Resolvents of convex functions and approximation of a minimizer on a geodesic space 測地距離空間上の凸関数に関するリゾルベントと それを用いた最小点近似

> 東邦大学・理学部 木村泰紀 Yasunori Kimura Department of Information Science Toho University 東邦大学・理学研究科 中基美帆 Miho Nakadai Department of Information Science Toho University

Abstract

The aim of this paper is to propose a new resolvent and to study the asymptotic behavior of a sequence generated by Mann iteration in complete geodesic space with negative curvature.

1 Introduction

Let X be an admissible complete CAT(1) space and f a proper lower semicontinuous convex function from X into $]-\infty,\infty]$. In this case, a resolvent of f is defined by

$$J_f x = \underset{y \in X}{\operatorname{argmin}} \{ f(y) + \tan d(y, x) \sin d(y, x) \}$$

for all $x \in X$. In 2016, Kimura and Kohsaka proved its well-definedness. Let X be a complete CAT(-1) space and f a proper lower semicontinuous convex function of X to $]-\infty,\infty]$. Then the resolvent of f is defined by

$$I_f x = \operatorname*{argmin}_{y \in X} \{ f(y) + \tanh d(y, x) \sinh d(y, x) \}$$

for all $x \in X$. In 2019, Kajimura and Kimura showed that it is well-defined. The resolvent J_f corresponds to I_f in a complete CAT(-1) space.

Let X be a complete CAT(1) space and f a proper lower semicontinuous convex function from X into $]-\infty,\infty]$. A resolvent for f is defined by

$$Q_f x = \operatorname*{argmin}_{y \in X} \{ f(y) - \log \cos d(y, x) \}$$

for all $x \in X$. In 2019, Kajimura and Kimura provided its well-definedness. In 2023, Nakadai [7] showed the following theorem.

Theorem 1.1. Let X be an admissible complete CAT(1) space and f a proper lower semicontinuous convex function from X into $]-\infty,\infty]$. Let $Q_{\eta f}$ the resolvent of ηf for all $\eta > 0$ and $\{x_n\}$ a sequence defined by $x_1 \in \text{dom}(f)$ and

$$x_{n+1} = \alpha_n x_n \oplus (1 - \alpha_n) Q_{\lambda_n f} x_n$$

where $\{\alpha_n\}$ is a sequence in [0,1[and $\{\lambda_n\}$ is a sequence of positive real numbers such that $\sum_{n=1}^{\infty} (1-\alpha_n)\lambda_n = \infty$. Then the following hold.

- (i) The set $\operatorname{argmin}_X f$ is nonempty if and only if $\{Q_{\lambda_n f} x_n\}$ is spherically bounded;
- (ii) If $\operatorname{argmin}_X f$ is nonempty and $\sup_n \alpha_n < 1$, then both $\{x_n\}$ and $\{Q_{\lambda_n f} x_n\}$ are Δ -convergent to an element x_0 of $\operatorname{argmin}_X f$.

In this paper, we propose a new resolvent corresponding Q_f in a complete CAT(-1) space and we show that it is well-defined as a single-valued mapping. Moreover, we study the asymptotic behavior of a sequence generated by Mann iteration.

2 Preliminaries

Let X be a metric space with metric d. We denote by $\mathcal{F}(T)$ the set of all fixed points of a mapping T of X into itself. For $x, y \in X$, a continuous mapping $c: [0, l] \to X$ is called a geodesic joining x and y if c satisfies c(0) = x, c(l) = y and d(c(s), c(t)) = |s - t| for all $s, t \in [0, 1]$. Its image, which is denoted by [x, y], is called a geodesic segment with endpoints x and y. X is said to be a geodesic space if there exists a geodesic joining any two points in X. In this paper, for a geodesic metric space X, a geodesic joining any two points of X is always assumed to be unique.

Let X be geodesic metric space. For all $x, y \in X$ and $\alpha \in [0, 1]$, there exists a unique point $z \in X$ such that $d(x, z) = (1 - \alpha)d(x, y)$ and $d(z, y) = \alpha d(x, y)$. This point is called a convex combination of x and y, denoted by $\alpha x \oplus (1 - \alpha)y$. A subset $C \subset X$ is said to be convex if $[x, y] \subset X$ for all $x, y \in C$.

