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Abstract
The notion of resolvent is used to solve various problems in nonlinear analysis
and convex analysis. In particular, resolvents defined for a maximal monotone
operator are deeply related with many problems. In this paper, we consider
asymptotic behavior of a resolvent for a sequence of maximal monotone oper-
ators on a complete geodesic space.

1 Introduction

In nonlinear analysis and convex analysis, the concept of resolvent is very impor-
tant, and it is a useful tool to solve problems such as convex minimization problems,
equilibrium problems and so on. For f a proper lower semicontinuous convex function
from Hilbert space H to |—00, 00|, a resolvent Ry;: X — X with parameter A > 0 is
defined by

Ryf(z) = argergl(in {Af(y) +dly,z)*},

where the argmin g is the set of all minimizers of the function g: X — |—oc,00]. We
yeX
know the following result about the asymptotic behavior of the resolvent for a convex

function.

Theorem 1.1 (See [6]). Let H be a Hilbert space, f: H — [—00,00[ a proper lower
semicontinuous conver function and v € X. If argmin f # (), then

i = Puugmi
AEI;O Ry (x) argmin f (z),



where Po is the metric projection onto a subset C' which is a nonempty closed convex
subset of X .

The Mosco convergence of the sequence of sets are introduced by [5]. Let
Coy,C1,Cs -+ be nonempty closed convex subsets of a Hilbert space H. For each
x € X, we consider the sequence {P¢, (z)} of the nearest points. About the relation
between convergence of {C), } and the convergence of { P, (x)}, we know the following
result.

Theorem 1.2 (See [7]). Let H be a Hilbert space, Cy,Cy,Cy -+ be nonempty closed
convex subsets of H, and x € X. If {Cy} is convergent to Cy as a sense of Mosco,
then

lim Pg, (x) = P, (2).

n—oo

Geodesic space is a metric space which has some convex structures. One of the

examples of geodesic spaces is Hadamard space and its class is generalization of Hilbert
spaces. It is known that above theorems in a Hilbert space are extended in this space
(See [1], [3]). To connect these theorems, we consider the sequence {Rj, ¢, (x)} of
resolvents for a sequence {f,} of convex functions. We know the following theorem
about convergence of this sequence.

Theorem 1.3 (See [4]). Let X be a Hadamard space, fo, f1, fa- -+ proper lower semi-
continuous conver functions from X to |0,00], and x € X. If {fn} satisfies the
following conditions

(1) O # argmin fy C d-Liargmin f,,;
(2) xog € X belongs to argmin fy whenever a subsequence of {Ry, ¢, (z)} is A-
convergent to g,

then
Jim Ry, 5, (#) = Pargmin £ (2)-

The concept of the dual space of a Hadamard space is introduced by [2] and we
can consider monotone operators on a Hadamard space. Further, for a monotone
operator, we can define its resolvent. We know that problems of monotone operators
and their resolvents are greatly related with problems of convex functions and their
resolvents. In this paper, we consider a resolvent for a sequence of maximal monotone
operators and describe the relation between the convergence of a sequence of maximal
monotone operators and convergence of the resolvent.

2 Preliminaries

Let X be a metric space. For z,y € X, a geodesic ¢zy: [0,d(z,y)] — R with
endpoints « and y is an isometric which satisfies ¢,/ (0) = z, czy(d(z,y)) = y. We
call X a uniquely geodesic space if a geodesic exists uniquely for all z,y € X. Let X
be a uniquely geodesic space. We call the image of geodesic ¢, the geodesic segment
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joining = and y, and denote it by [z,y]. For z,y € X and t € [0,1], the convex
combination z = tx® (1 —t)y between x and y is the point with d(z,z) = (1—t)d(z,y)
and d(z,y) = td(x,y). The subset C of X is said to be convex if tx @ (1 —t)y € C
for all z,y € C. For x1, 2,23 € X, the geodesic triangle A(x1,x2,z3) is defined by
A(z1,x2,x3) = [T1, 2] U [22, 23] U [23, 21]. For A(z1, 22, x3), the comparison triangle
A(Z1,73,73) € R? is a triangle which satisfies dg2(T1,T2) = d(z1, 22), dr2(To, T3) =
d(z2,23), dr2(T3,71) = d(x3, 1), and the comparison point p € [z;,7;] for p € [x;, x;]
is the point with d(Z;,p)rz = d(z;,p) (4,5 = 1,2,3). X is called a CAT(0) space
if for all A(zy,29,23), p,q € A(xy,22,73) and p,q € A(T1,73,7T3), it holds that
d(p,q) < d(p,g). We call a complete CAT(0) space a Hadamard space. In what

follows, we let X a Hadamard space. We denote the pair (a,b) € X by % and call it
a vector. The quazilinearization mapping (-,-): (X x X) x (X x X) — R is defined
by

1
@, 31> = d(a,d)* +d(b,)* - d(a,c)? - d(b,d)*}
for a,b,c,d € X. Then, we have that

(1) <$£>fdab) for a,b € X;

2) <ba,cd> <? cd> for a,b, c,d € X;

(3) <%,_>> (at, > < cd>fora,b,c,d7eeX;
()<%,_>> d(a,b)d(c,d) for a,b,c,d € X.

