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Abstract
In a geodesic space with curvature bounded above by a positive real number,
a coefficient condition of the Halpern type iterative sequence is different from
one on geodesic spaces with nonpositive curvature. In this paper, we consider a
modified proximal point algorithm with an anchor point and resolvent operators
of a convex function.

1 Introduction

To find a minimiser of a convex function, we often use iterative approximation methods
which generate a sequence converging to a minimiser of the convex function, or a fixed
point of a resolvent operator. The proximal point algorithm is a canonical minimiser
approximation method, and it has many modified types. These schemes have been in-
vestigated on Banach spaces such as function spaces. Recently, they are also studied
in geodesic spaces which are called CAT (k) spaces. Particularly, a CAT(1) space in-
cludes the infinite dimensional unit sphere. Kimura and Kohsaka obtained the following
pioneering result:

Theorem 1.1 (Kimura—Kohsaka [4]). Let X be an admissible complete CAT(1) space
and [ a proper lower semicontinuous convex function from X into ]—oo, 00| which has a
minimiser. Let {\,} be a positive real sequence such that infyey A > 0. Let {,} be a
real sequence of |0, 1[ such that lim,,_,o, a, = 0 and that ZZOZI a? = oco. For an anchor
point u € X and an initial point x1 € X, generate a sequence {x,} of X as follows:

Ry, sz, = Argmin (A, f(2) + tand(z, ) sind(z, x,,)) ;
zeX

Trg1 = apu @ (1 — an) Ry, fTn

for each n € N. Then, {x,} converges to the closest minimiser to the anchor point u.
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In this theorem, we need to suppose that > a? = oco. However, for instance,

in Hilbert space, we assumed that Y >~ a, = oco. In this paper, we consider a new
coefficient condition for the Halpern type proximal point algorithm.

2 Preliminaries

Let (X,d) be a metric space and D € [0,00[. We call X a uniquely D-geodesic space
if there exists a unique geodesic for each two points in X, namely, for each z,y € X,
there is a unique isometric mapping 7z, from [0,d(z,y)| into X such that ~,,(0) = «
and gy (d(z,y)) = y. In this case, we denote a point v, ((1 —t)d(z,y)) by tz® (1 —1t)y,
and call it a convex combination for x and y with a ratio t.

Let X be a uniquely w-geodesic space. The canonical definition of a CAT(1) space
uses geodesic triangles and their comparison triangles in the two-dimensional sphere.
However, we can define a CAT(1) space as follows: We call X a CAT(1) space if

cosd(tx @ (1 —t)y, z)sinl > cosd(x, z) sin(tl) + cos d(y, z) sin((1 — t))

for every z,y,z € X with d(y,z) + d(z,2) +1 < 27 and t € [0,1], where | = d(z,y).
Moreover, X is said to be admissible if d(u,v) < 7/2 for any u,v € X.
Let X be an admissible CAT(1) space and C a subset of X. We say C' is convex if
tr ® (1 —t)y € C for every z,y € C and t € [0,1].
Let X be an admissible CAT(1) space, z,y € X and ¢ € [0,1]. Then, a real valued
function defined by
z > teosd(z,z) + (1 —t)cosd(z,y)

for z € X has a unique maximiser [6]. We denote such a point by

1
tzd (1 -ty
and call it 1-convex combination for x and y with a ratio ¢.

Theorem 2.1 (Kimura—Sasaki [6]). Let X be an admissible CAT(1) space. Then,

tcosd(x,z) + (1 —t)cosd(y, 2)
- \/t2 (1—1t)2+¢t(1 —t)cosd(x,y)

1
cosd(tx @ (1 —

for each xz,y,z € X and t € [0,1].

Let X be a metric space and T' a mapping on X. We call T a quasinonexpansive
mapping if its fixed point set FixT = {& € X | T2 = z} is nonempty and

d(p,Txz) < d(p,x)

for any p € FixT and € X. On an admissible CAT(1) space, the fixed point set of a
quasinonexpansive mapping is closed and convex.