Let M_{κ}^2 be a two dimensional model space for $\kappa \in \mathbb{R}$. For example, $M_0^2 = \mathbb{R}^2$, $M_1^2 = \mathbb{S}^2$ and $M_{-1}^2 = \mathbb{H}^2$. A geodesic triangle with vertices $x, y, z \in X$ is defined by $[x, y] \cup [y, z] \cup [z, x]$, which is denoted by $\triangle(x, y, z)$. A comparison triangle to $\triangle(x, y, z)$ with vertices $\overline{x}, \overline{y}, \overline{z} \in M_{\kappa}^2$ is defined by $[\overline{x}, \overline{y}] \cup [\overline{y}, \overline{z}] \cup [\overline{z}, \overline{x}]$ with $d(x, y) = d(\overline{x}, \overline{y})$, $d(y, z) = d(\overline{y}, \overline{z})$ and $d(z, x) = d(\overline{z}, \overline{x})$, which is denoted by $\overline{\triangle}(\overline{x}, \overline{y}, \overline{z})$. For $\kappa \in \mathbb{R}$, X is called a CAT(κ) space if $d(p, q) \leq d(\overline{p}, \overline{q})$ holds whenever \overline{p} and $\overline{q} \in \overline{\triangle}$ are comparison points for p and $q \in \triangle$, respectively. If $\kappa < \kappa'$ then the CAT(κ) spaces are CAT(κ') spaces. We know that the following lemmas hold.

Lemma 2.1. Let X be a CAT(-1) space, $x_1, x_2, x_3 \in X$ and $\alpha \in [0, 1]$. Then

 $\cosh d(\alpha x_1 \oplus (1-\alpha)x_2, x_3) \le \alpha \cosh d(x_1, x_3) + (1-\alpha) \cosh d(x_2, x_3).$

Lemma 2.2. Let X be a CAT(-1) space, $x_1, x_2, x_3 \in X$ and $\alpha \in [0, 1]$. Then

$$\cosh d(\alpha x_1 \oplus (1-\alpha)x_2, x_3) \sinh d(x_1, x_2)$$

$$\leq \cosh d(x_1, x_3) \sinh \alpha d(x_1, x_2) + \cosh d(x_2, x_3) \sinh((1-\alpha)d(x_1, x_2))$$

Lemma 2.3. Let X, x_1, x_2, x_3 , and α be the same as in Lemma 2.2. Then

$$\cosh d(\frac{1}{2}x_1 \oplus \frac{1}{2}x_2, x_3) \cosh \frac{1}{2}d(x_1, x_2) \le \frac{1}{2} \cosh d(x_1, x_3) + \frac{1}{2} \cosh d(x_2, x_3).$$

Let X be a metric space and $\{x_n\}$ a sequence in X. The asymptotic center $\mathcal{A}(\{x_n\})$ of $\{x_n\}$ is defined by

$$\mathcal{A}(\{x_n\}) = \left\{ z \in X \ \left| \ \limsup_{n \to \infty} d(z, x_n) = \inf_{y \in X} \ \limsup_{n \to \infty} d(y, x_n) \right\}.$$

A sequence $\{x_n\}$ is said to be Δ -convergent to $p \in X$ if

$$\mathcal{A}(\{x_{n_i}\}) = \{p\}$$

holds for each subsequence $\{x_{n_i}\}$ of $\{x_n\}$. In this case, $\{x_n\}$ is bounded and its subsequence is also Δ -convergent to p.

Theorem 2.4. Let X be a complete CAT(0) space and f a proper lower semicontinuous convex function of X into $]-\infty,\infty]$. Suppose that $f(x) \to \infty$ whenever $d(x,p) \to \infty$ for some $p \in X$. Then $\operatorname{argmin}_X f$ is nonempty. Further, if

$$f\left(\frac{1}{2}x\oplus\frac{1}{2}y\right) < \frac{1}{2}f(x) + \frac{1}{2}f(y),$$

holds for all $x, y \in X$ with $x \neq y$, then $\operatorname{argmin}_X f$ is consists of one point.

3 Resolvents for convex function in complete CAT(-1) spaces

In this section, we show that a new resolvent

$$R_f x \coloneqq \operatorname*{argmin}_{y \in X} \{ f(y) + \log \cosh d(y, x) \}$$

is well-defined.