We define the mapping ©: R x X x X — C(X,R)
O(t,a,b)(z) = t @, at)

for t € R and a, b,z € X. Further, we define the mapping d* on (R x X x X) x (R x
X x X) = R by

d*((t,a,b), (s,¢,d)) = L(O(t,a,b) — O(s,¢,d))
for (¢,a,b),(s,c,d) € R x X x X, where L is Lipchitz seminorm. Then, d* is the
pseudometric on R x X x X. We consider the equivalence relation ~ on R x X x X
as (t,a,b) ~ (s,c,d) if and only if d*((t, a,b), (s, ¢,d))=0. Then, the set
X'=(RxX xX)/ ~,d)
is a metric space and we call it a dual space of X. For simplicity, we use next symbols
%
(1) [t%} = {scd ‘ a*((t,a,b), (5. ¢,d) = 0};
(2) (a:*,@) = t<%,:@>; for z,y € X, z* = {t@] e X*

(3) 0=[tad) for t e R, a € X;



(4) (tz* + sy*, Z)) = t (x*, ) + s (y*, 7)) for t,s € R, z,y € X, a*,y* € X*.

Let {z,} be a sequence of X. The asymptotic center AC({z,}) of {z,} is defined
by

AC({zn}) = {z €X

limsup d(z,z,) = inf limsup d(y,xn)}.

n— o0 y€X n—oo

If a bounded sequence {xz,,} satisfies that AC({z, }) = z¢ for any subsequence {z,,, }

of {z,}, it is said to be A-convergent to zg € X and denoted by z,, é\xo. Whenever
{zy} is bounded, AC({z,}) is a singleton and {z,,} has a A-convergent subsequence.
For a sequence {C,} of nonempty subsets of X, we define d-LiC,, as = € d-LiC,, if
and only if there exists {x,} such that x,, — = and x,, € C, for each n € N. We
also define A-Ls C), as € A-Ls C,, if and only if there exists a subsequence {C,,, } of
{C,} and a sequence {z;} of X such that z; € C),, for each i € N and = € AC({x;})
for all s € N. If d-LiC,, = Cyp = A-LsC,, , we say that {C),,} is A-Mosco convergent
to Cp and denote it by M-lim C,, = Cj.

Let C be a closed convex subset of X. We define the indicator function ic: X —
[—o0,00] for C by ic(x) =0if z € C and ic(x) = x if ¢ ¢ C. For x € X, there
exists z € C such that d(z,z) = inf,cx d(y,z). Therefore, we can define Po: X — C
such that

Po(x) = argmind(y, )
yel
for z € X and we call it the metric projection onto C.

For a multivalued operator A, we denote the domain of A by D(A) and the range
of A by R(A). A multivalued operator A: X = X* is called a monotone operator if
it satisfies

0< <‘7">‘< - y*7 ?ﬁ)

for all (z,z*), (y,y*) € A. A monotone operator is said to be maximal if no monotone
operator includes it properly. For a monotone operator A, we define the resolvent
Jya: X = X with a parameter A > 0 by

J,\Az{zeX’ Bﬁ] eAz}.

Then, the following holds

(1) R(Jxa) € D(A);

(2) Fix(Jya) = A7'0;

(3) If A is monotone, Jy4 consists of at most one point;
(4) d(Jxa(z), Jxa(y)) < d(z,y) for all z,y € D(A).

In what follows, we assume a maximal monotone A satisfies D(Sy4) = X for all
A > 0. Under this assumption, Jy4 is a single-valued mapping from X to X for a
maximal monotone operator A.
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3 Main result

We consider the condition of a sequence of maximal monotone operators such that
the sequence of resolvents is convergent to a point in the limit set.

Theorem 3.1. Let X be a Hadamard space and X™* its dual, Ao, A1, Ao, - -+ maximal
monotone operators from X to X*, {\,} a positive real sequence and x € X. If {A,}
satisfies

(1) 0 # Cy C d-LiA;t0;
(2) zy € X belongs to Cy whenever a subsequence of {Jx, a, (x)} is A-convergent
to g,

where Cy is a nonempty closed convex subset, then
lim Jy, a4, (z) = Pe,(z).
n—oo

Proof. We put p = Po,(z) and x,, = Jy, 4, (x) for n € N. By the first assumption of
{A,}, there exists {u,,} which satisfies u,, — p and u,, € A0 for each n € N. From
the definition of the resolvent, we have

1

The monotonicity of A, implies

1 R

1

= N (d(un,alc)2 —d(zy, )% — d(un,xn)Q)

and hence
d(acn,ac)2 < d(un,ac)2 — d(umxn)Q.

