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Abstract 

The aim of this paper is to propose a new resolvent and to study the asymptotic 
behavior of a sequence generated by Mann iteration in complete geodesic space 
with negative curvature. 

1 I ntroduction 

Let X be an admissible complete CAT(l) space and f a proper lower semicontinuous 

convex function from X into ]-oo, oo]. In this case, a resolvent off is defined by 

Jfx = argmin{f(y) +tand(y,x)sind(y,x)} 
yEX 

for all x E X. In 2016, Kimura and Kohsaka proved its well-definedness. Let X be a 

complete CAT(-1) space and f a proper lower semicontinuous convex function of X to 

]-oo, oo]. Then the resolvent off is defined by 

Itx = argmin{f(y) + tanhd(y, x) sinhd(y, x)} 
yEX 

for all x E X. In 2019, Kajimura and Kimura showed that it is well-defined. The 

resolvent JJ corresponds to It in a complete CAT(-1) space. 
Let X be a complete CAT(l) space and f a proper lower semicontinuous convex 

function from X into ]-oo, oo]. A resolvent for f is defined by 

Q戸＝ argmin{f(y)-logcosd(y, x)} 
yEX 
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for all x E X. In 2019, Kajimura and Kimura provided its well-definedness. In 2023, 
N akadai [7] showed the following theorem. 

Theorem 1.1. Let X be an admissible complete CAT(l) space and f a proper lower 

semicontinuous convex function from X into ]-oo, oo]. Let Qr,J the resolvent of rif for 
all rJ > 0 and { Xn} a sequence defined by x1 E dom(f) and 

Xn+l = anXn① (1 -an)Q心f咋，

where {an} is a sequence in [O, 1 [ and｛心｝ isa sequence of positive real numbers such 

that 区~=1(1- ％）入n = oo. Then the following hold. 

(i) The set argminx f is nonempty if and only if {Q心fXn}is spherically bounded; 

(ii) If argminx f is nonempty and supn anく l,then both { Xn} and { Q心JXn}are 
△-convergent to an element xo of argmin x f. 

In this paper, we propose a new resolvent corresponding Q f in a complete CAT(-1) 
space and we show that it is well-defined as a single-valued mapping. Moreover, we 
study the asymptotic behavior of a sequence generated by Mann iteration. 

2 Preliminaries 

Let X be a metric space with metric d. We denote by F(T) the set of all fixed points of 
a mapping T of X into itself. For x, y EX, a continuous mapping c: [O, l]→Xis called 
a geodesic joining x and y if c satisfies c(O) = x, c(l) = y and d(c(s),c(t)) = ls-ti for 
all s, t E [O, 1]. Its image, which is denoted by [x, y], is called a geodesic segment with 
endpoints x and y. X is said to be a geodesic space if there exists a geodesic joining 
any two points in X. In this paper, for a geodesic metric space X, a geodesic joining 
any two points of X is always assumed to be unique. 
Let X be geodesic metric space. For all x, y E X  and a E [O, 1], there exists a unique 

point z E X such that d(x, z) = (1 -a)d(x, y) and d(z, y) = ad(x, y). This point is 
called a convex combination of x and y, denoted by ax① (1 -a)y. A subset CCX  is 
said to be convex if [x, y] C X for all x, y E C. 
Let M~ be a two dimensional model space for,,,, E股． Forexample, Mi名＝訊

厨＝ §2and M~1 = lHI2. A geodesic triangle with vertices x, y, z E X is defined by 
[x, y] U [y, z] U [z, x], which is denoted by△(x, y, z). A comparison triangle to△(x,y,z) 

with vertices歪，0，zE M~ is defined by［歪，y]u [y，司 u［芝歪 withd(x, y) = d（歪，0），
-'----］ 

d(y, z) = d(y，乏） andd(z, x) = d（乏，歪）， whichis denoted by△（歪，0，芝）． For,,,,E恥 Xis

called a CAT（,,,,) space if d(p, q) :S d(p, q) holds whenever p and 7j E囚 arecomparison 
points for p and q E△,respectively. If,,,, <,,,,, then the CAT(,,,,) spaces are CAT(,,,,') 

spaces. We know that the following lemmas hold. 