Lemma 3.1. Let f be a proper lower semicontinuous convex function from X into $]-\infty,\infty]$ and $p \in X$. If $g: X \to]-\infty,\infty]$ is defined by

$$g(\cdot) = f(\cdot) + \log \cosh d(\cdot, p)$$

then g is a proper lower semicontinuous convex function from X into $]-\infty,\infty]$. Proof. Let t > 0. We have

$$(\log(\cosh t))'' = (\tanh t)' = \frac{1}{\cosh^2 t} > 0.$$

Hence

$$\log \cosh(\alpha d_1 + (1 - \alpha)d_2) \le \alpha \log \cosh d_1 + (1 - \alpha) \log \cosh d_2$$

for all $d_1, d_2 \ge 0$ and $\alpha \in [0, 1[$. It follows that

$$\begin{split} \log \cosh d(\alpha d(x,p) \oplus (1-\alpha)d(y,p)) &\leq \log \cosh d(\alpha d(x,p) + (1-\alpha)d(y,p)) \\ &\leq \alpha \log \cosh d(x,p) + (1-\alpha) \log \cosh d(y,p) \end{split}$$

for all $x, y \in X$ and $\alpha \in]0, 1[$. Thus g is convex. On the other hand, it is obvious that g is proper and lower semicontinuous.

Lemma 3.2. Let f be a proper lower semicontinuous convex function from X into $]-\infty,\infty]$ and $p \in X$. Suppose that f is bounded below. If g is defined by

$$g(\cdot) = f(\cdot) + \log \cosh d(\cdot, p)$$

then $\operatorname{argmin}_X g$ consists of one point.

Proof. Let $\{z_n\}$ be a sequence of X with $\lim_{n\to\infty} d(z_n, p) = \infty$ for each $p \in X$. Then, it is obvious that $\lim_{n\to\infty} \log \cosh d(z_n, p) = \infty$. From Lemma 2.4 and Lemma 3.1, $\operatorname{argmin}_X g$ is nonempty.

We next show that $\operatorname{argmin}_X g$ consists of one point. Suppose that $u, v \in \operatorname{argmin}_X g$ with $u \neq v$. Suppose $d(u, p) \neq d(v, p)$. Then,

$$g(u) \le f\left(\frac{1}{2}u \oplus \frac{1}{2}v\right) + \log \cosh d\left(\frac{1}{2}u \oplus \frac{1}{2}v, p\right)$$

$$\le \frac{1}{2}f(u) + \frac{1}{2}f(v) + \log \cosh\left(\frac{1}{2}d(u, p) + \frac{1}{2}d(v, p)\right)$$

$$< \frac{1}{2}f(u) + \frac{1}{2}f(v) + \frac{1}{2}\log \cosh d(u, p) + \frac{1}{2}\log \cosh d(v, p) = g(u).$$

It is a contradiction. Suppose d(u, p) = d(v, p). Then,

$$g(u) \le f\left(\frac{1}{2}u \oplus \frac{1}{2}v\right) + \log \cosh d\left(\frac{1}{2}u \oplus \frac{1}{2}v, p\right)$$
$$= f\left(\frac{1}{2}u \oplus \frac{1}{2}v\right) + \log\left(\cosh d\left(\frac{1}{2}u \oplus \frac{1}{2}v, p\right) \cosh \frac{d(u, v)}{2}\right) - \log \cosh \frac{d(u, v)}{2}.$$

From the convexity of f and Lemma 2.3,

$$g(u) \le \frac{1}{2}f(u) + \frac{1}{2}f(v) + \log\left(\frac{1}{2}\cosh d(u,p) + \frac{1}{2}\cosh d(v,p)\right) - \log\cosh\frac{d(u,v)}{2}.$$

Since

$$\frac{1}{2}\cosh d(u,p) + \frac{1}{2}\cosh d(v,p) = \cosh \frac{d(u,p) + d(v,p)}{2}\cosh \frac{d(u,p) - d(v,p)}{2},$$

we have

$$g(u) \le \frac{1}{2}f(u) + \frac{1}{2}f(v) + \log \cosh \frac{d(u,p) + d(v,p)}{2} - \log \cosh \frac{d(u,v)}{2}$$

and hence

$$\begin{aligned} 0 < \log \cosh \frac{d(u,v)}{2} &\leq \frac{1}{2}f(u) + \frac{1}{2}f(v) + \log \cosh \frac{d(u,p) + d(v,p)}{2} - g(u) \\ &\leq \frac{1}{2}f(u) + \frac{1}{2}f(v) + \frac{1}{2}\log \cosh d(u,p) + \frac{1}{2}\log \cosh d(v,p) - g(u) \\ &= g(u) - g(u) = 0. \end{aligned}$$

It is a contradiction. Consequently, $\operatorname{argmin}_X g$ consists of one point.