Let C be a nonempty closed convex subset of an admissible complete CAT(1) space X.
Then, for x € X, there exists a unique point p, € C such that d(z,p,) = inf cc d(z, y).
We call such a mapping Po defined by Pox = p, a metric projection onto C'. The
metric projection Pg is quasinonexpansive with the fixed point set Fix Po = C.
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Let X be a metric space and {z,} a bounded sequence of X. An asymptotic centre
AC({z,}) of {z,} is defined by

AC({z,}) = {z € X

limsup d(z, z,) = inf limsup d(y,xn)}.

n—00 y€X n—oo

Let {x,,} be a sequence of X and xy € X. We say that {z,} A-converges to a A-limit xg
if {zo} = AC({xy,}) for any subsequence {x,,} of {z,}. A sequence {x,} of a CAT(1)
space X is said to be spherically bounded if

m
inf limsupd(z,z,) < —.
zEX lng)oop ( Y ’I’L) 2
We know the following lemmas about A-convergence:

Lemma 2.2 (Espinola—Ferndndez-Ledn [1], Kirk—Panyanak [7]). Let X be a complete
CAT(1) space and {zn} a spherically bounded sequence of X. Then, AC({x,}) is a
singleton and {x,} has a A-convergent subsequence.

Lemma 2.3 (He-Fang-Lopez-Li [2]). Let X be an admissible complete CAT(1) space.
Then,
d(zg, z) < lirginf d(zp, 2)

for all z € X whenever a spherically bounded sequence {x,} A-converges to xg € X.

Let X be an admissible complete CAT(1) space and f a function from X into |—oco, ).
We say that f is proper if its effective domain dom f = {x € X | f(z) < oo} is nonempty.
We say that f is lower semicontinuous if its level set is closed everywhere. Moreover, f
is said to be convex if

flz e (1 —t)y) <tf(z)+ (1 -1)f(y)
for any z,y € X and ¢t € ]0,1[.

Lemma 2.4 (Kimura—Kohsaka [3]). Let X be an admissible complete CAT(1) space
and f a proper lower semicontinuous convex function from X into |—oo,00]. Then,

f(o) < limin f(z,)

whenever a spherically bounded sequence {x,} of X is A-convergent to xg € X.

Let X be an admissible complete CAT(1) space and f a proper lower semicontinuous
convex function from X into |—o0, 00]. We denote its minimiser set by

Min f = Argmin f(z) = {z eX ’ f(z)= ylg}f{ f(y)} .

zeX

Then, Min f is closed and convex. For z € X, a function defined by
z > f(2) +tand(z, x) sind(z, x)
for each z € X has a unique minimiser [3]. We define a mapping Ry on X by

{Rjz} = Argmin (f(z) + tand(z, z) sind(z,z)) C dom f
zeX



for each z € X, and call it a resolvent operator for f. Note that the fixed point set
Fix Ry coincides with the minimiser set Min f and that R is quasinonexpansive if f
has a minimiser. We show the following lemma:

Lemma 2.5. Let X be an admissible complete CAT(1) space and f a proper lower
semicontinuous convex function from X into |—oo,o0]. Then,

f(Ryx) < f(w) + ! ! ] + 1) (coslcosd(Ryx,x) — cosd(w,x))

sinl ((3052 d(Rsx,x
for any w,x € X with Ryx # w, where l = d(Ryzx,w).
Proof. Fix w,x € X with Ryx # w arbitrarily. Let 7 € |0,1[ and w, = Tw & (1—7)Ryz.
Then, by the definition of R, we have
f(Ryx) +tand(Ryx, x)sind(Ryx, z)
< f(w;) + tand(w,, ) sin d(w,, x)
< 7f(w) + (1 —7)f(Rsx)+ tand(w,, x) sind(w,, x)
and hence
Tf(Rsz) < 7f(w) + tan d(w,, x) sind(w,, z) — tand(Ryz, z) sin d(Ryz, x).

Moreover, we get

tan d(w,, z) sind(w,, x) — tand(Ryz, ) sind(Rsx, x)
_sin®d(wy,x)  sin®d(Ryz,x)  1—cos’d(wy,x) 1—cos®d(Ryx,x)
~ cosd(wr,x)  cosd(Rpz,x)  cosd(w,,x) cosd(Ryx, x)

1 1

- cosdwr,x) - ———
cosd(w,, ) cosd(wr, ) cosd(Ryx,x)

+ cosd(Ryz, x)

cosd(Ryx,x) — cosd(wy, )
= d(R+ ~ cosd(w,
cos d(wy,x) cosd(Ryx,x) +cosd(Ryz,x) — cosd(w,, )
1

(cos d(ws,x)cosd(Ryz,

] + 1) (cosd(Ryx,x) — cosd(ws,x)).