Lemma 2.1. Let X be a CAT(-1) space, x1, x2心3E X  and a E [O, l]. Then 

coshd(ax1 〶 (1- a)x2，乃）:::;a cosh d(x1，乃） ＋ （1 -a) cosh d(x2心3).

Lemma 2.2. Let X be a CAT(-1) space, x1, x□3 E X  and a E [O, 1]. Then 

coshd(ax1① (l-a)x2,:乃）sinhd(x1,:砂）

:S coshd(x1滉沼）sinhad(X1,:砂） ＋coshd(x2,:乃）sinh(l-a)d(x1,:砂）．
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Lemma 2.3. Let X, x□2, x3, and a be the same as in Lemma 2.2. Then 

1 1 1 1 1 
coshd(~x1 ① -x2, x3) cosh ~d(xぃ X叫< -coshd(x1心3)+ ~ coshd(x2,x3). 

2 2 2 -2 2 

Let X be a metric space and {xn} a sequence in X. The asymptotic center.A({xn}) 

of { Xn} is defined by 

叫｝）＝｛zEXlli巴門pd(z,xn)= j叫巴門pd(y,Xn)}, 

A sequence { Xn} is said to be△-convergent to p E X if 

A({ Xn;}) = {p} 

holds for each subsequence {xnJ of {xn}-In this case, {xn} is bounded and its subse-
quence is also△-convergent to p. 

Theorem 2.4. Let X be a complete CAT(O) space and f a proper lower semicontinuous 
convex function of X into]-(X)，(X)］． Suppose that f(x)→ (X)whenever d(x,p)→ (X)for 
some p EX. Then argminx f is nonempty. Further, if 

f （い；Y)< ~f(x) + ~f(y), 

holds for all x, y E X with x # y, then argminx f is consists of one point. 

3 Resolvents for convex function in complete CAT (-1) spaces 

In this section, we show that a new resolvent 

的x:= argmin{f(y) +logcoshd(y,x)} 
yEX 

is well-defined. 

Lemma 3.1. Let f be a proper lower semicontinuous convex function from X into 

]-oo, oo] and p EX. If g: X→]-oo, oo] is defined by 

g(・) = f(・) + logcoshd(・,p) 

then g is a proper lower semicontinuous convex function from X into ]-oo, oo]. 

Proof. Let t > 0. We have 

Hence 

1 
(log(cosht))" = (tanht)'= ~ > 0. 

cosh"'t 

logcosh(ad1 + (1-a)d2)：：：：： a log cosh d1 + (1 -a) log cosh d2 
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for all d1, d2 2: 0 and a E ]O, 1[. It follows that 

log cosh d(ad(x,p)① （1-a)d(y,p))：：：：： logcoshd(ad(x,p) + (1-a)d(y,p)) 

：：：：： a log cosh d(x,p) + (1 -a) log cosh d(y, p) 

for all x, y EX  and a E ]O, 1[. Thus g is convex. On the other hand, it is obvious that 
g is proper and lower semicontinuous. ロ

Lemma 3.2. Let f be a proper lower semicontinuous convex function from X into 
]-oo, oo] and p EX. Suppose that f is bounded below. If g is defined by 

g(・) = f(・) + logcoshd(・,p) 

then argminx g consists of one point. 

Proof. Let {zn} be a sequence of X with limn→00 d(zn,P) = oo for each p EX. Then, 
it is obvious that limn→oo logcoshd(zn,P) =(X)．From Lemma 2.4 and Lemma 3.1, 
argminx g is nonempty. 
We next show that argminx g consists of one point. Suppose that u, v E argminx g 

with u-/-v. Suppose d(u,p)-/-d(v,p). Then, 

g(u)：：：： f （い①い）＋logcoshd(；鱈い）
1 

:::: ~f(u) + ~f(v) +logcosh (~d(u,p) + ~d(v,p)) 

1 1 1 1 

2 
< if(u) + if(v) + i logcoshd(u,p) + i logcoshd(v,p) = g(u). 

