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Approximation of a common fixed point using a balanced

mapping in Hadamard spaces and its application
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Abstract

In this paper, we introduce a Mann iteration of a balanced mapping of a
countable family of nonexpansive mappings in Hadamard spaces. Further, we
prove a strong convergence theorem with the combining projection method of
balanced type using a finite family of mappings in a real Hilbert ball.

1 Introduction

Approximation of a fixed point is studied by many researchers in various spaces. As
a most famous method of approximation technique, we know the projection method.
In 2003, Nakajo and Takahashi introduced Nakajo—Takahashi projection method in
Hilbert spaces [9]. In 2005, Takahashi et al. introduced the shrinking projection method
in Hilbert spaces [11].

In 2011, Kimura et al. introduced another projection method, which is called the
combining projection method.

Theorem 1.1 (Kimura et al. [7]). Let C be a nonempty closed conver subset C
of a Hilbert space. Let In = {1,2,...,N} and T} a nonezpansive mapping of C
into itself for j € In such that ﬂ;VZIFiij # @. Let {a, | n € N} C [0,1],
{B7|j€In,neN}C[0,1] such that E;V:lﬁfl =1forneN, {yi|nkeNEk<
n} such that Y _ Ynk = 1 forn € N, and {6, | n € N} C [0,1]. Define a sequence



{zn} by u,z1 € C and

ny =anty + (1 — )Tz, for j € In;
CrJ; = {Z S C‘ Hz—yﬂlH < HZ_wnH} for j € In;

n N
Tp41 = 5nu + (1 - 6") Z’Yn,k Zﬁipcixn
k=1 j=1

for each n € N, where Pk is the metric projection of H onto a nonempty closed
convex subset K of H. Suppose the following conditions hold:

(i) iminf, . o, < 1;

(ii) B85 >0 for all j € In;
(i41) 1imy, o0 Yne > 0 for all k € N oand Y07 1 >0 1 [nt1k — Yokl < 005
(iv) lim,, o0 6, = 0, fo:l 0p = 00 and 2211 [0n41 — In] < 00.

Then, {xn} converges strongly to Pax gy 1, u.
=

In geodesic spaces, the convex combination of more than three points are order-
dependent in general. In 2018, Hasegawa and Kimura [5] introduced another definition
of convex combination which is order-independent for three points. Using this notion,
Kimura and Ogihara [6] introduced the combining projection method of balanced type
and proved a convergence to a fixed point of a nonexpansive mapping.

In this paper, we consider approximating a common fixed point of a countable or
finite family of mappings in Hadamard spaces. In section 3, we introduce a Mann iter-
ative scheme of a balanced mapping of a countable family of nonexpansive mappings
and prove a delta-convergent to a common fixed point. In section 4, we introduce the
combining projection method of balanced type of a finite family of mappings in a real
Hilbert ball.

2 Preliminaries

Let X be a metric space. A set FixT is all fixed points of a mapping T of X into
itself. A mapping T is nonexpansive if the inequality d(Tz, Ty) < d(x,y) holds for
all x,y € X. A mapping T is quasinonexpansive if FixT # & and the inequality
d(Tz,z) < d(z,z) for x € X and z € FixT. A nonexpansive mapping T with Fix T #
@ is quainonexpanisve. Indeed, for x € X and z € FixT, by nonexpansiveness of T,
it follows that

d(Tx,z) = d(Tx,Tz) < d(z,z)

and hence T is quasinonexpansive.
Let f be a function of X into R. A set Argmin, ¢ f(y) is defined by

Avguin () = { = € X . 1) = int 1) |

yeX yeX
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Let {x,} be a bounded sequence of X and zy € X. Then, xq is an asymptotic center
of {z,} if the equality

limsup d(x,,xq) = inf limsupd(z,,y)
n—00 y€X nooo
holds. The set of all asymptotic centers of {z,} is denoted by AC({x,}). Further,
{zn} is delta-convergent to xy if for all subsequence {z,,} of {z,}, AC({zn,}) = {x0},

which is denoted by z,, A To.