Definition 3.3. Let f be a proper lower semicontinuous convex function from X into $]-\infty,\infty]$. Suppose that f is bounded below. Then we define a new resolvent $R_f: X \to X$ by

$$R_f x = \operatorname*{argmin}_{y \in X} \{ f(y) + \log \cosh d(y, x) \}$$

for all $x \in X$. By Lemma 3.2, we know that R_f is well-defined.

4 Fundamental properties of resolvents in CAT(-1) spaces

Lemma 4.1. Let X be a complete CAT(-1) space, f a proper lower semicontinuous convex function of X into $]-\infty,\infty]$. Suppose that f is bounded below. Let $R_{\eta f}$ be the resolvent of ηf for all $\eta > 0$. If $\lambda, \mu > 0$ and $x, y \in X$, then the inequality

$$(\lambda + \mu) \cosh d(R_{\lambda f}x, R_{\mu f}y) \le \frac{\mu \cosh d(R_{\mu f}y, x)}{\cosh d(R_{\lambda f}x, x)} + \frac{\lambda \cosh d(R_{\lambda f}x, y)}{\cosh d(R_{\mu f}y, y)}$$

holds.

Proof. Let $\lambda, \mu > 0$ and $x, y \in X$ be given. Set $D = d(R_{\lambda f}x, R_{\mu f}y)$ and

$$z_t = tR_{\mu f}y \oplus (1-t)R_{\lambda f}x$$

for all $t \in]0,1[$. By the definition of $R_{\lambda f}$ and the convexity of f, we have

$$\begin{split} \lambda f(R_{\lambda f}x) &+ \log \cosh d(R_{\lambda f}x, x) \\ &\leq \lambda f(z_t) + \log \cosh d(z_t, x) \\ &\leq t \lambda f(R_{\mu f}y) + (1-t) \lambda f(R_{\lambda f}x) + \log \cosh d(z_t, x). \end{split}$$

On the other hand, Lemma 2.2 implies that

$$\cosh d(tR_{\mu f}y \oplus (1-t)R_{\lambda f}x, x) \sinh D$$

$$\leq \cosh d(R_{\mu f}y, x) \sinh tD + \cosh d(R_{\lambda f}x, x) \sinh(1-t)D.$$

If D > 0, we have

$$\begin{split} t\lambda(f(R_{\lambda f}x) - f(R_{\mu f}y)) \\ &\leq \log(\cosh d(tR_{\mu f}y, x) \sinh tD + \cosh d(R_{\lambda f}x, x) \sinh(1-t)D) - \log \sinh D \end{split}$$

and hence

$$\lambda(f(R_{\lambda f}x) - f(R_{\mu f}y)) \leq \frac{\log(\cosh d(R_{\mu f}y, x) \sinh tD + \cosh d(R_{\lambda f}x, x) \sinh(1 - t)D) - \log \sinh D}{t}$$

By l'Hospital's rule, we have

$$\begin{split} \lambda(f(R_{\lambda f}x) - f(R_{\mu f}y)) \\ &\leq \lim_{t \to 0} \frac{\log(\cosh d(R_{\mu f}y, x) \sinh tD + \cosh d(R_{\lambda f}x, x) \sinh(1 - t)D) - \log \sinh D}{t} \\ &= \lim_{t \to 0} \frac{D(\cosh d(R_{\mu f}y, x) \cosh tD - \cosh d(R_{\lambda f}x, x) \cosh(1 - t)D)}{\cosh d(R_{\mu f}y, x) \sinh tD + \cosh d(R_{\lambda f}x, x) \sinh(1 - t)D} \\ &= \frac{D}{\sinh D} \left(\frac{\cosh d(R_{\mu f}y, x)}{\cosh d(R_{\mu f}y, y)} - \cosh D \right). \end{split}$$