Thus, we obtain

1
cosd(wy,z) cosd(Ryz,x

Tf(Ryz) < 7f(w)+ ( ] + 1) (cosd(Ryx,x) — cosd(ws,)) .

Dividing both sides by 7 > 0, we get

1 . 1) (cos d(Rsz, ) — cosd(w,, m)) .

cosd(w;,z) cosd(Ryx, x) T

gy < )+
Then,

cosd(Ryx,x) — cosd(w,, )

T

13
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cosd(Ryx, x)sinl — cosd(w, ) sin(7l) — cosd(Ryx, x) sin((1 — 7)I)

- Tsinl

_ (sinl —sin((1 — 7)I)) cosd(Rsx, x) — cos d(w, x) sin(7l)

N Tsinl
and thus

1 L(7)
<

() f(Brz) < flw) + (cos d(w,,x)cosd(Ryx,x) 1> Tsinl’
where

L(r) = (sinl — sin((1 — 7){)) cos d(Rsz,x) — cos d(w, x) sin(rl).
Note that L(7) tends to 0 as 7 N\, 0. From 1'Hospital’s rule, we have

/ _ —
lim L(.T) — lim L.(T) — lim lcos((1 — 7)1) cos d(fo',x) lcosd(w, z) cos(Tl)
N0 7sinl  \0 sinl 7\0 sinl

l
= (coslcosd(Ryx,x) — cosd(w, z)).

Thus, letting 7 \, 0 for the inequality (%), we obtain

f(Ryx) < f(w) + : L ] + 1) (coslcosd(Ryx,x) — cosd(w, x)).

sin! (c052 d(Ryz,x
It completes the proof. O

Corollary 2.6. Let X be an admissible complete CAT(1) space and f a proper lower
semicontinuous convez function from X into |—oo,00]. Then,

for any w,z € X.
Proof. For | € ]0,7/2[, we know that
l m
— < =<2
sinl — 2

The desired inequality holds if w = Ryx. Suppose that w # Ryx. Then,

d(w, Ryx) 1
sind(w, Rya) (cos? A(Ryz.7) + 1) (cosd(w, Ryz) cosd(Ryx,x) — cosd(w, z))
d(w, Ryzx)
1 —
~ sind(w, Ryx) (cos2 d(Rysz,x) + > (cos d(w, Ryz) = cos d(w, z))
d(w, Ryx) 1
1 d — d
~ sind(w, Ryx) (cos2 d(Ryz,x) * ) [oos d(w, Ryx) = cos d(w, z)|

1
< cos2 d(Rysx, ) - .
=2 ((3052 d(Ryz, z) T 1) |cos d(w, Ryx) — cosd(w, z)|
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From the previous lemma, we obtain

f(Ryx) < f(w) + 2 ( L ] + 1> |cosd(w, Ryx) — cosd(w,x)|,

cos?d(Ryx,x
which completes the proof. O

3 A Halpern type proximal point algorithm

The following lemma plays an important role for a proof of Halpern type convergence
theorems:

Lemma 3.1 (Kimura—Saejung [5], Saejung—Yotkaew [8]). Let {s,} be a nonnegative
real sequence of and {t,} a real sequence. Let {B,} be a real sequence of ]0,1] such that
Soo2  Bn = 00. Suppose that

Sn+1 S (]- - ﬁn)sn + Bntn

for allm € N and that limsup,_,  t,, < 0 for every subsequence {s,,} of {sn} satisfying
that im sup; _, oo (Sn; — Sny+1) < 0. Then, lim, o0 s, = 0.

Now, we can prove the following theorem:

Theorem 3.2. Let X be an admissible complete CAT(1) space and f a proper lower
semicontinuous convez function from X into |—oo, 00| such that Min f is nonempty. Let
{An} be a positive real sequence such that infrpeny A > 0. Let {e,,} be a real sequence of
10, 1[ such that lim,, o £, = 0 and that Y > | €, = co. For an anchor point u € X and
an initial point x1 € X, generate a sequence {x,} of X as follows:

Ry, rx, = Argmin (A, f(2) + tand(z, z,) sind(z, z,,)) ;
zeX

o, €

\/En N cos2 d(uiRA"fx) _ cos d(U,QR)\nfl') Ven| €10,1[;

1
Tn+1 = apu® (1 — ap) Ry, r2n

for each n € N. Then, the generated sequence {x,} converges to a minimiser Pyin ru,
where Pyiin £ 15 @ metric projection onto Min f.

