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Abstract 

The notion of resolvent is used to solve various problems in nonlinear analysis 
and convex analysis. In particular, resolvents defined for a maximal monotone 
operator are deeply related with many problems. In this paper, we consider 
asymptotic behavior of a resolvent for a sequence of maximal monotone oper-
ators on a complete geodesic space. 

1 Introduction 

In nonlinear analysis and convex analysis, the concept of resolvent is very impor-

tant, and it is a useful tool to solve problems such as convex minimization problems, 
equilibrium problems and so on. For f a proper lower semicontinuous convex function 

from Hilbert space H to ]-oo, oo], a resolvent R入f:X →X with parameter入＞ 0is 
defined by 

R叫x)= argmin｛入f(y)+ d(y, X戸｝，
yEX 

where the argmin g is the set of all minimizers of the function g: X→]-oo, oo]. We 
yEX 

know the following result about the asymptotic behavior of the resolvent for a convex 

function. 

Theorem 1.1 (See [6]). Let H be a Hilbert space, f: H→[-oo, oo[ a proper lower 

semicontinuous convex function and x E X. If argmin fヂ0,then 

lim R入J(x)= Pargmin J(x), 
入→00
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where Pc is the metric projection onto a subset C which is a nonempty closed convex 

subset of X. 

The Mosco convergence of the sequence of sets are introduced by [5]. Let 

C。,C1,C2 • • • be nonempty closed convex subsets of a Hilbert space H. For each 

x E X, we consider the sequence { Pen (x)} of the nearest points. About the relation 

between convergence of {Cn} and the convergence of {Pen (x)}, we know the following 

result. 

Theorem 1.2 (See [7]). Let H be a Hilbert space, C,。,C1,C2 • • • be nonempty closed 
convex subsets of H, and x EX. If {Cn} is convergent to C。asa sense of Mosco, 

then 

lim Pcn(x) = Pc0(x). 
n→(X) 

Geodesic space is a metric space which has some convex structures. One of the 

examples of geodesic spaces is Hadamard space and its class is generalization of Hilbert 
spaces. It is known that above theorems in a Hilbert space are extended in this space 

(See [1], [3]). To connect these theorems, we consider the sequence {R心 fn(x)} of 

resolvents for a sequence {fn} of convex functions. We know the following theorem 
about convergence of this sequence. 

Theorem 1.3 (See [4]). Let X be a Hadamard space, Jo, Ji, h • • • proper lower semi-
continuous convex functions from X to ]O, oo], and x E X. If Un} satisfies the 

fallowing conditions 

(1) 0 cf-argminfo C d-Liargmin.f… 
(2) xo E X belongs to argminfo whenever a subsequence of {R心 fn(x)} is△-

convergent to xo, 

then 

lim R心 fn(x) = Pargmin J(x). 
n→OO 

The concept of the dual space of a Hadamard space is introduced by [2] and we 
can consider monotone operators on a Hadamard space. Further, for a monotone 

operator, we can define its resolvent. We know that problems of monotone operators 

and their resolvents are greatly related with problems of convex functions and their 

resolvents. In this paper, we consider a resolvent for a sequence of maximal monotone 

operators and describe the relation between the convergence of a sequence of maximal 

monotone operators and convergence of the resolvent. 

2 Preliminaries 

Let X be a metric space. For x, y E X, a geodesic Cxy: [O, d(x, y)］→恥 with

endpoints x and y is an isometric which satisfies cxyい） ＝ x，Cxy(d(x,y)） ＝ y. We 
call X a uniquely geodesic space if a geodesic exists uniquely for all x, y E X. Let X 

be a uniquely geodesic space. We call the image of geodesic Cxy the geodesic segment 
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joining x and y, and denote it by [x, y]. For x, y E X and t E [O, 1], the convex 
combination z = tx④(1-t)y between x and y is the point with d(z, x) = (l-t)d(x, y) 
and d(z, y) = td(x, y). The subset C of X is said to be convex if tx 〶 (1 -t)y E C 
for all x, y E C. For x1, x2心3E X, the geodesic triangle△(x1,X2,四） isdefined by 