It implies that

$$\lambda(f(R_{\lambda f}x) - f(R_{\mu f}y)) \le \frac{D}{\sinh D} \left(\frac{\cosh d(R_{\mu f}y, x)}{\cosh d(R_{\mu f}y, y)} - \cosh D\right) \tag{1}$$

and that

$$\mu(f(R_{\mu f}y) - f(R_{\lambda f}x)) \le \frac{D}{\sinh D} \left(\frac{\cosh d(R_{\lambda f}x, y)}{\cosh d(R_{\lambda f}x, x)} - \cosh D\right).$$
(2)

Multiplying (1) by μ and (2) by λ , and adding them, we obtain

$$(\lambda + \mu) \cosh d(R_{\lambda f}x, R_{\mu f}y) \le \frac{\mu \cosh d(R_{\mu f}y, x)}{\cosh d(R_{\lambda f}x, x)} + \frac{\lambda \cosh d(R_{\lambda f}x, y)}{\cosh d(R_{\mu f}y, y)}.$$

This is the desired result.

Corollary 4.2. Suppose that X and f are the same as the previous lemma. Then $\mathcal{F}(R_f) = \operatorname{argmin}_X f$.

Proof. Let $u \in \operatorname{argmin}_X f$ and $y \in X$. By the definition of R_f , we have

$$f(u) + \log(\cosh d(u, u)) = f(u) \le f(y) \le f(y) + \log(\cosh d(y, u)).$$

Thus $u \in \mathcal{F}(R_f)$. Let $u \in \mathcal{F}(R_f)$ and $y \in X$. By Lemma 4.1, we have

$$f(R_f u) - f(y) \le \frac{d(R_f u, y)}{\sinh d(R_f u, y)} \left(\frac{\cosh d(u, y)}{\cosh d(R_f u, u)} - \cosh d(R_f u, y)\right)$$

and hence

$$f(u) - f(y) \le \frac{d(u, y)}{\sinh d(u, y)} \left(\frac{\cosh d(u, y)}{\cosh d(u, u)} - \cosh d(u, y)\right) = 0.$$

It follows that $f(u) \leq f(y)$. It implies $u \in \operatorname{argmin}_X f$.

85

Corollary 4.3. Suppose that X and f are the same as the previous lemma. Then

 $\cosh d(y, R_{\lambda f}x) \cosh d(R_{\lambda f}x, x) \leq \cosh d(y, x)$

for each $y \in \operatorname{argmin}_X f$.

Corollary 4.4. Suppose that X and f are the same as the previous lemma. If $\operatorname{argmin}_X f$ is nonempty, then $R_{\lambda f}$ is quasinonexpansive.

5 Δ -convergent proximal-type algorithm

Theorem 5.1. Let X be a complete CAT(-1) space, f a proper lower semicontinuous convex function of X into $] - \infty, \infty]$. Suppose that f is bounded below. Let $R_{\eta f}$ the resolvent of ηf for all $\eta > 0$ and $\{x_n\}$ a sequence defined by $x_1 \in X$ and

$$x_{n+1} = \alpha_n x_n \oplus (1 - \alpha_n) R_{\lambda_n f} x_n,$$

where $\{\alpha_n\}$ is a sequence in [0,1[and $\{\lambda_n\}$ is a sequence of positive real numbers such that $\sum_{n=1}^{\infty} (1-\alpha_n)\lambda_n = \infty$. If $\operatorname{argmin}_X f$ is nonempty and $\sup_n \alpha_n < 1$, then both $\{x_n\}$ and $\{R_{\lambda_n f} x_n\}$ are Δ -convergent to an element x_0 of $\operatorname{argmin}_X f$.

