A convergence theorem to a solution

to an equilibrium problem using CQ projection method
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1 Introduction

Equilibrium problems are important problems which include various of nonlinear
problems. To analyze it we often use the notion of resolvent operators. It is a very
important concept, since the solution of the equilibrium problem coincides with the
set of fixed points of the resolvent. In this paper, we prove an approximation theorem
for the solution to the equilibrium problem in CAT(—1) space using the resolvent
with the CQ projection method.

The CQ projection method for a nonexpansive mapping was firstly proposed by
Nakajo and Takahashi.

Theorem 1 (Nakajo and Takahashi [4]). Let H be a Hilbert space. Let T: H — H
be a nonexpansive mapping with F(T) # 0. For given x = x; € H, C; = Q1 = H,
define {x,} by

Crny1={2 € H ||[Tzy — 2| < [lzn — 2|},

QnJrl = {Z €H | <‘77n —Z,I—$n> > 0}7

Tn+l1 = PC'n+1ﬁQn+1x'

Then x,, — Pp(ryx, where Pk : H — K is the metric projection of H onto a nonempty
closed convex subset K of H.

Following this result, Tada and Takahashi proposed an approximation result for



equilibrium problems in Hilbert spaces as follows:

Theorem 2 (Tada and Takahashi [5]). Let C' be a nonempty closed convex subset
of H. Let f be a bifunction from C x C to R satisfying (E1)-(E4) and let T be a
nonezpansive mapping of C into H such that F(T)NS(f) # 0. Let {x,,} be a sequence
generated by x1 =x € H and let

Up = Ry, §%n,

wy = (1 — ap)xn + apSuy,
Co={2€ H||wn — 2| < [lzn — 2},
Qn={z€ H|(xyp—z,2 —x,) > 0},
Tn+1 = Po,nq., 2.

for every n € N, where {a, } C [a, 1] for some a,b € (0,1) and {\,} C (0,00) satisfies
liminf, oo Ap > 0. Then, {z,} converges strongly to Ppryns(s)Tn-

Motivated by this result, the second author introduced a resolvent on CAT(1) spaces
[2], and we obtained the following convergence theorem.

Theorem 3 (Itagaki and Kimura [1]). Let X be an admissible complete CAT(1) space
with the convex hull finite property. Suppose that X satisfies the following:

e {z€ X |d(u,z) <d(v,z)} is convex for u,v € X;
e {z € X |cosd(u,v)cosd(v,z) > cosd(u,z)} is convex for u,v € X.

Let K be a nonempty closed convex subset of X. Suppose that f: K x K — R satisfies
the condition (E1)-(E4). For each x € X, define a subset Ryx of K by

Rex _{ZEK

ig}f((f(z,y) —logcosd(x,y) + logcosd(x, z)) > 0} .
y

Let {\,} C [a,00] and 0 < a < c0. Generate {z,} by z,21 € X,C1 = Q1 = X,
and
Crhy1 ={z€ X | d(Ry, frpn,2) < d(zpn,2)},
Qn+1 ={z € X | cosd(x,x,)cosd(xy, z) > cosd(z,2)},
Tp+1 = PCn+1ﬂQn+1x'
forn € N. Then x, — Ps(p .

We apply the resolvent of the equilibrium problem in CAT(—1) space to the CQ
projection method, and prove an approximation theorem of the solution to the equi-
librium problem.



2 Preliminaries

Let X be a metric space and T: X — X. The set of all fixed points of T" is denoted
by F(T), that is,
FT)={ze€X|z=Tz}.

T is said to be quasinonexpansive, if F(T) # ) and d(Tx, z) < d(z,2) for z € X and
z € F(T).

Let X be a metric space. For x,y € X, a mapping c¢: [0,d(z,y)] — X is called
a geodesic if ¢ satisfies ¢(0) = z,c(d(z,y)) = y, and d(c(s),c(t)) = |s — t| for every
s,t € [0,d(z,y)]. If for any z,y € X, there exists a unique geodesic with endpoints =
and y, then X is called a uniquely geodesic space. For a uniquely geodesic space X,
the image of the geodesic with endpoints z,y € X is denoted by [z,y]. In this case,
there exists a unique z € [z, 3] such that

d(z,z) = (1 —t)d(z,y) and d(z,y) = td(z,y).