△(x1,X2，邸） ＝ ［m，叫 u［四，叫 u[xふ x1].For△(x1, X2心）， thecomparison triangle 

囚（巧，巧，巧） E配 isa triangle which satisfies如（恥，詑） ＝d(x心），如（西，恥） ＝ 
d(x2，x3),如（恥,x1) = d(x3, x1), and the comparison point p E［瓦，元]for p E [xぃ叫
is the point with d（瓦，P）即＝ d（叩，p)(i,j = 1, 2, 3). X is called a CAT(O) space 

if for all△(x1心2心）， p,qE△(x1，叩，叩） andp,q E 7i（巧，巧，巧）， itholds that 
d(p, q) :::; d(p, q). We call a complete CAT(O) space a Hadamard space. In what 

follows, we let X a Hadamard space. We denote the pair (a, b) E X by品andcall it 
a vector. The quazilinearization mapping <•, •>: （X X  X) X (X XX)→艮 isdefined 
by 

信叫＝；｛d(a, d)2 + d(b, c)2 -d(a, c)2 -d(b, d)2} 

for a, b, c, d E X. Then, we have that 

(1)〈品砿〉＝d(a,b)2for a,b EX; 

→ → → (2)〈ba,ed〉=―〈詞，ed〉fora, b, c, d E X; 

(3)〈品盈〉＝〈両盈〉＋〈訪盈〉 fora, b, c, d, e E X; 

(4)〈品盈〉：：：：： d(a,b)d(c, d) for a, b, c, d EX. 

We define the mapping 8:罠 xXxX→C(X，良）

8(t, a, b)(x) = t偉直〉
fort E股 anda, b, x E X. Further, we define the mapping d* on (R x X x X) x (R x 

XxX)→民 by

d*((t,a,b), (s,c,d)) = L(0(t,a,b)-0(s,c,d)) 

for (t,a,b),(s,c,d) E股 xX x X, where L is Lipchitz seminorm. Then, d* is the 
pseudometric on IB. x Xx  X. We consider the equivalence relation~ on股 xXxX

as (t, a, b) ~ (s, c, d) if and only if d*((t, a, b), (s, c, d))=O. Then, the set 

X*=（（良 XXXX)/ ~,d*) 

is a metric space and we call it ad叫 spaceof X. For simplicity, we use next symbols 

(1)［叫＝｛贔 |d*((t,a, b), (s, c, d)) = 0 }; 

(2)〈x＊蒻〉＝t〈話，苅〉； forx, y EX, x* =［叫 EX*;

(3) 0 = [t岡 fort E艮， aEX; 
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(4)〈tx*+ sy*，劾＝ t〈ゲ蒻〉＋ s〈が蒻〉 fort,s E JR, x,y EX, x*,y* EX*. 

Let {xn} be a sequence of X. The asymptotic center AC({xn}) of {xn} is defined 
by 

AC({ Xn}) = { Z E X I li巳悶pd(z,xn)= j~1li巳悶pd(y, Xn)}. 

If a bounded sequence { Xn} satisfies that AC({ Xn;}) = xo for any subsequence { Xn;} 
△ 

of { Xn}, it is said to be△-convergent to x。EX and denoted by Xn→ xo. Whenever 
{ Xn} is bounded, AC({ Xn}) is a singleton and { Xn} has a△-convergent subsequence. 
For a sequence {Cn} of nonempty subsets of X, we define d-LiCn as x E d-LiCn if 

and only if there exists { Xn} such that Xn→x and Xn E Cn for each n E N. We 
also define△-LsCn as x E△-Ls Cn if and only if there exists a subsequence { Cn;} of 

{Cn} and a sequence｛叩｝ ofX such that叩ECn; for each i E N and x E AC(｛叫）
for all i EN. If d-LiCn = C。=△-Ls Cn, we say that { Cn} is△-Mosco convergent 
to C。anddenote it by M-limCn = C。.

Let C be a closed convex subset of X. We define the indicator function ic: X→ 
[-oo, oo[ for C by ic(x) = 0 if x E C and ic(x) = oo if x ~ C. For x E X, there 
exists z EC  such that d(z, x) = infyEX d(y, x). Therefore, we can define Pc: X→ C 
such that 

Pc(x) = argmind(y, x) 
yEC 

for x EX  and we call it the metric projection onto C. 
For a multivalued operator A, we denote the domain of A by D(A) and the range 

of A by R(A). A multivalued operator A: XコX*is called a monotone operator if 
it satisfies 

0 ::;〈がーが，蒻〉

for all (x, x*), (y, y*) EA. A monotone operator is said to be maximal if no monotone 
operator includes it properly. For a monotone operator A, we define the resolvent 

J,¥A:XコX with a parameter入＞ 0by 

Then, the following holds 

(1) R(J入A)C D(A); 
(2) Fix(Jい） ＝ Aー 10;

J入A={z EX ［戸］ EAz} 

(3) If A is monotone, J入Aconsists of at most one point; 

(4) d(J入A(x),J入A(Y)）さ d(x,y) for all x, y E D(A). 