Proof. Suppose that $\operatorname{argmin}_X f$ is nonempty and $\sup_n \alpha_n < 1$. Let $u \in \operatorname{argmin}_X f$ be given. By Lemma 2.1 and Lemma 4.4, we have

$$\cosh d(u, x_{n+1}) \le \alpha_n \cosh d(u, x_n) + (1 - \alpha_n) \cosh d(u, R_{\lambda_n f} x_n) \le \cosh d(u, x_n)$$

and hence

$$d(u, x_{n+1}) \le d(u, x_n)$$

Thus, $\{d(u, x_n)\}$ converges to some $\beta \in [0, \infty)$. By Lemma 2.1 and Lemma 4.3, we have

$$\begin{aligned} \cosh d(u, x_{n+1}) &\leq \alpha_n \cosh d(u, x_n) + (1 - \alpha_n) \cosh d(u, R_{\lambda_n f} x_n) \\ &\leq \alpha_n \cosh d(u, x_n) + (1 - \alpha_n) \cdot \frac{\cosh d(u, x_n)}{\cosh d(x_n, R_{\lambda_n f} x_n)} \\ &\leq \cosh d(u, x_n) + (1 - \alpha_n) \cosh d(u, x_n) \left(\frac{1}{\cosh d(x_n, R_{\lambda_n f} x_n)} - 1\right) \end{aligned}$$

and hence

$$0 \ge (1 - \alpha_n) \cosh d(u, x_n) \left(\frac{1}{\cosh d(x_n, R_{\lambda_n f} x_n)} - 1 \right)$$
$$\ge \frac{\cosh d(u, x_{n+1})}{\cosh d(u, x_n)} - 1 \to \frac{\cosh \beta}{\cosh \beta} - 1 = 0.$$

as $n \to \infty$. Since $\sup_n \alpha_n < 1$, we have

$$\lim_{n \to \infty} d(x_n, R_{\lambda_n f} x_n) = 0.$$

On the other hand, it follows from Lemma 4.1 that

$$\lambda_n(f(R_{\lambda_n f} x_n) - f(u)) \le \cosh d(u, x_n) - \cosh d(u, R_{\lambda_n f} x_n)$$

for all $n \in \mathbb{N}$. It then follows from Lemma 2.1 that

$$(1 - \alpha_n)\lambda_n(f(R_{\lambda_n f}x_n) - f(u)) \le \cosh d(u, x_n) - \cosh d(u, x_{n+1})$$

and hence

$$\sum_{n=1}^{\infty} (1 - \alpha_n) \lambda_n (f(R_{\lambda_n f} x_n) - f(u)) \le \cosh d(u, x_1) - \cosh \beta < \infty.$$

Since $\sum_{n=1}^{\infty} (1 - \alpha_n) \lambda = \infty$, it follows that

$$\liminf_{n \to \infty} f(R_{\lambda_n f} x_n) - f(u) = 0.$$

By the definition of $\{x_n\}$ and $\{R_{\lambda_n f} x_n\}$ and the convexity of f, we also have

$$-\infty < \inf f(X) \le f(R_{\lambda_n f} x_n) \le f(R_{\lambda_n f} x_n) + \log \cosh d(R_{\lambda_n f} x_n, x_n) \le f(x_n)$$

and

$$-\infty < \inf f(X) \le f(x_{n+1}) \le \alpha_n f(x_n) + (1 - \alpha_n) f(R_{\lambda_n f} x_n) \le f(x_n)$$

for all $n \in \mathbb{N}$. Thus $\{f(x_n)\}$ converges to $\gamma \in \mathbb{R}$ and $\{f(R_{\lambda_n f} x_n)\}$ is bounded. Let $\{n_i\}$ be any increasing sequence in \mathbb{N} . Since $\sup_n \alpha_n < 1$, we have a subsequence $\{n_{i_j}\}$ of $\{n_i\}$ such that $\{\alpha_{n_{i_j}}\}$ converges to some $\delta \in [0, 1[$. Then letting $j \to \infty$ in

$$\frac{1}{1 - \alpha_{n_{i_j}}} \left(f(x_{n_{i_j}+1}) - \alpha_{n_{i_j}} f(x_{n_{i_j}}) \right) \le f(R_{\lambda_{n_{i_j}}} f(x_{n_{i_j}}) \le f(x_{n_{i_j}}),$$

Thus $\{f(R_{\lambda_{n_{i,j}}}fx_{n_{i,j}})\}$ also converges to γ . Consequently, it follows from

$$\lim_{n \to \infty} (f(R_{\lambda_n f} x_n) - f(u)) = 0$$

that

$$\lim_{n \to \infty} f(x_n) = \gamma = f(u) = \inf f(X).$$

Let $\{x_{n_i}\}$ be an arbitrary subsequence of $\{x_n\}$. Let

$$\{x_0\} = \mathcal{A}(\{x_n\}) \text{ and } \{z\} = \mathcal{A}(\{x_{n_i}\}).$$