A metric space X is a uniquely geodesic space if for all z,y € X, there exists
a unique mapping v of [0,d(z,y)] into X such that v(0) = z, v(d(z,y)) = y and
d(v(s),7(t)) = |s — t| for all s,t € [0,d(x,y)]. Let x,y € X. Then, we can take
a unique point z = y((1 — t)d(z,y)) for each ¢ € [0, 1], which is called a convex
combination between x and y and is denoted by z =tz @ (1 — t)y.

Let X be a uniquely geodesic space and z,y,z € X. Then, a geodesic triangle of
vertices x,y, z is defined by Im 7., UIm~,. UIm~.,, which is denoted by A(z,y, 2).
For x,y,2 € X, a comparison triangle to A(z,y,z) C X of vertices Z,¥,z € E? is
defined by Imvyz5 U Im~yzz U Im~zz with d(z,y) = dg2(Z,7), d(y, 2) = dg2(7, ) and
d(z,x) = dg2(z, %), which is denoted by A(Z,7,z). A point p € Im~z5 is called a
comparison point of p € Im~,, if d(z,p) = dg=(Z,p). A uniquely geodesic space X
is called a CAT(0) space if for all z,y,2z € X, p,q € A(x,y, z) and their comparison
points p, G € A%, 7, 2), it follows that d(p,q) < dg2(p, 7). A complete CAT(0) space
is called a Hadamard space.

The following lemmas are important properties of a CAT(0) space.

Lemma 2.1. Let X be a CAT(0) space. Then,
d(te & (1 - t)y,2)* < td(z,2)* + (1 = t)d(y, 2)* — t(1 — t)d(z,y)?

for each x,y,z € X andt € [0,1].

Lemma 2.2 (Kirk and Panyanak [8]). Let X be a Hadamard space. Then every
bounded sequence has a subsequence which is delta-convergent to xg € X.

Lemma 2.3 (Dhompongsa, Kirk and Sims [2]). Let X be a Hadamard space and
{zn} a bounded sequence of X. Then the asymptotic center of {x,} consists of one
point.

In 2018, Hasegawa and Kimura introduced a notion of a balanced mapping and
consider its properties in Hadamard spaces.

Theorem 2.1 (Hasegawa and Kimura [5]). Let X be a Hadamard space, T; a non-
expansive mapping of X into itself fori=1,2,... N such that ﬂivzl FixT; # @, and
{ai:i=1,2,...,N} C10,1[ such that X o’ =1. Let

N

Uz = Argmin Z o'd(Tix,y)?
yeX i—1
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for each x € X. Then, the following conditions hold:

(i) U is nonexpansive;

(ii) FixU = NN, Fix T;.

In the following theorem, Kimura and Ogihara [6] prove properties of a balanced
mapping.

Theorem 2.2 (Kimura and Ogihara [6]). Let X be a Hadamard space, C' a nonempty
bounded subset of X, Ty a nonexpansive mapping of X into itself for k € N with
M FixTy, # @, {a® | n,k € Nk < n} C ]0,1] such that > ,_, ok =1 for all
n € N. Let

n
U,z = Argmin Z afd(Tyz,y)
YEX k=

for each n € N and x € X. Suppose the following conditions:

o lim,, .o afl >0 fork eN;
LD DD Py |a§+1 —ap| < oo
Then the following conditions hold:
(Z) ZZO:I SUPgec d(Un+1$, U’ﬂx) < 005
(ii) there exists a mapping U: X — X such that Ux = lim,,_, o Upx for eachx € X;
(111) lim,, o0 sUp,cc d(Upz, Uz) = 0;
(iv) U is nonexpansive and FixU = (N, Fix T.

In the following, we introduced a Halpern iteration with a balanced mapping of
countable family of nonexpansive mappings in Hadamard spaces.