In what follows, we assume a maximal monotone A satisfies D(S入A)= X for all 
入＞ 0.Under this assumption, J.入Ais a single-valued mapping from X to X for a 
maximal monotone operator A. 
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3 Main result 

We consider the condition of a sequence of maximal monotone operators such that 
the sequence of resolvents is convergent to a point in the limit set. 

Theorem 3.1. Let X be a Hadamard space and X* its dual, A。,A1,A2, ・ ・ ・ maximal 
monotone operators from X to X*,｛心｝ apositive real sequence and x E X. If {An} 

satisfies 

(1)(/J ＃ C。C d-LiA~10; 
(2) xo E X belongs to C,。whenevera subsequence of { J心An(x)} is△-convergent 

to xo, 

where C,。isa nonempty closed convex subset, then 

lim J心 An(x)= Pc。(x).
n→OO 

Proof. We put p = Pc0(x) and Xn = J.心An(x) for n EN. By the first assumption of 
｛ふ｝， thereexists｛叫｝ whichsatisfies Un→p and Un E A;;,-10 for each n EN. From 
the definition of the resolvent, we have 

且叫 EA砂 n・

The monotonicity of An implies 

and hence 

0::::;〈［土二］―o,u;;x;,〉
1 

=-〈五，五写〉
入

1 
= 2入n(d（Un,x)2 -d(xn,x)2 -d（Un,Xn戸）

d(xn,x)2::::; d（Un,x)2 -d(％ふ）乞

Therefore, we get d(xn,x) ::; d(un,x). Since {un} is convergent, {xn} is bounded. 
We take a subsequence {xnJ of {xn} arbitrarily. By the boundedness of {xnJ, there 
exists a subsequence { Xn;1} of { Xn;} which is△-convergent to x。EX. From the 
second assumption of {An}, we get x。EC。.Sinced(xn;1, x)::; d(un;1,x), letting 
j →oo, we get 

d(Xo,x) < liminfd(xn”,x）さ limsupd(xn;1,x)さlimsupd(un;1,x)= d(p,x). 
J→OO j→OO J→OO 

Hence, Xo = p. This implies d(xnij, x)→d(p, x) and Xnij ~ p. Therefore, for any 

subsequence { XnJ of { Xn}, there exists a subsequence { Xnij} of { XnJ converging to 
p, which is equivalent to Xn→p. This is the desired result. ロ
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Assuming that positive real sequence｛心｝ divergesto oo, we get the following 
result by this theorem. 

Theorem 3.2. Let X be a Hadamard space and X* its dual, A。,A1,A2, ・ ・ ・ maximal 
monotone operators from X to X*, and｛心｝ apositive real sequence such that入n→ 
oo. If {An} satisfies 

(1) M-limA;;,-10 = A計o# 0; 
(2) for all (uo, u0) E A。,thereexists { (u国）｝ suchthat (u国） EAni for each 

i EN,｛叫 isbounded, and lim sup 〈u*x 
） 

t→OO t, n凸〉<〈Uo，玩碕〉，

then 
lim J 

n→OO 
心An(x)= p心 o(x).

Proof. Obviously, it holds that 0 # A訂0C d-LiA;;,-10 from the assumption (1) of 
凶｝． Weshow that the△-limit of any subsequence of resolvent belongs to Aり10
under the assumption (2) of {An}- Put p and Xn as in the proof of the previous 
theorem. Let {xnJ be a subsequence of {xn} which is△-convergent to x0 E X. 
For all (Uo, uo) E A。,thereexists { (ui, u:;)} which satisfies (uぃ叫） EAni for each 

i EN,｛叫 isbounded, and lim supi→OO〈U：ぷ国〉こ〈Uい五硫〉． Then,from the 
monotonicity of Ani, we have 

。：：：：：〈［亡~]ー u;,~〉
1 

= -〈戸，如立〉ー〈u;,~〉
入ni 
1 

'.S ~d(xni, x)d（叫，％） ＋〈元五国〉
入ni 

for all i E N. Letting i→oo, we get 

〇:s;limsup〈U：ぷ国〉<〈U盆ふ虞〉＝〈Uo-0ふ虞〉．
t→OO 

Then, maximality of A。impliesthat xo E A計0.Consequently, we get Xn→p from 
the previous theorem. It completes the proof. ロ

Next, we consider the case that the positive real sequence｛入n}is convergent to 0. 

