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Equilibrium problems are important problems which include various of nonlinear 
problems. To analyze it we often use the notion of resolvent operators. It is a very 
important concept, since the solution of the equilibrium problem coincides with the 
set of fixed points of the resolvent. In this paper, we prove an approximation theorem 
for the solution to the equilibrium problem in CAT(-1) space using the resolvent 
with the CQ projection method. 

The CQ projection method for a nonexpansive mapping was firstly proposed by 
Nakajo and Takahashi. 

Theorem 1 (Nakajo and Takahashi [4]). Let H be a Hilbert space. Let T: H→ H 

be a nonexpansive mapping with F(T) -/-0. For given x = x1 E H, C1 = Q1 = H, 

define { Xn} by 

Cn+l = {z EH  I IITxn -zll :S:: llxn -zll}, 

Qn+l = {z EH  I〈Xn-Z,X -％〉 2::O}, 

Xn+l = Pcn+1nQn+1 X. 

Thenxn→PF(T)x, where PK: H→K is the metric projection of H onto a nonempty 
closed convex subset K of H. 

Following this result, Tada and Takahashi proposed an approximation result for 
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equilibrium problems in Hilbert spaces as follows: 

Theorem 2 (Tada and Takahashi [5]). Let C be a nonempty closed convex subset 
of H. Let f be a bifunction from C x C to股 satisfying(E1}-(E4} and let T be a 
nonexpansive mapping of C into H such that F(T)nS(f)ヂ0.Let { xn} be a sequence 
generated by x1 = x E H and let 

叫＝ R心 jXn,

叫＝ （1 -％）％ ＋疇恥

Cn = {z EH  I llwn -zll ~ llxn -zll}, 

Qn = {z EH  I〈Xn-Z,X-％〉 2:O}, 

Xn+l = P,ら nQ占・

for every n EN, where { an} C [a, 1] for some a, b E (0, 1) and｛入n}C (0, oo) satisfies 
liminfn→00入n> 0. Then, {xn} converges strongly to PF(T)nS(f)％・

Motivated by this result, the second author introduced a resolvent on CAT(l) spaces 
[2], and we obtained the following convergence theorem. 

Theorem 3 (Itagaki and Kimura [1]). Let X be an admissible complete CAT(1) space 
with the convex hull finite prope廿y.Suppose that X satisfies the following: 

• {z EX  I d(u, z) ~ d(v, z)} is convex for u, v EX; 
• {z EX  I cosd(u,v)cosd(v,z) 2: cosd(u,z)} is convexforu,v EX. 

Let K be a nonempty closed convex subset of X. Suppose that f: K x K →股 satisfies
the condition (E1)-(E4). For each x EX, define a subset R1x of K by 

R戸＝｛zEK 閻 f(z,y) -logcosd(x, y) + log cos d(x, z)) 2'. 0}. 
Let｛入n}C [a,oo[ and O < aく oo. Generate {xn} by x,x1 EXぶ＝ Q1= X, 

and 

Cn+l = {z EX  I d(R心 f”い）さ d(xn,z)}, 

Qn+l = {z EX  I cosd(x,xn)cosd(xn,z) ~ cosd(x,z)}, 

Xn+l = Pcn+1nQn+1 x. 

for n EN. Then Xn→Psu)x・ 

We apply the resolvent of the equilibrium problem in CAT(-1) space to the CQ 
projection method, and prove an approximation theorem of the solution to the equi-
librium problem. 
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2 Preliminaries 

Let X be a metric space and T: X→X. The set of all fixed points of T is denoted 
by F(T), that is, 

F(T) = {z EX  I z = Tz}. 

Tis said to be quasinonexpansive, if F(T)#-0 and d(Tx, z) :S:: d(x, z) for x EX  and 
z E F(T). 

Let X be a metric space. For x, y E X, a mapping c: [O, d(x, y)]→X is called 
a geodesic if c satisfies c(O) = x, c(d(x, y)) = y, and d(c(s), c(t)) = Is -ti for every 
s, t E [O, d(x, y)]. If for any x, y EX, there exists a unique geodesic with endpoints x 
and y, then X is called a uniquely geodesic space. For a uniquely geodesic space X, 

the image of the geodesic with endpoints x, y E X is denoted by [x, y]. In this case, 
there exists a unique z E [x, y] such that 

d(x, z) = (1 -t)d(x, y) and d(z, y) = td(x, y). 

