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1 Introduction

Let K be a nonempty subset of a metric space X and f: K x K — R a bifunction.
An equilibrium problem is to find a point 2o € K such that f(xg,y) > 0forall y € K.
The set of solution to the equilibrium problem Equil f, that is,

Equil f = {xGK

yiglf(f(w,y) > 0}.

Equilibrium problems were first studied intensively by Blum and Oettli on topo-
logical vector spaces and Banach spaces. They proposed a mapping called a resolvent
of a bifunction for an equilibrium problem and showed that its domain is the whole
space. Further, Combettes and Hirstoaga studied resolvents of equilibrium problems
in Hilbert spaces and they obtained several important properties of the resolvent.
The following is one of the most important theorems.

Theorem 1.1 (Combettes—Hirstoaga [1]). Let H be a Hilbert space, and K a
nonempty, closed convexr subset of H. Suppose that f: K x K — R satisfies the
conditions (E1)-(E4).

(E1) f(x,z) =0 for allz € K;

(E2) f(x,y) + f(y,2) <0 for all z,y € K;

(E3) f(x,-): K — R is lower semicontinuous and convex for all x € K ;

(E4) f(-,y): K — R is upper hemicontinuous for all y € K.
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Define the resolvent Jy by

Jfl‘:{ZEK

() + (2 -y = 2) 20}

forx € H. Then Jy has the following properties:

1. The domain of Jy is H;
2. Jy is single-valued and firmly nonexpansive;
3. the set of all fizred points of J; coincides with Equil f and it is closed and convez.

Let X be a metric space and assume that C' C X is nonempty, closed, and convex.
Then, for all x € X, there exists a unique point z € C' such that

d(z,z) = ;Ielg d(z,y).

Using this point, we define a metric projection Po: X — C by Pox = z for x € X.
In 2008, Takahashi, Takeuchi, and Kubota prove a strong convergence theorem by
shrinking projection method as follows:

Theorem 1.2 (Takahashi, Takeuchi, and Kubota [5]). Let H be a Hilbert space and
C C H a nonempty closed convex set. Let T: C — C be a nonexpansive mapping
such that F(T) # @. Let w € H and {ayn} C [0,1] be a sequence. Let {x,} be a
sequence and {Cy,} subsets of H defined by C1 = C, x1 € C and

Yn = QpnTnp + (1 - an)T:rna
Crny1={2€C||lyn — 2| < [lzn = 2[} N Cy,

Ln4+1 = PC'n+1u'
Then, x,, — Ppmyu € C.

Further in 2023, Kimura proved the A-convergence theorem by modified shrinking
projection method for a nonexpansive mapping in CAT(0) space.

In this paper, we obtain a strong convergence theorem of an iterative sequence to
a solution to an equilibrium problem on a CAT(1) space. We use projection method
to generate the approximate sequence.

2 Preliminaries

Let X be a metric space. For z,y € X we define a geodesic between these points by
a mapping c: [0,d(z,y)] — X such that ¢(0) = z, c(d(z,y)) = y, and d(c(u), c(v)) =
|u — v| for any u,v € [0,d(x,y)]. We say X is uniquely m-geodesic if for any z,y € X
satisfying d(z,y) < 7, there exists a unique geodesic ¢ between these points. In this
case, we can define a convex combination between x,y € X if d(x,y) < 7. That is, for
such z,y € X and ¢ € [0,1], we define tx @ (1 — t)y = c¢((1 — t)d(x,y)). A m-geodesic



space X is called a CAT(1) space if

cosd(tx @ (1 —t)y,z)sind(z,y) > cosd(x, z) sintd(x, y) + cosd(y, z) sin(1l — t)d(z,y)

for all z,y € X with d(x,y) < wand ¢ € [0,1]. We say X is admissible if d(u,v) < 7/2
for all u,v € X.

Let X be a metric space and T: X — X. If the point z € X satisfying x = Tz,
then x is called a fixed point of T and we denote the set of all fixed points of T' by
F(T). An admissible complete CAT(1) space X has the convex hull finite property if
every continuous selfmapping on clco E has a fixed point for every finite subset E of
X, where clco E is the closure of the convex hull of X.