Proof. For € €]0,1] and ¢ > 0, we have

0<+Vet+e2—c<e<l.
\/€+C2—C>\/C>2—C:0

Indeed,

and

2
(\/6+c2—c) =422 —2cVet+<e+22—2eV2 =¢ < 1.

Therefore, the sequence {z,,} is well defined and lim,,_,~ a,, = 0. Moreover,

o + oy, cosd(u, Ry, jxn) > €p
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for all n € N. Set p = Puin fu and R, = R, ¢ for each n € N. Since R,, is quasinonex-
pansive for each n € N|
cosd(p, Tnt1) > ap cosd(p,u) + (1 — ay,) cosd(p, Rpxy)
> ay, cosd(p,u) + (1 — ) cosd(p, x,,) > min{cosd(p, u), cosd(p, x,)}.

Therefore, for all n € N,

d(p7 Rnxn) S d(pa xn) S maX{d(p7 U), d(p,.’l/'l)} < ga
which implies that {R,x,} is spherically bounded. Set l,, = d(u, R,,x,) for each n € N.
Let

Sn =1 —cosd(p,x,)

and

(1 —ap + Va2 + (1 —ay,)? + 20, (1 — ) cos ln) cosd(u,p)

ay, + 20, (1 — o) cosly,

th=1—

for each n € N. Further, let M,, = /a2 + (1 — a,,)? + 2a,(1 — ay,) cosl, and

17
P S

n

for each n € N. Note that

M, =+/a2 + (1 — an)? + 2a,(1 — ay) cosl, < 2.

Since {a, } converges to 0, there exists ng € N such that 1—a,, > 1/2 whenever n > ny.
Hence, for n € N with n > ng,

l—a, M,—(1-a,) M2 —(1-ap,)?

n = 1 = =
A M, M, Mp (M, + (1 —ay))
2 -~ 2
az + 20 (1 — ay) cosl, S On + oy, cosly, S En
- 6 - 6 - 6

which implies that Zf;l Bn = oo. For arbitrary fixed n € N,

Snt1 =1 —cosd(p,zp+1) = 1 — cosd(p, anué (1 —ap)Rpxy)
ap, cosd(p,u) + (1 — o) cosd(p, Rpxy,)
M,
ap, cosd(p,u) + (1 — ay,) cosd(p, )
M,
M, — ay cosd(p,u) — (1 — ay) cosd(p, )
M,

<1-

IN

1—

1 - WUn
- M: (1 —cosd(p,z,)) +

= (1 - ﬂn)sn +

M, — (1 — ay) — a, cosd(p,u)
MTL

M, — (1 — ap) — ay, cosd(p, u)

M, '
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Moreover,

M, — (1 — ay) — oy cosd(p, u)
M,
M, — (1 —ay) —apcosd(p,u) , M, —(1—a,)—a,cosd(p,u)
Bn My, = b M, —(1—ay)
L ME—(1—)? — an (M, + 1 —ay,)cosd(p, u)
= Fn M2 —(1—ap)?
024200, (1 — o) cosly, — o (My, + 1 — ay,) cos d(p, )
= Bn a2 + 2a, (1 — ay) cosly,
(M, + 1 — o) cosd(p,u) (1 - ay + M,) cosd(p,u)
(- e )~ ( o)
a2 + 20, (1 — ap) cosly, apn 4 2(1 — ay) cosly,

:ﬁn

= Bntn
and therefore

Sn+1 S (]- - ﬁn)sn + ﬂntn

Take a subsequence {s,,} of {s,} such that

lim sup (Sp; — Sn;+1) <0,
1— 00
and we show that limsup,_, . t,, < 0. Note that lim, . o, = 0 and lim,, oo M,, = 1.
If lim sup,_, ., cosl,, = 0, then

1—an, + M,, d
limsupt, = 1 — liminf (A —an, + My,)cosd(u,p) _
oo i~00 Qi + 20, (1 — ap, ) cos iy,