Theorem 3.3. Let X be a Hadamard space and X* its dual, A。,A1,A2, ・ ・ ・ maximal 
monotone operators from X to X*, and｛心｝ apositive real sequence such that入n→ 
0. If {An} satisfies 

(1) M-limD(An) = clD(A。)'F0; 
(2) there exists { (Un, 1ら）｝ suchthat (Un, 1ら） EAn for each n E N, {Un} is bounded, 

and limsup ＊ ｀ n→(X)〈Un,xn%〉＜ oo,

then 

lim J心An(x)= Pc1n(A0)(x). 
n→(X) 
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Proof. Put p = Pc1v(Ao)(x) and Xn = J心 An(x) for n E N. Then, there exists 
） 

{(Un, u~)} which satisfies (Un, u~) E An, Un→Pc1v(Ao)(x) and limsupi→OO〈U;，Xn叫〉＜

oo from the assumption (2). By the monotonicity of An, we have 

and thus 

パ且叫—心，u二〉
1 

=-〈五，u□〉一〈U;，u□〉
入n

1 
= +-(d(x, Un)2 -d(xn叫）2-d(x, Xn)2) -〈U；ぷぷり

入n

d(x, Xn)2さd(x,Un戸ー d(xn墨 n戸＋心〈U;，U□〉

さd(x,Un戸＋入n〈U;，五式〉．

Letting n→oo, we get 

0 :S: limsupd(x,xn)2 :S: limsupd(x,un)2 = d(x,p)乞
n→OO n→OO 

Hence, {xn} is bounded, and therefore for all subsequence {xnJ of {xn}, we can 
take a subsequence { Xnii} of { Xni} which is△-convergent to some x0 E X. Then, 

xo = AC({xnii}) for every i EN  and x叫 ED(Anii). From the assumption (1) of 

{ An}, x0 belongs to cl D(A0). Since d(x, Xnii)2 S d(x, u叫戸十入 * ~ , Xnij)2 S d(x, Unij)2 + Anij〈u叫 'Uni3%j〉,
we obtain 

d(x,p):::; d(x,xo):::; li.)ll,~1!fd(x,xn;1):::; limsupd(xn;1,x):::; d(x,p). 
j → OO j → OO 

△ 
This implies Xn,J→p, and d(xn,J,x)→d(p, x) and thus we get Xn,J→p. Therefore, 

for every subsequence {xnJ of {xn}, there exists a subsequence {xn,) converging to 
p. Thus, we get Xn→p, which is the desired result. ロ

References 

[1] M. Ba砥k,Convex Analysis and optimaization in Hadamard spaces, De Gruyter, 
Berlin, 2014. 

[2] B. A. Kakavandi and M. Amini, Duality and subdifferential for convex functions 
on complete CAT(O) metric spaces Nonlinear Anal. 73 (2010) 3450-3455. 

[3] Y. Kimura, Convergence of a sequence of sets in a Hadamard space and the 
shrinking projection method for a real Hilbert ball, Abstract and Applied Analysis 
2010 (2010), Article ID 582475, 11 pages. 



43

[4] Y. Kimura and K. Shindo, Asymptotic behavior of resolvents of a convergent 

sequence of convex functions on complete geodesic spaces, Axioms 11 (2022), 8. 
[5] U. Mosco, Convergence of convex sets and solutions of variational inequalities, 

Adv. Math. 3(1969), 510-585. 
[6] W. Takahashi, Nonlinear functional analysis fixed point theory and its applica-

tions, Yokohama Publishers, Yokohama, 2000. 
[7] M. Tsukada, Convergence of best approximations in a smooth Banach space, J. 

Approx. Theory 40 (1984), no. 4, 301-309. 