We denote it by z = tx EB (1 -t)y and we call it a convex combination of x and y. 
Let (X, d) be a uniquely geodesic space. The triangle△(x, y, z) formed by x, y, z E 

X is called a geodesic triangle. Consider the two-dimensional hyperbolic space lHI2 as 
a model space of X. Then for a point x, y, z E X, a comparison triangle万（瓦戸）
of△(x, y, z) is defined as a triangle on lHI2 such that d(x, y) = dIHI2個，y),d(y, z) = 
dIHI2（刃，芝），d(z,x) = dIHI2（芝，百）． Acomparison point of p = tx①(1 -t)y E [x, y] is 
defined by p = t歪① (1-t)y E［歪，y].If X satisfies that 

d(p, q) ::::;如(p,q) 

for any△(x,y,z), p,q E△(x, y, z) and p, q E△（歪g，芝）， thenit is called a CAT (-1) 
space and this inequality is called the CAT(-1) inequality. 

Theorem 2.1. Let X be a CAT(-1) space. Then 

cosh d(txEB(l -t)y, z) sinh d(x, y) 

::::; coshd(x, z) sinhtd(x, y) + coshd(y, z) sinh(l -t)d(x, y) 

forx,y,zEX andtE [0,1]. 

Let X be a complete CAT(-1) space. Let C C X be a nonempty closed convex 

set. Then, there exists a unique Yx E C satisfying 

d(x,y』=in[d(x,y)
yEC 

for x E X. We define Pc: X→C by Pcx = Yx for x E X. We call it the metric 
projection onto C. 
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3 Approximation of a solution to an equilibrium problem 

Let X be a complete CAT(-1) space. Let KC  X be a nonempty closed convex set. 
An equilibrium problem for f: K x K →股 isthe problem of finding z0 E K such 
that f(z0, y) 2 0 for ally EK. The solution set S(f) is defined by 

S(f) = { z E K I j閥f(z,y) 2 0}. 
We suppose the four conditions for f as follows: 

(El) f(x, x) = 0 for all x EK; 
(E2) f(x, y) + f(y, x) ~ 0 for all x, y EK; 
(E3) f(x, ・): K →尺 islower semicontinuous and convex for every x E K; 
(E4) For every u,v,y E K,limsupt→l f(tu① (1 -t)v, y)さf(u,y). 

Lemma 3.1 (Kimura and Sasaki [3]). Suppose that X is a CAT(-1} space with the 
convex hull finite property. Define a subset T1x of K by 

T戸 ＝｛zEK I j叩f(z, y) + log cosh d(x, y) -log cosh d(x, z)) 2 0} 
for every x E X. Suppose that f : K2→艮 satisfies(E1}-(E4} and 

(ES} _lim_inf 
f(v,z) 

+1>0 
d(V,z)•~ d(v, z) 

zEK 

for all v EK. Then, a mapping T1 is well defined as a single-valued mapping. 

Lemma 3.2 (Kimura and Sasaki [3]). For any x, y EX,入，μ > 0, 

（入十μ)・ coshd(T入jX,TμJY) ~ μ. 十入・
cosh d(TμJY, x),, cosh d(T入fx,y)

coshd(T入1x,x)',. coshd(TμJY,Y)° 

Theorem 3.1. Let X be a complete CAT(-1} space with the convex hull finite prop-
erty. Suppose that X satisfies the following: 

• {z EX  I d(u, z)~ d(v,z)} is convexforu,v EX; 
• {z EX  I coshd(u,v)coshd(v,z)~ coshd(u, z)} is convex for u, v EX. 

Let K c X be a nonempty cloded convex set. Suppose that f: K x K →股 satisfies
(E1}-(E5} and S(f)ヂ0.Define T1: X→K by 

T戸 ＝｛zEK；叩f(z, y) + log cosh d(x, y) -log cosh d(x, z)) 2 0} 
for every x E X. Let｛入n}C [a, oo[ and O < aく oo.Generate {xn} by x1 EX, C1 = 
Q1=X, and 

Cn+l = { Z E X I d(T心JXn,z) ~ d(xn, z)}, 
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Qn+l = {z EX  I coshd(x, Xn) coshd(xn, z) :S coshd(x, z)}, 

Xn+l = Pcn+1nQn+1 X 

for n EN. Then Xn→Ps(f)x EK. 