We denote it by z = tx @ (1 — ¢)y and we call it a convex combination of z and y.

Let (X, d) be a uniquely geodesic space. The triangle A(z,y, z) formed by z,y, z €
X is called a geodesic triangle. Consider the two-dimensional hyperbolic space H? as
a model space of X. Then for a point z,y,z € X, a comparison triangle A(T, 7, Z)
of A(z,y,2) is defined as a triangle on H? such that d(z,y) = du=(Z,7),d(y, 2) =
dy2(9,%),d(z,2) = dy2(Z,Z). A comparison point of p = tax @ (1 — t)y € [x,y] is
defined by p =t @ (1 — t)y € [7,7]. If X satisfies that

d(p, Q) S de (ﬁ7 6)

for any A(x,y,2), p,q € A(z,y,2) and p,q € A(T,7,Z), then it is called a CAT(—1)
space and this inequality is called the CAT(—1) inequality.

Theorem 2.1. Let X be a CAT(—1) space. Then

coshd(tx®(1 — t)y, z) sinh d(z, y)
< coshd(z, z) sinh td(x, y) + cosh d(y, z) sinh(1 — ¢)d(z, y)

for x,y,z € X and t € [0, 1].

Let X be a complete CAT(—1) space. Let C' C X be a nonempty closed convex
set. Then, there exists a unique y, € C satisfying

d(x,ys) = ylgg d(x,y)

for x € X. We define Po: X — C by Pox = y, for x € X. We call it the metric
projection onto C.



3 Approximation of a solution to an equilibrium problem

Let X be a complete CAT(—1) space. Let K C X be a nonempty closed convex set.
An equilibrium problem for f: K x K — R is the problem of finding zy € K such
that f(zo,y) > 0 for all y € K. The solution set S(f) is defined by

S(f) = K | inf >0,.
(n={zen | nt s =of
We suppose the four conditions for f as follows:

(E1) f(z,z) =0 for all z € K;

(E2) f(z,y) + f(y,z) < 0 for all z,y € K;

(E3) f(z,-): K — R is lower semicontinuous and convex for every z € K;
(E4) For every u,v,y € K,limsup,_,; f(tu® (1 — t)v,y) < f(u,y).

Lemma 3.1 (Kimura and Sasaki [3]). Suppose that X is a CAT(—1) space with the
convex hull finite property. Define a subset Trx of K by

i

Tir = {z € K | inf
yeK

(f(z,y) +logcoshd(z,y) — logcoshd(z, z)) > O}
for every x € X. Suppose that f: K?> — R satisfies (E1)-(E4) and

... f(u,2)
E5) 1 f
(B3) Hmint
zeK

+1>0

for allv € K. Then, a mapping Ty is well defined as a single-valued mapping.
Lemma 3.2 (Kimura and Sasaki [3]). For any z,y € X, A\, u >0,

coshd(T), 5y, x) ) coshd(Thsz,y)
coshd(Tyz, x) coshd(T,5y,y)’

Theorem 3.1. Let X be a complete CAT(—1) space with the convex hull finite prop-
erty. Suppose that X satisfies the following:

e {z€ X |d(u,z) <d(v,z)} is convex for u,v € X;
e {z € X | coshd(u,v)coshd(v,z) < coshd(u,z)} is convex for u,v € X.

()\ + ,U) - cosh d(T)\f.I', Tﬂfy) <u-

Let K C X be a nonempty cloded convex set. Suppose that f: K x K — R satisfies
(E1)-(E5) and S(f) # 0. Define Ty: X — K by

i

Trx = {z € K| inf
yeK

(f(z,y) +logcoshd(x,y) — logcoshd(z, z)) > O}

for every x € X. Let {\,} C [a,00] and 0 < a < co. Generate {x,} by 1 € X,Cy =
Q1 =X, and