2 2 2 

It is a contradiction. Suppose d(u,p) = d(v,p). Then, 

g(u)：：：： f （い；v)+ logcoshd（いい）
= f (~u ① ;v) + log (cosh d (~u EB ~v, p) cosh ¥) -log cosh ¥ 

From the convexity of f and Lemma 2.3, 

1 
g(u) :::: ~f(u) + ~f(v) +log(~ coshd(u,p) + ~ coshd(v,p)) -logcosh ¥-d(u,v) 

2 

Since 

1 
i cosh d(u, p) + i cosh d(v, p) = cosh ~ cosh ~, 

1 ___, _11 ____, ___, d(u,p) + d(v,p) ___, d(u,p) -d(v,p) 

2 2 2 2 

we have 

1 
g(u):::: if(u) + if(v) + logcosh 

l.r1,,,_ _____, d(u,p)+d(v,p), ______, d(u,v) 
_ 2 2 2 

-logcosh 
2 
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and hence 

d(U,V) 1 1 d(U,p) ＋ d(v,p) 
0 < logcosh~ ~ if(u) + if(v) +logcosh~ -g(u) 

2 -22  2 
1 1 

~ ~f(u) + ~f(v) 
1 1 

if (u) + if (v) + i log cosh d(u,p) + i log cosh d(v,p) -g(u) 
2 2 

= g(u) -g(u) = 0. 

It is a contradiction. Consequently, argmin x g consists of one point. 口

Definition 3.3. Let f be a proper lower semicontinuous convex function from X into 
]-oo, oo]. Suppose that f is bounded below. Then we define a new resolvent恥： X → 
X by 

R戸＝ argmin{f(y)+ logcoshd(y, x)} 
yEX 

for all x EX. By Lemma 3.2, we know that Rt is well-defined. 

4 Fundamental properties of resolvents in CAT(-1) spaces 

Lemma 4.1. Let X be a complete CAT(-1) space, f a proper lower semicontinuous 

convex function of X into ]-oo, oo]. Suppose that f is bounded below. Let R'lf be the 
resolvent of rJf for all 7) > 0. If入，μ > 0 and x, y EX, then the inequality 

（入＋μ)coshd(R,¥fx,RμfY) ＜ + 
μcoshd(RμJY, x) 入coshd(R,¥JX,y) 

----'coshd(R,¥fx,x)'coshd(RμJY,Y) 

holds. 

Proof. Let入，μ > 0 and x,y EX  be given. Set D = d(R,¥JX, RμJY) and 

Zt = tRμJY① (1-t)R,¥JX 

for all t E]O, 1[. By the definition of R,¥f and the convexity of f, we have 

入f(R,¥ix)+logcoshd(R,¥fx,x) 

さ入f(zt)+logcoshd(zt,x) 

:S t入f(RμJY)+ (l -t)入f(R,¥ix)+log cosh d(zt, x). 

On the other hand, Lemma 2.2 implies that 

coshd(tRμJY① (1-t)R,¥JX, x) sinhD 

:S coshd(RμJY, x) sinh tD + coshd(R入1x,x)sinh(l-t)D.

If D > 0, we have 

t入(f(R入JX)-f(RμJY)) 

::; log (cosh d(tRμJY, x) sinh tD + cosh d(R入fX,x) sinh(l -t)D) -log sinh D 
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and hence 

入(f(R入fx)-f(RμfY)） 

log(coshd(Rμ,JY, x) sinh tD + coshd(R入fX,x) sinh(l -t)D) -log sinh D 
< t.  