Therefore, we get d(z,,z) < d(un,z). Since {u,} is convergent, {z,} is bounded.
We take a subsequence {x,,} of {z,,} arbitrarily. By the boundedness of {x,, }, there
exists a subsequence {x,, } of {z,,} which is A-convergent to zo € X. From the
second assumption of {A,}, we get z9 € Co. Since d(xp,,x) < d(un,,, ), letting
J — 00, we get
d(zo,z) < liminf d(z,,,,z) < limsup d(zy, ,r) < limsup d(un, , z) = d(p, z).
j—+o0 j—ro0 j—o0

Hence, xo = p. This implies d(zy,,,r) — d(p,r) and Ap. Therefore, for any
subsequence {z,, } of {z,}, there exists a subsequence {z,, } of {x,,} converging to
p, which is equivalent to x,, — p. This is the desired result. O



Assuming that positive real sequence {\,} diverges to oo, we get the following
result by this theorem.

Theorem 3.2. Let X be a Hadamard space and X* its dual, Ag, A1, As,--- mazimal
monotone operators from X to X*, and {\,} a positive real sequence such that \,, —
oo. If {A,} satisfies

(1) M-lim A,,'0 = A;'0 # 0;
(2) for all (ug,uly) € Ao, there exists {(u;,ul)} such that (u;,u}) € Ay, for each
i €N, {u;} is bounded, and imsup,_, . (v}, Tn,u;) < (uf, Toup),
then

nh—{go J)\n,An (.’L‘) = PAalo(.’E).

Proof. Obviously, it holds that () # A;'0 C d-Li A;;'0 from the assumption (1) of
{A,}. We show that the A-limit of any subsequence of resolvent belongs to Ay o
under the assumption (2) of {A4,}. Put p and z,, as in the proof of the previous
theorem. Let {z,,} be a subsequence of {x,} which is A-convergent to zo € X.
For all (ug,u(;) € Ao, there exists {(u;,u})} which satisfies (u;,u]) € A, for each
i € N, {u;} is bounded, and limsup; . (u}, Zn,u,) < (ug, Zouy). Then, from the
monotonicity of A,,,, we have

1
0< < L\nlmnlf] — uf,uzxm>

= )\7 <xn, 7uimn,‘> - <u1 ) ulxn,>
: 3
< Td(xnz ’ x)d(ulv ‘Tnl) + (Ufa Inzu2>

for all i € N. Letting i — 0o, we get
0 < limsup (u}, T, w;) < (ug, Tous) = (ugy — 0, Toup) -
i—00

Then, maximality of Ay implies that o € A '0. Consequently, we get x, — p from
the previous theorem. It completes the proof. O

Next, we consider the case that the positive real sequence {\,} is convergent to 0.

Theorem 3.3. Let X be a Hadamard space and X™* its dual, Ao, A1, Ao, - -+ maximal
monotone operators from X to X*, and {\,} a positive real sequence such that \,, —

0. If {A.} satisfies
(1) M-lim D(A,,) = clD(Ap) # 0;
(2) there exists {(un,u))} such that (un,ul) € A, for eachn € N, {u,} is bounded,
and limsup,, _, ., (U, Tpuy,) < 00,

then
lim J)\"An (-T) - Pch(Ao)(x)'

n—oo
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Proof. Put p = Pypay)(z) and x, = Jy,a,(z) for n € N. Then, there exists
{(un,uy,)} which satisfies (un,uy,) € An, un — Po p(ay)(z) and limsup,_, o (uy,, Tptiy) <
oo from the assumption (2). By the monotonicity of A,,, we have

1 ,

1 , ,
n

1 ,
=3 (d(z,un)? — d(zn,un)? — d(z,2,)%) — (ul, Unzy)
and thus
d(z,2,)? < d(2,un)? — d(Tn, un)? + Ny (U, Unzy)
< d(x,un)? + My (U5, Uy -

Letting n — oo, we get

0 < limsup d(x, x,,)? < limsup d(x, u,)* = d(z,p)?.
n—oo n—oo
Hence, {z,} is bounded, and therefore for all subsequence {z,,} of {z,}, we can
take a subsequence {x,,} of {z,,} which is A-convergent to some zp € X. Then,
rg = AC({zy,,}) for every i € N and x,,,, € D(Ay,,). From the assumption (1) of

{A.}, zo belongs to cl D(Ap). Since d(x, zp,,)? < d(2, un,,)? + An,, <u;§ij,umjxmj>,

we obtain

d(z,p) < d(z,x0) <liminf d(z,z,,,) < limsupd(z,, ,v) < d(z,p).
Jj—oo

Jj—o0

This implies 2, Ap, and d(xyp,,, ) — d(p, ) and thus we get ,,,, — p. Therefore,
for every subsequence {x,,} of {z,}, there exists a subsequence {x,,,} converging to
p. Thus, we get x,, — p, which is the desired result. O
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