Theorem 2.3 (Hasegawa [4], Kimura and Ogihara [6]). Let X be a Hadamard space,
T}, a nonezxpansive mapping of X into itself for k € N such that F' = ﬂzozl Fix Ty # @,
{af | n,k € NJk < n} C [0,1] such that > ;_,o% =1 for alln € N, and {6, | n €
N} C [0,1]. Let

U,z = Argmin Z oafd(Tyx, y)?
veX k4

for allz € X and n € N. Define a sequence {x,} by u,z; € X and
Tpt1 = 0pu @ (1 = 6,)Upayp,
for each n € N. Suppose the following conditions hold:

(i) lim, oo @f >0 for k € Nand Y07 S0 ok —ak| < oo;
(i) limy, o0 0, =0, fo:l O0p = 00 and Zf:;l [0n41 — In] < 00.

Then, {x,} is convergent to Pru, where Pr is the metric projection of X onto F.

The following lemma is important to prove a delta-convergence theorem of a count-
able family of nonexpansive mappings.
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Lemma 2.4 (Tan and Xu [12]). Let {a,} and {b,} be two sequences of nonnegative
real numbers such that an41 < an+by, for alln € N. If 377 b, < oo, then lim,, o ap
exists.

3 Delta-convergence theorem using a balanced mapping

In this section, we prove an approximation theorem of a common fixed point of a
countable family of nonexpansive mappings in Hadamard spaces.

Theorem 3.1. Let X be a Hadamard space, T}, a nonexpansive mapping of X into
itself for k € N such that F = (o, FixTy, # @, {af | k,n € N,k < n} C [0,1] such
that Y p_,af =1 forn €N, and {t,, | n € N} C [0,1[. Let

n
U, = Argmin Z oFd(Tx,y)?
yeX k=1

for each n € N and x € X. Define a sequence {x,} of X by x; € X and

Tl =ty © (1 —tp)Unxy
for all n € N. Suppose the following conditions:
(i) lim, oo @f >0 for k€ N and > 00 S0 ok | —alf| < oo;
(i1) S5, tal1 — t) = oc.
Then {x,} is delta-convergent to xo € F.

Proof. Let p € F. Then p € (,_, FixT}, for n € N. Since U,, is quasinonexpansive
for n € N, we get

d($n+lap) S tnd(q"nap) + (1 - tn)d(Unwnap) S d(xnap)

and hence {d(z,,p)} is nonincreasing. Then, there exists lim, o d(z,,p). Further,
we get

d($n+1,p)2 S tnd(xnyp)2 + (1 - tn)d(Unxnvp)2 - tn(l - tn)d(xnv Unxn)Z
S d(xnvp)z - tn(l - tn)d(xny Unxn)Q
and hence
tn(l - tn)d<xny Unfn)Q S d(xnap)2 - d(xn+1ap)2-

Since Y, to(1 — t,) = oo, we get liminf, o d(z,, Uyz,) = 0. We next show
limy, 00 d(xy, Upzy,) = 0. Let C' be a nonempty bounded subset of X including {z,,}.
By the nonexpansiveness of U,, for n € N, we get

d($n+17 UnJrlanrl) S d(anrlv Unwn) + d(Unmnu Unanrl) + d(Un$n+17 UnJrlanrl)



d(.’L’n+1, Unl'n) + d(xn+17 $n) =+ d(Un.’En+17 U’n+1$n+1)
= d(xnv Unl'n) + d(Unxn+1; Un+1$n+1)
d(xp, Upzy) + sup d(Upx, Up 1)
zeC

for all n € N. By Theorem 2.2, >>° | sup,cc d(Upz,U,t12) < co. By Lemma 2.4,
there exists lim, oo d(zp, Upzy,) and hence lim, o d(2y,, Upzy,) = 0. By Theorem
2.2, there exists a mapping U: X — X such that Uz = lim,,_,, U,z for each z € X,
U is nonexpansive and Fix U = F. Take a subsequence {z,, } of X with AC({z,,}) =
{yo} arbitrary. Since {z,,} is bounded, there exists a subsequence {:Em]} of {xn,}

such that T, A zop € X. Then, we get

d(mnij ) Umnij ) (mmj ) Uni]- Tny; )+ d(Unij Tng, s anij)