Proof. First, we prove { Xn} is well-defined by induction. C1 = Q1 = X is a closed 
convex set and S(f) c C1 n Q1. For k E N, assume that Ck, Qk are closed convex 
sets and they satisfy S(f) c Ck n Qk. Since {z E X I d(T.心戸k,Z):::;d(xk, z)} is 
convex by assumption, we know that Ck+l is closed and convex. Similarly, since 
{z EX  I coshd(x，咋）coshd(xk,z):S coshd(x,z)} is convex by assumption, we also 

know that Qk+1 is closed and convex. Next, we prove S(f) c Ck+1 n Qk+l・ Let 
z E S(f) = F(Tt). Since Tt is quasinonexpansive, we have d(T.心f咋，z)さd(xk,z), 
and we obtain z E Ck+l・ This implies S(f) C Ck+l・ Moreover, we can show S(f) C 

Qい1.Fix z E S(f) arbitrarily. Then, z E Ck n Qk and thus 

tz④ (1 -t)咋＝ tz④ (1-t)PcknQ戸 Eckn Qk 

fort E ]O, 1[. Therefore, 

2coshd(x，咋）cosh((1 -;) d（正）） sinh(;d（咋，z))

= cosh d(x, Xk)(sinh d(xk, z) -sinh((l -t)d(xk, z))) 

= coshd(x,PcknQ戸）sinhd(xk,z)-coshd(x，吹）sinh((l-t)d(xk, z)) 

:::; coshd(x,tz① (1 -t)咋）sinhd(xk,z) -coshd(x，咋）sinh((l-t)d(xk, z)) 

さcoshd(x,z) sinh(td(xk, z)) 

= 2coshd(x,z)cosh (;d（砂，z))sinh (;d（咋，z)).

When z cf-Xk, dividing by 2sinh(td(xk,z)/2) and letting t→0, we have 

coshd(x，咋）coshd（咋，z):::;coshd(x, z). 

From the definition of Qい1,we have z E Qい1.If z = Xk, then obviously z E Qい1・
Therefore, we get S(f) C Qk+1. Hence we have Ck+l and Qk+1 are closed convex sets 
and S(f) C Ck+l nQk+l. Since the intersection of closed convex sets is a closed convex 

set, there exists the metric projection to Ck+1 nQk+1 and咋＋1= Pck+inQk+1 x can be 
defined. Therefore {xn} is well-defined. It is also shown that Ps(f)X E S(f) C CnnQn 

and Cn n Qn C Qn+l, for arbitrary n EN. 
Next, we prove d(T.心fXn,%）→ 0.For arbitrary n E N, since Psu)x E S(f) C 

Cn n Qn, from the definition of the metric projection, we get 

d(x, Xn) = d(x, P,ら nQnX):Sd(x, Psu)x) < oo. 

Therefore, { Xn} is bounded. Fix z E Qn+l arbitrarily. From the definition of Qn+l, 
we have 

coshd(x, Xn) cosh d(xn, z) :S cosh d(x, z) 
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and then, 
coshd(x, xn) :::=:; coshd(x, z). 

It follows that 
ipf d(x, y)さd(x,Xn)さd(x,z). 

yEQn+l 

It implies that d(x, Xn) = infyEQれ十1d(x,y). Therefore, we have PQn+ix = Xn = 

PcnnQnX E Cn n Qn C Qn+l・ Thus, we obtain 

d(x, Xn) = d(x, P,ら nQnx)= d(x,PQn+lx) 

::; d(x, Pcn+1nQn+l x) = d(x, Xn+i), 

for n EN. Hence {d(x,xn)} is a nondecreasing sequence. Thus, {coshd(x,xn)} is 
nondecreasing and bounded above, so we get 

lim cosh d(x, Xn) = c > 0. 
n→OO 

Also, since Xn+l E Cn+l n Qn+l C Qn+l, we have 

cosh d(x, Xn) cosh d(xか％＋1):::; cosh d(x, Xn+i) 

for n EN. Letting n→oo, we have 

clim sup cosh d(％心 ＋1):::; C. 

n→OO 

Thus, dividing by c > 0, we get 

lim sup cosh d(xn心n+l)S:: 1, 
n→OO 

and since 

1さ： liminf cosh d(xn, Xn+1)：：：：： lim sup cosh d(xn, Xn+1)：：：：： 1, 
n→OO n→OO 

we get limn→00coshd(xn,Xn+1) = 1. This implies limn→00 d(xn, Xn+1) = 0. Further-

more, since Xn+l E Cn+l n Qn+l C Cn+l, we have d(T,心JXn,Xn+1) ~ d(xn, Xn+1) for 
n E N. Thus we get, 

0 ~ d(T.心 JXn,Xn) ~ d(T,心 JXれ,Xn+1) + d(xn+l, Xn) ~ 2d(xn, Xn+i)→0. 