By !'Hospital's rule, we have 

入(J(R入1x)-f(RμJY)) 

＜・
log(coshd(RμJY, x) sinh tD + coshd(R入JX,x) sinh(l -t)D) -log sinh D 

lim 
t→0 t 

D(coshd(RμJY, x) cosh tD -coshd(R入1x,x) cosh(l -t)D) 
= lim 

t→6 coshd(RμJY,x)sinhtD+coshd(R入JX,x) sinh(l -t)D 

= D (coshd(Rμfy,x) -coshD. 
sinhD coshd(Rμfy,y)) 

It implies that 

入(f(R入1x)-f(RμJY)) ~ ¾v (~-coshD 
-sinhD coshd(Rμfy,y)) 

and that 

μ(f(RμJY) -J(R入fx)）＜ D (coshd(R入~-coshD).
-sinhD coshd(R入~-coshD)

Multiplying (1) byμ and (2) by入， andadding them, we obtain 

（入＋μ)coshd(R入fx,RμfY)＜ ＋ 
μcoshd(RμJY, x) 入coshd(R入JX,y) 

-'coshd(R入fx,x)'coshd(RμJY,Y).

This is the desired result. 

It follows that f(u)：：：：： J(y). It implies u E argminx f. 

(1) 

(2) 

口

Corollary 4.2. Suppose that X and f are the same as the previous lemma. Then 

F(Rt) = argminx f. 

Proof. Let u E argminx f and y EX. By the definition of Rt, we have 

f(u) +log(coshd(u,u)) = f(u) :S J(y):S J(y) + log(cosh d(y, u)). 

Thus u E F(Rt). Let u E F(Rt) and y EX. By Lemma 4.1, we have 

f(Rfu)-f(y) ＜ d(Rfu,y) (coshd(U,y) 
-sinhd(Rtu,y) ¥coshd(Rtu,u) 

-coshd(Rtu, y)) 

and hence 

f(u)-f(y) :S ~ (~ -coshd(u :S ~ (~-coshd(u,y)) =0. 

口
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Corollary 4.3. Suppose that X and f are the same as the previous lemma. Then 

coshd(y, R入ix)coshd(R入JX,x) ::; cosh d(y, x) 

for each y E argmin x f. 

Corollary 4.4. Suppose that X and f are the same as the previous lemma. If 
argminx f is nonempty, then R 入fis quasinonexpansive. 

5 △-convergent proximal-type algorithm 

Theorem 5.1. Let X be a complete CAT(-1) space, f a proper lower semicontinuous 

convex function of X into ] -oo, oo]. Suppose that f is bounded below. Let Rrif the 
resolvent of TJf for all'T} > 0 and { Xn} a sequence defined by x1 E X and 

Xn+l = O'.nXn① (1 -an)R心fXn,

where { an} is a sequence in [O, 1 [ and｛入n}is a sequence of positive real numbers such 

that I:C::=l (1-a凸＝ oo.If argminx f is nonempty and supn叫く 1,then both { Xn} 
and {R心 JXn}are△-convergent to an element x。。fargminx f. 

Proof. Suppose that argminx f is nonempty and supn an < 1. Let u E argminx f be 
given. By Lemma 2.1 and Lemma 4.4, we have 

coshd(u, Xn+1):::; an coshd(u, Xn) + (1 -an) coshd(u, R心JXn)::;coshd(u,xn)-

and hence 

d(u,Xn+l)さd(u,xn)-

Thus, { d(u, Xn)} converges to some f3 E [O, oo[. By Lemma 2.1 and Lemma 4.3, we have 

cosh d(u, Xn+l)::; CYn cosh d(u, Xn) + (1 -an) cosh d(u, R心jXn)

and hence 

coshd(u, Xn) 
ご叫coshd(u, Xn) + (1 -an) ・ 

coshd(xn, R心fXn)

:::; coshd(u,xn) + (1-an)coshd(u,xn) (~心f%）― 1)