(xmj , Uni]_ £L‘mj) + sug d(Unij z,Ux).
Te

<d
<d
From (iii) of Theorem 2.2, we get lim,,_, d(xnij ) anij) = 0. Then, we get

limsup d(xy,, ,Uz) < limsup(d(x,, ,Uzy, )+ dUzy, ,Uz))
j—>oo J J—>OO J J J
= limsupd(Uz,, ,Uz)
j—o0 J
< limsupd(zy, ,20)
j—o0 ’

and hence zp € FixU = F. Put AC({z,}) = {y,}. Then, we get

lim sup d(x,,, 20) = limsup d(zy, , 20)
n— o0 j—oo J

< limsupd(zn, ,yo0)
j—oo g
11— 00

< limsup d(zn,, yj)

1—00

(
(
< limsup d(xn,, yo)
(
(

< limsup d(z,, yj) < limsup d(z,, yo)

n—oo n—oo

and hence y{, = yo = zo € F. Consequently, we complete the proof. O

4 The combining projection method of balanced type in a
real Hilbert ball

In this section, we introduce the combining projection method of balanced type
and prove its convergence to a common fixed point by applying Theorem 2.3 in a real
Hilbert ball.

25
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Let (H,| - ||) be a Real Hilbert space with inner product (-,-) and B = {z € H |
|z < 1}. we define p(-,-): B x B — R by

o [ O R0 )
plmy) = tank Vl e

for z,y € B. Then, (B, p) is a metric space, which is called a real Hilbert ball. Further,
we know that a real Hilbert ball is an example of Hadamard spaces, and a half space
{z € B|p(x,z) < p(y, 2)} is convex for z,y € B; see [1, 3, 10].

In the following theorem, we introduce a sequence generated by the combining

projection method of balanced type using a finite mappings, and prove its convergence
in a real Hilbert ball.

Theorem 4.1. Let B be a real Hilbert ball with the metric with p, T; a family of a
quasinonexpansive and continuous mappings of B into itself for i = 1,2,..., N such
that F = X, FixT; # @. Let {o, |n e N} c [0,1], {8 |i=1,2,...,N,n e N} C
10, 1] such that Ziil Bi =1 forn €N, {vor | n,k € Nk < n} C 0,1] such that
Shei Yk =1 forn €N, and {y, | n € N} C [0,1]. Let u € B and define sequences
{zn} and {y}}, sequences {V} and {U,} of mappings of B into itself, and a sequence
{CL} of a subset of B by 1 € B and

N.

b

Yl = anry, © (1 — ap)Tixy, fori=1,2,--

)

Cl = {zEB ‘ p(yl, 2) gp(xn,z)} fori=1,2,...,N andn € N;

N
Vix = ArgminZﬂfp(PC;xn,y)Z for k <n and x € X;
yeB T )

n
U,z = Argmin Z Y eP(Viex, y)? forx € X;
veB o

Tnt1 = 0pu® (1 — 0,)Upxy

for each n € N, where a mapping Pk is the metric projection of B into a nonempty
closed convex subset K of B. Suppose the following conditions:

(i) liminf, o v, < 1;
(i) BL >0 fori=1,2,...,N andn € N;
(i4i) 1imy, o0 Yne > 0 for k € Noand >00 S0 stk — Tkl < 00;
. . oo
() limy o0 ¥ =0 and >~ |41 — n| < 0.
Then, {x,} is convergent to Ppu.
Proof. Since {z € B | p(z,u) < p(z,v)} is convex for u,v € B and a metric p is

continuous, C?, is closed and convex for i = 1,2,..., N and n € N. Let p € F. Since
T; is quasinonexpansive for i = 1,2,..., N, we have F is closed convex and we get

p(Yh,p) = plagzy & (1 — ag)Tizy, p)