Suppose that limsup,_, . cosl,, > 0. Then,

0> lim sup (Sm - 8ni+1) = hm sSup (COS d(p7 anrl) — COS d(p7 mm))

i—»00 i—00
= limsup <cos d(p, amué (1 = an;) R, xn; ) — cosd(p, xm)>

1—> 00
> limsup (an, cosd(p, u) + (1 — an,) cos d(p, Ry, Tn,) — cosd(p, Tn,))
= li;;sot‘;p (cosd(p, Rp;xn,;) — cosd(p, Tn,))

11— 00

> liminf (cos d(p, Ry, zn,;) — cosd(p,zp,)) >0
11— 00

and thus lim; o (cosd(p, Ry, Tn,) — cosd(p, ;) = 0. Set D,, = d(R,xn,y) for each
n € N. From Lemma 2.5, when d(R,,,z,,,p) # 0, we know that

< flp)+

1 d(R,, T . D, — cosd(p,z,.)).
sind(Rp, Zn,,p) \ cos? D, + )(cos (Rpn,Zn,,p) cos Dy, — cosd(p, zp,))
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Since f(Rn,Zn,) — f(p) > 0, we have

= sind(Rn,; Tn,, P)

1
((3052 D + 1) (cos d(Rn,Tn,,p) cos D, — cosd(p,xp,)) .

Therefore,
0 < cosd(Ry,;Zn,,p) cos Dy, — cosd(p, Tp, ).

This inequality also holds when d(R,,2n,,p) = 0. Further, this inequality implies that
0 < cosd(Ry,xn,,p)(cos Dy, — 1) + cos d(Ry, Tn,,p) — cosd(p, T, )
and hence

cos d(Ry, X, ,p) — cosd(p, Tn,) o1 |cos d( Ry, Xn,;, p) — cosd(p, T, )]

cosD,, >1—
= cosd(Ry,,xn,;,p) cosd(Ry,, Tn,,D)

- |COS d(anxnﬂp) — Cos d(pa xnz)‘
- cos (max{d(p,u),d(p,z1)})

It implies that lim; ,~ Dy, = 0. Moreover, From Corollary 2.6, we obtain

F(Boin) < 1) +2 ( 1) ottt f) = eon )

cos? D,,, An,

1 |cos d( Ry, Tn,;,p) — cosd(p, T, )]
< 2 1 L :
< fp)+ <0052 D, + ) infren A\,

for all i € N. Since {R,,,zn,} is spherically bounded, it has a A-convergent subsequence.
Let {ij xnij} be a A-convergent subsequence of {R,,,z,,} such that

liminf/,, = liminfd(u, R,,2n,) = lim d(u, Ry, ©p, ) = lim I,, .
1—>00 1—00 J—00 J J j—o0 J

Let w € X be its A-limit. Since

im (cos d(p, Rn; Xn, ) — cosd(p, xnl)) =0,
—00 J J J

J

letting j — oo, we have
f(w) < liminf f(Rp, zn, )
j—00 7 ’

1 . ‘cos d(Rnij Tn,, ,p) — cosd(p, Tn,, )
cos? Dy, +

< f(p) + 2liminf )

j—o0

< f(p) = inf f(y)

yeX

inkaN /\k

and thus w € Min f. Since p = Pyin su is the closest minimiser to u, we obtain

liminfl,, = lim l,, = lim d(u, Ry, zpn, ) > d(u,w) > d(u,p).
Jj—00 J J

1—>00 J Jj—o0



Now, we have

lim supt,, = 1 — liminf (1 — Qp, + Mnl) CcoS d(u,p)

00 00 Qi + 20, (1 — ap,) cosly,
cos d(u,p) _1 cos d(u,p)
B limsup,_, ., cosl,, cos (liminf; o 1y,)
<1- cosd(u,p) o
cos d(u,p)

Consequently, from Lemma 3.1, we obtain lim,_,« S, = 0, namely, {x,} converges to
PMin fu.

In the iteration of Theorem 3.2, we can take {a,} as {\/€,}. In Theorem 1.1, the sum
of square of the coefficients sequence of convex combination should diverge. Theorem 3.2
means that we can remove this assumption by using 1-convex combination. However, we
have not known whether we can obtain some similar result in the case of the canonical
convex combination yet.
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