02". (1-an)coshd(u,xn) (~心f%）― 1)
coshd(u. x 

＞ 
(， n+1) coshf3 

-1→ -1 = 0. 
cosh d(u, Xn) ~ ・ cosh f3 

as n→oo. Since supn叫く 1,we have 

lirn d(xn,R□%） ＝0. 
n→(X) 
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On the other hand, it follows from Lemma 4.1 that 

入n(f(R心jXn)-f(u)）さ coshd(u,xn)-coshd(u, R心f%）

for all n EN. It then follows from Lemma 2.1 that 

(1 -O:n)入n(f(R入nfXn)-f(u)）::; cosh d(u, Xn) -cosh d(u, Xn+i) 

and hence 

立1-％)心(J(R心JXn)-f(u)）さ coshd(u心1)-cosh/3 ＜00. 
n=l 

Since ~':=1 (1 -％）入＝ oo,it follows that 

limi11f f(R心JXn)-f(u) = 0. 
n→OO 

By the definition of { Xn} and { R心戸n}and the convexity of f, we also have 

-oo < inf f (X)：：：：： f(R入nfXn)：：：：： f(R入nfXn)+ log cosh d(R入nf”か Xn)：：：：： f(xn)

and 

-oo < inf f (X)さf（%＋1)さ％f(xn)+ (1 -Dn)f (R>-n凸）さ f(xn)

for all n EN. Thus {J(xn)} converges to"(E耽 and{J(R心JXn)}is bounded. Let｛叫
be any increaseing sequence in N. Since sup凸 く 1,we have a subsequence｛尻｝ of
{n」}suchthat {an,,} converges to some 8 E [O, 1 [. Then letting j→oo in 

1 -1 an2 (f(x叫＋1)-lXn,j f (xn,j)）:::;; f (R入口戸n,3):::;;f(xn。j)'

Thus {f(R入 fXn;i)}also converges to 1. Consequently, it follows from 

lirn (f(R心fXn)-f(u)) = 0 
n→OO 

that 

n1鷹 f(xn)='Y = J(u) = inf J(X). 

Let {xnJ be an arbitrary subsequence of {xn}-Let 

{ Xo} = A({ Xn}) and { z} = A({ Xn;}). 

△ 
There exists { Xn;J } C { Xn;} and w E X such that Xn;→w. Since f is△-lower semicon-

tinuous 

J(w):::; liminf f(xn;J = J(u). 
j → oo 3 
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Thus w E argminx f. we also have 

limsupd(w心） ＝limsupd(w凸）
n→OO t→OO 

= limsupd(w,Xn;J 
j→OO 

J 

::::; limsupd(z,xn; 
J ● → OO 

3 
） 

::::; limsupd(z心）
i→OO 

さlimsupd(xo,XnJ 
i→OO 

::::; limsupd(xo,％）さ limsup d(w, Xn)-
n→OO n→OO 

hence z = xo = w E argmin x f. Thus｛凸｝ △-converges to x。E argmin x f. On 

the other hand, Let { q} = A({ R.xnJ孔｝） suchthat any { R入nJXnJC {R心fXn}-It 
follows that 

lim sup d(R>-.nJXn;, q)：：：：： limsupd(R心戸n;,xo)
t→00 i→OO 

：：：：： lim sup d(R.xni f”叩％） ＋lim sup d(xn;, xo) 
i→oo i→OO 

：：：：： lim sup d(Xn;, Xo) 
t→OO 

：：：：： limsup d(xn, xo) 
n→OO 

：：：：： limsup d(xn, q) 
n→OO 

：：：：： limsup d(xn, R.xnfXn) + limsupd(R心fXn,q) 
n→oo n→OO 

~ limsupd(R心jXn,q) 
n→OO 

= limsupd(R心JXn;,q) 
i→OO 

Consequently, we conclude that both {xn} and {R心JXn}are△-convergent to an ele-

ment x。ofargmin x f. ロ
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