< agp(rr,p) + (1 — ag)p(Tivk, p)
< p(wk, p)

and hence p € C} for i € 1,2..., N and k € N. This implies that

N co N
o# (FixT, c () [)Ci-
=1

k=1i=1

Since a metric projection PC?; is nonexpansive for ¢ = 1,2,...,N and k € N, and
Theorem 2.1, we get V} is nonexpansive for & € N and

N N
Fix Vi = (| Fix Pe; = (| Ci.
=1 =1

for k£ € N and hence

00 oo N N
() FixVi= () () Ci > [ FixT; # @.
k=1 k=1i=1 i=1
Put Cp = (o>, N, Ci. Since Theorem 2.3, {x,,} is convergent to zo = P, u. Since
xg € Cp, we get 4
p(yvlw xo) < [)(%n, 1’0)

and hence y}, — xo for i = 1,2,...,N. By (i), there exists {on,} C {on,} such that
lim; o ap,; € [0, 1[. Then, it follows that

P(InjaTiwnj) = p(xnj,yflj) < (P(xn,-,fvo) + p(x()?y;j))

1—a«y,,

1—ay,, ;

for i = 1,2,...,N. Letting j — oo, we get lim; .o p(2n,; Tiz,,;) = 0. Since T; is
continuous for i = 1,2,..., N, we obtain
,0(1'0, Tlfl"O) S p(l'(),l'nj) + p(l'nj,TifL'nj) + p(ﬂ'xngaTle)

fori=1,2,...,N and j € N. Letting j — oo, we get g = Tyxg for i = 1,2,..., N.
This implies that xg € ﬂivzl Fix T;. Consequently, we complete the proof. O

Remark. In Theorem 4.1, we can replace B to a Hadamard space by adding the
condition that a half space

{ze X |d(z,x) <d(z,y)}

is convex for xz,y € X.

Acknowledgement. This work was partially supported by JSPS KAKENHI Grant
Number JP21K03316.

217



28

References

[1] M. Bacdk, Convexr analysis and optimization in Hadamard space, Walter de
Gruyter, Boston, 2014.

[2] S. Dhompongsa, W.A. Kirk and B. Sims, Fized points of uniformly lipschitzian
mappings, Nonlinear Anal. 65 (2006), 762-772.

[3] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpan-
siwe mappings, vol. 83 of Monographs and Textbooks in Pure and Applied Math-
ematics, Marcel Dekker, New York, NY, USA, 1984.

[4] T. Hasegawa, Convergence theorems with a balanced mapping on Hadamard
spaces, Master thesis, Toho University, 2019.

[5] T. Hasegawa and Y. Kimura, Convergence to a fized point of a balanced mapping
by the Mann algorithm in a Hadamard space, Linear and Nonlinear Anal. 4
(2018), 445-452.

[6] Y. Kimura and T. Ogihara, Strong convergence theorems and a projection method
using a balanced mapping in Hadamard spaces, Filomat 37 (2023), 9287-9297.

[7] Y. Kimura, W. Takahashi and J.C. Yao, Strong convergence of an iterative
scheme by a new type of projection method for a family of quasinonexpansive
mapping, J Optim Theory Appl. 149 (2011), 239-253.

[8] W. A. Kirk and B. Panyanak, A concept of convergence in geodesic space, Non-
linear Anal. 68 (12) (2008), 3689-3696.

[9] K. Nakajo and W. Takahashi, Strong convergence theorems for nonerpansive
mappings and nonexpansive groups, J. Math. Anal. Appl. 279 (2003), 372-379.

[10] 1. Shafrir, Theorems of ergodic type for p-nonexpansive mappings in the Hilbert
ball, Ann. Mat. Pure. Appl. 163 (1993), 313-379.

[11] W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hy-
brid methods for families of nonexpansive mappings in Hilbert spaces, J. Math.
Anal. Appl. 341 (2008), 276-286.

[12] Tan, K-K, Xu, HK, Approximating fixed points of nonexpansive mappings by the
Ishikawa iteration process, J. Math. Anal. Appl. 178, 301-308 (1993).