Finally, we show Xn→Ps(f)X-Since supnEN d(x, Xn) < oo, {xn} is bounded. Fix 
{ Xni} C { Xn} arbitrarily. Then there exist｛入nij}C {.Xni} and {xnij} C {xni} such 

that入nij→入。 E[a, oo] and x叫 ~wo. Suppose入nij→ oo.For any y EX, we have 

d(T入n勺戸n,j'y)：：：：： d(T入冗戸n勺'Xn,j)+ d(xn,j, y) 
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：：：：： 2d(T兄 jf”叫 'Xn,j)+ d(T,入n;jf”叫 'y).

Then, 

limsup d(T_心 JXn,,,y) = limsup d(xn,,, y). 
t. 

j→OO 3 
3 

） 
j →OO 

3 

We also have 

(% ＋1 coshd T 
3 

） （入
叫

f%，TfWo) 
3 

cosh d(TJWo, Xn;J. cosh d(T-入 fXn;;'wo)
< J ＋ 入冗 3

cosh d(T-入 f%，％）
叫 3

叫 coshd(Ttwo, wo) ・ 
3 3 

Thus, 

coshd(T入 fXni,'Ttwo)ni. 3 3 

1 cosh d(TJWo, XniJ 
3 十 叫

入 coshd(T心．fXni;'wo)
< J 

J 

＿入n,3+ 1. coshd(T入 叫 戸n,3,Xn,3) ％ ＋ 1. coshd(TfWo, Wo) ． 
J 

It follows that 

. coshd(T心 JXni.,,wo) 
lim sup cosh d(T>.n" fXni;, T1wo) :S lim sup 勺

J 

入
j→oo 3 3 j •~,, cosh d(T1wo, wo)' 

and 

coshlimsup・J→oo d(T入n;"fXni;, Wo) 
cosh lim sup d(T,入 f”m,TfWo)< 3 3 

J→OO 叫 j,-;~u;- coshd(TJWo,fwo) 

Therefore 

cosh lim sup1→00 d(xn,1, wo) 
coshlimsupd(xn,,, Ttwo)三

j→00 3 coshd(TfWo,Wo) 

Hence we get wo E F(Tt) = S(f). 
Next, suppose入ni1→入。 E[a, oo[. We also have 

（入ni1+ 1) cosh d(T>-ni1 f”叫’乃wo)

三入ni1cosh d(T>-ni1戸ni1,wo)+coshd(x叫’乃wo).

Then, 

入n,jcoshd(T心 勺 戸n,j,T1wo) + coshd(T心勺戸n,j'T1wo)
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<入n;jcoshd(T>-n;j jXn;j'wo) + cosh d(x叫’乃Wo)．

It follows that 

入n,,cosh d(T,入
J 

(T>-n,, JXn,j, T1wo) 
J 

<入n,3coshd(T心勺戸n,1,Wo) + cosh d(Xn,1, T1wo) -cosh d(T,入叫戸n,J,TfWo)，

and 

coshd(T,心 f”叫’乃wo)
J 

coshd(xn,1, T1wo) -coshd(T,入n;jJXn,j, T1wo) 
:S coshd(T,心 JXn,1,wo)+ j J --'"'j 入

n, 
J 

I cosh d(Xn,1, T1wo) -cosh d(T,心勺戸n;j'T1wo)I
さcoshd(T,入 叫 戸n,1,wo) + 

a 

It follows that 

limsupcoshd(T入 f”ntJ,TfWo)< limsupcoshd(T心勺戸n,j'wo),
j→OO 

叫 J
j→OO 

which implies 

limsupd(T.入
t. 

n f”m,T戸 o)::::;limsupd(T.入n;,JXn,,'Wo). 
j→(X) 3 

3 J ● →(X)3  
3 

Therefore we have 

limsupd(x叫巧wo):<::: limsup d(xn;j, wo). 
j→00 J j→OO 

Thus T1wo = wo. Then we have 

d(x,Pscnx)：：：：： d(x, wo)：：：：： liminfd(x,xn,3) 
j →OO 

：：：：： lim sup d(x, Xn;J 
j→OO 

：：：：： supd(x, Xn) 
nEN 

：：：：： d(x, Pscnx). 

Thus, d(x, Pscnx) = d(x, w0), and hence w0 = Pscnx. From the inequality above, we 
also have lim1→ood(x,Xn;j) = d(x,Pscnx), and then Xn;j→Pscnx. Consequently, 

we have 

Xn→ PS(f)x, 
which is the desired result. 口
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