10, ξ + 10] is shown in the left/right column. The

top/middle/bottom row represents the spatiotemporal/spatial/temporal dependence. We chose c = 1,
ϵ = 1, δ = 0.1, and Sbdy = 0.
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Figure 27. The imaginary part of the connected/disconnected contribution to the pseudo entropy
S

JQ|Ω
A(ξ) (t)− S

(0)
A(ξ) in the holographic CFT for A(ξ) = [ξ − 10, ξ + 10] is shown in the left/right column.

The top/middle/bottom row represents the spatiotemporal/spatial/temporal dependence. We chose
c = 1, ϵ = 1, δ = 0.1, and Sbdy = 0.
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Figure 28. The real part of the connected/disconnected contribution to the pseudo entropy
S

JQ1|JQ2
A(ξ) (t) − S

(0)
A(ξ) in the holographic CFT for A(ξ) = [ξ − 5, ξ + 5] is shown in the left/right

column. The top/middle/bottom row represents the spatiotemporal/spatial/temporal dependence.
We chose c = 1, ϵ = 1, δ = 0.1, and Sbdy = 0.
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Figure 29. The imaginary part of the connected/disconnected contribution to the pseudo entropy
S

JQ1|JQ2
A(ξ) (t)− S

(0)
A(ξ) in the holographic CFT for A(ξ) = [ξ − 5, ξ + 5] is shown in the left/right column.

The top/middle/bottom row represents the spatiotemporal/spatial/temporal dependence. We chose
c = 1, ϵ = 1, δ = 0.1, and Sbdy = 0.
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