Cnp1={z€X| d(T)\nf‘rnvZ) < d(Tn, 2)},



Qnt1 ={z € X | coshd(z,z,) coshd(x,,z) < coshd(z, z)},

Tp+1 = PCn+1ﬁQn+1x
forn € N. Then x, — Pspr € K.
Proof. First, we prove {z,} is well-defined by induction. C; = @1 = X is a closed
convex set and S(f) C Cy N Q. For k € N, assume that Cy, Qy are closed convex
sets and they satisfy S(f) C Cp N Qr. Since {z € X | d(T», fzr,2) < d(zk,2)} is
convex by assumption, we know that Cjy; is closed and convex. Similarly, since
{z € X | coshd(x,xy) coshd(xy,z) < coshd(x,z)} is convex by assumption, we also
know that Qg1 is closed and convex. Next, we prove S(f) C Cri1 N Qr+1. Let
z € S(f) = F(Ty). Since Ty is quasinonexpansive, we have d(Ty, fzi, 2) < d(xy, 2),
and we obtain z € Cyyq1. This implies S(f) C Ciy1. Moreover, we can show S(f) C
Qr+1- Fix z € S(f) arbitrarily. Then, z € Cy, N Q and thus

tz b (1 — t)xk =tz (1 — t)Pckakx € CrNQy
for t €0, 1[. Therefore,

t t
2 coshd(x, x) cosh ((1 - 2> d(xg, z)) sinh <2d(mk, z)>
= cosh d(z, ) (sinh d(zg, 2) — sinh((1 — t)d(xg, 2)))
= coshd(x, Po,nq,x) sinh d(xy, 2) — coshd(z, zi) sinh((1 — t)d(zg, 2))
< coshd(z,tz & (1 — t)ay) sinh d(zk, 2) — cosh d(z, ) sinh((1 — t)d(zg, 2))
< coshd(z, z) sinh(td(z, 2))

t t
= 2coshd(z, z) cosh <2d(a:k, z)) sinh <2d(xk, z)> .

When z # zy, dividing by 2sinh(td(zk, z)/2) and letting ¢ — 0, we have

—_= ==

coshd(x, xy) coshd(xy, z) < coshd(z, z).

From the definition of Qgy1, we have z € Qg+1. If 2 = x, then obviously z € Q1.
Therefore, we get S(f) C Qx+1. Hence we have Ci11 and Q41 are closed convex sets
and S(f) C Cr+1NQk+1. Since the intersection of closed convex sets is a closed convex
set, there exists the metric projection to Cy41NQk41 and 1 = Pe, 0@, T can be
defined. Therefore {x,,} is well-defined. It is also shown that Pg sz € S(f) C C,NQy
and C), N Q,, C Qpn+1, for arbitrary n € N.

Next, we prove d(Tx, fZn,2n) — 0. For arbitrary n € N, since Pgpyz € S(f) C
C, N Q,, from the definition of the metric projection, we get

d(z,z,) = d(z, Po,nq,r) < d(z, Ps(pz) < oc.

Therefore, {x,,} is bounded. Fix z € Q,+1 arbitrarily. From the definition of @41,
we have
coshd(x, z,) coshd(z,, z) < coshd(z, z)



and then,
coshd(z,z,) < coshd(z, z).
It follows that
inf d(z,y) <d(z,z,) <d(z,z).
yeQn+1

It implies that d(z,z,) = inf,cq,,, d(x,y). Therefore, we have Py, o = z, =
Pc,ng,r € Cp, N Qp C Qpt1. Thus, we obtain

d(l‘,l‘n) = (‘T?PC'nﬂan) = d($7PQn+1:L‘)
(‘7:’ PC7L+1mQ1L+1x) = d(CL’, xn-l—l)y

for n € N. Hence {d(z,z,)} is a nondecreasing sequence. Thus, {coshd(z,z,)} is
nondecreasing and bounded above, so we get

lim coshd(z,z,) =c> 0.

n— 00

Also, since x,,41 € Cpp1 N Qni1 C Qni1, we have

cosh d(z,x,,) coshd(xy,, Tp+1) < coshd(z, xpi1)

for n € N. Letting n — oo, we have

climsup cosh d(z, Zpt1) < c.
n— 00

Thus, dividing by ¢ > 0, we get

lim sup cosh d(xy, xp11) < 1,
n—oo

and since

1 < liminf cosh d(xy,, £n11) < limsup cosh d(xy,, z,11) < 1,

n—oo n—00

we get lim, o coshd(xy,, ;1) = 1. This implies lim,, o d(zy, zpt1) = 0. Further-
more, since zp 11 € Cpi1 NQpy1 C Crg, we have d(Th, s, Tny1) < d(xy, Tpq1) for
n € N. Thus we get,

0 < d(T)\annvxn) < d(TAnfxnvxn+1) + d(anrlvxn) < 2d(xn7 anrl) — 0.