Theorem 2.1 (Kimura [2]). Let X be an admissible complete CAT(1) space having
the convex hull finite property and K C X a nonempty closed convex set. Suppose
that f: K x K — R satisfies the conditions (E1)-(E4). Define the resolvent Ry of f
by

i

Rpx = {z € K | inf
yeK

(f(z,y) —logcosd(z,y) + logcosd(z, z)) > O}

for all x € X. Then the following hold:

1. Ry: X — K s defined as a single-valued mapping;
2. Ry satisfies the following inequality for any x,y € X:

cosd(xz,Ryy)  cosd(y, Ryx)
cosd(z, Rgz)  cosd(y, Ryy)

3. F(Ry) = Equil f and it is closed and convez.

<2cosd(Rysx, Ryy);

Let X be CAT(1) space and {z,,} C X asequence. An asymptotic center AC({z})
of {x,} is defined by

AC({zn)) = {z X

A sequence {z,} C X is said to be A-convergent to zg € X if AC({z,}) = {xo} for
all subsequences {z,,} of {z,}. It is denoted by x, A xg.
Lemma 2.1 (Kimura and Oguchi [4]). Let X be an admissible complete CAT(1)

space having the convex hull finite property. Let K is a monempty closed convex
subset of X, and suppose that f: K x K — R satisfies (E1)-(E4). Let {\,} C]0,00]

and {x,} C X be sequences satisfying inf,, A\, > 0, =, AQTO and d(x,, R, fx,) — 0.
Then, xy € Equil f.

inf limsup d(z, x,) = limsup d(z, xn)} .
TE

n—oo n—oo

3  Main Result

We show a convergence theorem for an equilibrium problem defined on an admissible
complete CAT(1) space.
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Theorem 3.1. Let X be an admissible complete CAT (1) space having the convex hull
finite property and C C X a nonempty closed convex set. Suppose that f: C x C'— R
satisfies the conditions (E1)-(E4), and Equil f # @. Let {\,} C 0,00 be a sequence
satisfying inf,, A\, > 0. Suppose that {z € X | d(x,2) < d(y,2)} is convex for all x,y €
X. Let Ry, 5: X — C be the resolvent of A f for each n € N. Let {x,,} be a sequence
and Cy, a convex subset of X defined by x1 € C, C; = C, and

Chy1 ={2 € C|d(Rx, frn,2) < d(xn,2)} N Ch,

xn+1 PCn+1

for each n € N. Then, {x,} is well-defined and x,, Axo € Equil f.

Proof. We first show by induction that F(Ry, jz) C C,, and z,, is well-defined for
all n € N. F(Ry,y) C Cy is obvious. Suppose F(Ry,¢) C Ci. Let x € C and
z € F(Ry,f). Then

cosd(xz, Ry, rz) cosd(z, Ry, fx)

< 2cosd .
cosd(z, Ry, px) cosd(z, Ry, z) — cos d(R,. s, B r2)

Since z € F(Rjy, ), we have cosd(Rx, sz, z)cosd(z, Ry, fx) > cosd(x,z) and thus
d(z, Ry, jr) < d(z, z). This implies that z € Cy4; and hence F(Ry, ., ,f) C Cry1 # 2.
Therefore F(R), s) C Cy, # @ for all n € N. Further, we know that C,, is closed and
convex for all n € N and thus {z,,} is well-defined.

Next, we show that z, Agg € Equil f. Let u € F(Ry, ). Since {P¢, } is quasi-
nonexpansive, d(z,1,u) = d(Pc, 11,u) < d(zp,u) and thus {d(z,,u)} converges to
some ¢ € [0,7/2[. From the definition of CAT(1) space, we have

cosd(Tpy1,Tn)sind(u, Tpy1)

= cosd(Pc,,,

> cosd(tu® (1 -1t)Pc,,, i1 Tn)

> cosd(u, 2, ) sintd(u, Pc T, Tp)sin(l — t)d(u, Pe
(

= cosd(u, z,) sintd(u, Tpy1) + oS d(Tp41, @) sin(l — t)d(u, Tpi1)

T, Tn)sind(u, Po, , Ty)
Ty Ty sind(u, Po

n+1xn) =+ cos d<PCn+1 1l )

and hence
(sind(u, pt1) — sin(1 — t)d(u, Tpi1)) oS d(Xpi1, Tn) > co8d(U, Tyi1) sintd(u, Tpq1).
Using sum to product formulas, we have

(sind(u, Xp41) — sin(l — t)d(u, p41)) cosd(Xp11, Tn)

Hd n . td(u, x, t
(2—1) (u Tn+1) sin (u;v +1) cos §d(xn,37n+1)~

= 2cos




From half angle formulas, we get

(2—t)d

—

u, xn-}-l) sin td(ua xn-&-l)
2

2 cos cos d(Zp, Tni1)

[\)

> cosd(u, ) sind(u, Tpi1)

~— ~—

t t
2sin id(u, Tpt1) oS —d(Uy Tpyq).