There exists $\{x_{n_i}\} \subset \{x_{n_i}\}$ and $w \in X$ such that $x_{n_i} \xrightarrow{\Delta} w$. Since f is Δ -lower semicontinuous,

$$f(w) \le \liminf_{j \to \infty} f(x_{n_{i_j}}) = f(u).$$

Thus $w \in \operatorname{argmin}_X f$. we also have

$$\lim_{n \to \infty} \sup d(w, x_n) = \limsup_{i \to \infty} d(w, x_{n_i})$$
$$= \limsup_{j \to \infty} d(w, x_{n_{i_j}})$$
$$\leq \limsup_{j \to \infty} d(z, x_{n_{i_j}})$$
$$\leq \limsup_{i \to \infty} d(z, x_{n_i})$$
$$\leq \limsup_{i \to \infty} d(x_0, x_{n_i})$$
$$\leq \limsup_{n \to \infty} d(x_0, x_n) \leq \limsup_{n \to \infty} d(w, x_n).$$

hence $z = x_0 = w \in \operatorname{argmin}_X f$. Thus $\{x_n\}$ Δ -converges to $x_0 \in \operatorname{argmin}_X f$. On the other hand, Let $\{q\} = \mathcal{A}(\{R_{\lambda_{n_i}f}x_{n_i}\})$ such that any $\{R_{\lambda_{n_i}f}x_{n_i}\} \subset \{R_{\lambda_nf}x_n\}$. It follows that

$$\begin{split} \limsup_{i \to \infty} d(R_{\lambda_{n_i}f}x_{n_i}, q) &\leq \limsup_{i \to \infty} d(R_{\lambda_{n_i}f}x_{n_i}, x_0) \\ &\leq \limsup_{i \to \infty} d(R_{\lambda_{n_i}f}x_{n_i}, x_{n_i}) + \limsup_{i \to \infty} d(x_{n_i}, x_0) \\ &\leq \limsup_{i \to \infty} d(x_{n_i}, x_0) \\ &\leq \limsup_{n \to \infty} d(x_n, x_0) \\ &\leq \limsup_{n \to \infty} d(x_n, q) \\ &\leq \limsup_{n \to \infty} d(x_n, R_{\lambda_n f}x_n) + \limsup_{n \to \infty} d(R_{\lambda_n f}x_n, q) \\ &\leq \limsup_{n \to \infty} d(R_{\lambda_n f}x_{n_i}, q) \\ &= \limsup_{i \to \infty} d(R_{\lambda_{n_i}f}x_{n_i}, q) \end{split}$$

Consequently, we conclude that both $\{x_n\}$ and $\{R_{\lambda_n f} x_n\}$ are Δ -convergent to an element x_0 of $\operatorname{argmin}_X f$.

Acknowledgment. This work was partially supported by JSPS KAKENHI Grant Number JP21K03316.

References

- T. Kajimura and Y. Kimura, Resolvents of convex functions in complete geodesic space with negative curvature, J. Fixed Point Theory Appl. 21 (2019), 15pp.
- [2] —, The proximal point algorithm in complete geodesic spaces with negative curvature, Adv. Theory Nonlinear Anal. Appl. 3 (2019), 192–200.
- [3] —, A new resolvent for convex functions in complete geodesic spaces, RIMS Kôkyûroku no. 2112 (2019), 141–147.
- [4] Y. Kimura and F. Kohsaka, Spherical nonspreadingness of resolvents of convex functions in geodesic spaces, J. Fixed Point Theory Appl. 18 (2016), 93–115.

- [5] —, The proximal point algorithm in geodesic spaces with curvature bounded above, Linear Nonlinear Anal. 3 (2017), 133–148.
- [6] —, Two modified proximal point algorithms in geodesic spaces with curvature bounded above, Rend. Circ. Mat. Palermo, II. 68 (2019), 83–104.
- [7] M. Nakadai, The properties of resolvents for a convex function and minimizer approximation on a complete geodesic space with curvature bounded above by a positive number (Japanese), Graduate Thesis, Toho University, 2023.