Finally, we show x,, — Pg(s)z. Since sup,cyd(z,x,) < 00, {x,} is bounded. Fix
{zn,} C {z,} arbitrarily. Then there exist {)\mj} C {An,} and {xnlj} C {xn,} such

that A, — Ao € [a, oo] and Tn,, A wo. Suppose Ap, — oc. For any y € X, we have

d(T)\ni fEng,s y) < d(TAni fTng s T, )+ d(mnij JY)
j j



< 2d(Da,, gTni;s Tny) + A, pni5Y)-

Then,
limsupd(T, fZn, ,y) = limsupd(zy, ,y).
ij j J

j—o0o Jj—oo
We also have

(An,, +1) cosh d(T,\nij fn,;, Trwo)

cosh d(Tywo, zp, ) cosh d(Tx\ni,fﬂﬁmj ; Wo)
J J

An,
= coshd(Th,, f%n,;,Tn,,) + Ay cosh d(Tpwo, wo)
i
Thus,
cosh d(T)‘"ij Fng s Tywy)
1 cosh d(Tywo, Tn, ) Ani, cosh d(T)\nij FTn,,,Wo)

< . + .
> )\mj +1 cosh d(T,\ni T, xmj) >\m-j +1 cosh d(T 'ty , wo)
J

It follows that

coshd(Ty, FTnis wo)
i

I hd(Ts.  an . Trwe) < i
im sup cosh d Ang; ST rwo) < ljnisogp cosh d(T'pwo, wo)

j—roo
and
' coshlimsup;_, . d(Th,, Fong s wp)
cosh h;_n_>s02p d(T,\nij Fong s Trwo) < cosh d(Tyu, ftjuo)
Therefore

coshlimsup;_, d(xnij , W)

hli d(zn, , Trwo) <
O ey (@, Tywo) < cosh d(Tswo, wo)

Hence we get wo € F(Ty) = S(f).
Next, suppose An, — Ao € [a, oo[. We also have

()\nij +1) cosh d(T)\nij fxnij ’ waO)

< )‘nij cosh d(TAnij Fn s wp) + cosh d(a:m.j , Trwy).

Then,

Ani, coshd(TA"ij Fong Tywp) + cosh d(T,\"ij Fong s Trwo)



< )\nij cosh d(T)\nij Fng wp) + cosh d(xnij , Trwy).
It follows that
An,, cosh d(TAniJ_ fTni Trwy)
< An,, cosh d(Th,, Fn, s wp) + cosh d(xmj ,Tywo) — coshd(Ty,, FTni, s Trwo),
ij K i
and
COShd(T)\nij fxmj y wao)
coshd(zn, Trwg) — coshd(Th,, FTn, s Trwo)
i
Mo
| cosh d(xn,, Tywo) — cosh d(T)\nl_j Fng, Trwy)|

< COShd(T)\n. fxn,'j)wo) +
¥

<coshd(Ty, jxn, ,wo)+
ij J a

It follows that

lim sup cosh d(T),, £n,;» Tywo) < limsup cosh d(T»,, FTn, s wp),
i i

j—roo j—oo
which implies
limsupd(Ty, fxn, ,Trwo) <limsupd(Ty, fZn, ,wo).
Jj—o0 J J j—oo i J

Therefore we have

limsup d(zy, ,Tfwo) < limsup d(z,, ,wo).

j—o0 J j—oo ’

Thus Tywo = wo. Then we have

d(z, Ps(ryr) < d(z,wo) < liminfd(z, z,, )

Jj—o0 J

< limsupd(z, z,, )
Jj—o0 7
< supd(z, zn)
neN

< d(ac, Pg(f)x).

Thus, d(z, Ps(pyz) = d(x,wp), and hence wy = Pg(s)z. From the inequality above, we

also have lim;_, o d(m,mnij) = d(z, Ps(fyx), and then T, — Pg(pyz. Consequently,
we have
Ty — Ps(f)l‘,

which is the desired result.
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