= d n
cos d(u, x 5

This implies that

2t .
cos ( )d(2u,x 1) cos d(p, Tni1) > cosd(u,x,) cos %d(u,xnﬂ),

and letting t — 0, we get

cos d(t, Tp11) cosd(xy, Tpy1) > cosd(u, ).

Since d(zp,u) = ¢,

cos d(u, x,) cosc

1> cosd(zpi1,Tn) 1

cosd(u, Tpi1) — COSC

as n — oo, and thus d(z,41,2,) — 0. Since x,11 € Cpy1 and d(xp41,2,) — 0, we
have
0< d<R)\nfxn7 xn) (R)\nfxna xn+1) + d(l'n—&-la -Tn)

d
d(xn, Tpt1) + d(@pg1 + 25) = 0

and hence
d(Ry, Ty, xn) — 0.

Since {z,} is spherically bounded, every subsequence {x,,} of {x,} is spherically
bounded. Let {zo} = AC({z,}) and {wo} = AC({x,,}). We can take a subsequence
{zn, } C {xn,} such that A-convergence to some zy € C. Since d(Rx, s, 2n) = 0,
by Lemma 2.1 we get zp € Equil f. From the definition of asymptotic center, we get

lim sup d(x,,, 20) = limsup d(z,, , 20)
n—o0 j—o0 J

< limsupd(x,, ,wp)

Jj—0o0 !

< limsup d(xy,, wp)

1—>00

< limsup d(xy,, zo)

1—00

< limsup d(zn, z9) < limsup d(zy, 20).
n—oo n—oo

Therefore 29 = wy = z¢ and thus we get {zo} = AC({z,,}) for all {z,,} C {z,}.
Consequently, x,, A xo € Equil f. O
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Theorem 3.2. Let X be an admissible complete CAT(1) space having the convex hull
finite property and C C X a nonempty closed convex set. Suppose that f: C x C'— R
satisfies the conditions (E1)-(E4), and Equil f # @. Let {\,} C 0,00 be a sequence
satisfying inf,, A\, > 0. Suppose that {z € X | d(x,2) < d(y,2)} is convex for all x,y €
C. Let Ry, f: X — C be the resolvent of A, f for each n € N. Let {x,} be a sequence
and Cy, be a convex subset of X defined by x1 € C, C; = C, and

Chy1 ={2 € C|d(Rx, frn,2) < d(n,2)} NCh,

Tp41 = PCn+1xn

for each n € N. Let D C X be closed and convez such that Equil f € D C (7, Ch.
Then, Ppx, — xg, where xq is the A-limit of {x,}.

Proof. We suppose that x,, A91:0 € Equil f and show Ppx, — x(. Since
d(PDxn—&-la xn—&-l) S d(PDxnaxn—i-l) = d(PDxna PCnJrlxn) S d(PDxna xn)v

{cosd(Ppxn, )} is a Cauchy sequence. Hence, there exists {a,} C R such that
oy — 0 and cos d(PpTy,, Tm) — cosd(Ppxy, x,) < ay, if m > n. We have

o, cosd(PpTm, Tm)  cosd(Ppy,Ty)

cos d(PpTm, Tm) — coSd(PpZm, Tm)  cos Ad(PpTm, Tm)’

and thus

cosd(Ppxy, ) - an, Sq_ anp
cosd(PpTym, Tm) — cosd(PpZm, Tm) — cosd(Ppxy,x1)

Further, since cos d(PpXy,, Ty ) c0s d(Ppy,, Ppxy) > cosd(Ppxy,, &,,), we have

cosd(Ppxy, Tm)

cos d(PpTm, Ppxy,) cos d(PpZm, Tm)

cosd(Ppxy,, y) Qo

= cosd(PpTm, Tm) — cosd(Ppxy,x1)

Hence, {Ppx,} is a Cauchy sequence and we get {Ppx,} converges to some y, € C.

. A .
Since x, = xg € Equil f, we have

lim sup d(y07 xn) < lim sup(d(yo, PDl'n) + d(PDl'na xn))

n—00 n—00
= limsup d(Ppxy, ) < limsup d(zg, ).
n—oo n—oo
Therefore, yo = xg and we get Ppx, — x¢ € Equil f. O
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