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Abstract

The aim of this paper is to propose a new resolvent and to study the asymptotic
behavior of a sequence generated by Mann iteration in complete geodesic space
with negative curvature.

1 Introduction

Let X be an admissible complete CAT(1) space and f a proper lower semicontinuous
convex function from X into |—oo, 00]. In this case, a resolvent of f is defined by

Jyx = argmin{ f(y) + tand(y, z) sind(y, x)}
yeX

for all x € X. In 2016, Kimura and Kohsaka proved its well-definedness. Let X be a
complete CAT(—1) space and f a proper lower semicontinuous convex function of X to
]—00, 00]. Then the resolvent of f is defined by

I = argmin{f(y) + tanh d(y, ) sinh d(y, 2)}
yeX
for all z € X. In 2019, Kajimura and Kimura showed that it is well-defined. The
resolvent J¢ corresponds to Iy in a complete CAT(—1) space.
Let X be a complete CAT(1) space and f a proper lower semicontinuous convex
function from X into |—o00, 00]. A resolvent for f is defined by

Qgx = argmin{ f(y) — logcos d(y, )}
yeX



for all x € X. In 2019, Kajimura and Kimura provided its well-definedness. In 2023,
Nakadai [7] showed the following theorem.

Theorem 1.1. Let X be an admissible complete CAT(1) space and f a proper lower
semicontinuous convex function from X into |—oco,00]. Let Q5 the resolvent of nf for
alln >0 and {z,} a sequence defined by x1 € dom(f) and

Tp4l = QpTp D (1 - QH)QszIn?

where {ay} is a sequence in [0, 1] and {\,} is a sequence of positive real numbers such
that 37 (1 — ay) A, = 00. Then the following hold.

(i) The set argminy f is nonempty if and only if {Qx, sxn} is spherically bounded;
(ii) If argminy f is nonempty and sup,, o, < 1, then both {x,} and {Qx, rxn} are
A-convergent to an element xo of argminy f.

In this paper, we propose a new resolvent corresponding (s in a complete CAT(—1)
space and we show that it is well-defined as a single-valued mapping. Moreover, we
study the asymptotic behavior of a sequence generated by Mann iteration.

2 Preliminaries

Let X be a metric space with metric d. We denote by F(T') the set of all fixed points of
a mapping T of X into itself. For z,y € X, a continuous mapping c: [0,l] — X is called
a geodesic joining x and y if ¢ satisfies ¢(0) = z, ¢(I) = y and d(c(s), c(t)) = |s — t| for
all s,t € [0,1]. Tts image, which is denoted by [z,y], is called a geodesic segment with
endpoints x and y. X is said to be a geodesic space if there exists a geodesic joining
any two points in X. In this paper, for a geodesic metric space X, a geodesic joining
any two points of X is always assumed to be unique.

Let X be geodesic metric space. For all 2,y € X and « € [0, 1], there exists a unique
point z € X such that d(z,z) = (1 — a)d(z,y) and d(z,y) = ad(z,y). This point is
called a convex combination of z and y, denoted by ax & (1 — a)y. A subset C C X is
said to be convex if [z,y] C X for all z,y € C.

Let M? be a two dimensional model space for k € R. For example, M = R?,
M? = S? and M2, = H2. A geodesic triangle with vertices z,y,2 € X is defined by
[z,y] Uy, 2] U [z, x], which is denoted by A(z,y, z). A comparison triangle to A(z,y, z)
with vertices Z,7,Z € M2 is defined by [Z,7] U [7,7] U [2,Z] with d(x,y) = d(Z,7),
d(y,z) = d(7,%) and d(z,r) = d(z,T), which is denoted by A(%,7,%). For k € R, X is
called a CAT(k) space if d(p,q) < d(p,q) holds whenever p and § € /A are comparison
points for p and ¢ € A, respectively. If x < &’ then the CAT(x) spaces are CAT(x')
spaces. We know that the following lemmas hold.

Lemma 2.1. Let X be a CAT(—1) space, x1,x2,23 € X and o € [0,1]. Then
coshd(axy & (1 — a)xa,x3) < acoshd(zy,x3) + (1 — ) cosh d(zo, x3).
Lemma 2.2. Let X be a CAT(—1) space, x1,72,73 € X and o € [0,1]. Then

coshd(azy ® (1 — a)xa, x3) sinhd(xq, z2)
< coshd(zy,x3) sinh ad(z1, x2) 4 cosh d(zg, x3) sinh(1 — a)d(z1, x2).
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Lemma 2.3. Let X, x1, 22,23, and « be the same as in Lemma 2.2. Then

1 1 1 1 1
cosh d(§x1 ® 53@2,:53) cosh id(ﬂh,@) < 3 coshd(zy,x3) + 3 cosh d(z2, x3).

Let X be a metric space and {x,} a sequence in X. The asymptotic center A({z,})
of {z,,} is defined by

A({zn}) = {z e X

limsup d(z, z,,) = inf limsup d(y,xn)}.

n— 00 yeX nooo

A sequence {z,} is said to be A-convergent to p € X if

A({n 1) = {p}

holds for each subsequence {x,,} of {x,}. In this case, {x,} is bounded and its subse-
quence is also A-convergent to p.

Theorem 2.4. Let X be a complete CAT(0) space and f a proper lower semicontinuous
convez: function of X into |—oo,o0|. Suppose that f(x) — oo whenever d(z,p) — oo for
some p € X. Then argminy f is nonempty. Further, if

1 1 1 1
(500 3v) < 37@+ 30)

holds for all x,y € X with x # y, then argminy f is consists of one point.

3 Resolvents for convex function in complete CAT(—1) spaces

In this section, we show that a new resolvent

Rz = argmin{ f(y) + log cosh d(y, z)}
yeX

is well-defined.
Lemma 3.1. Let f be a proper lower semicontinuous convex function from X into
|—o00,00] and p € X. If g: X — ]—00,00] is defined by
9(-) = f(-) +logcoshd(:,p)
then g is a proper lower semicontinuous convex function from X into |—o00, 00].

Proof. Let t > 0. We have

1
log(cosht))” = (tanht) = ——— > 0.
(og(eosh ) = (nht) = — L

Hence

log cosh(ad; 4+ (1 — a)d2) < alogcoshd; + (1 — a) log cosh do



for all dy,dy > 0 and « € ]0,1]. It follows that

log cosh d(ad(z,p) ® (1 — a)d(y, p)) < logcoshd(ad(z,p) + (1 — a)d(y,p))
< alogcoshd(z,p) + (1 — &) logcoshd(y, p)
for all z,y € X and « € ]0,1[. Thus g is convex. On the other hand, it is obvious that

g is proper and lower semicontinuous. O

Lemma 3.2. Let f be a proper lower semicontinuous convex function from X into
|—00,00] and p € X. Suppose that f is bounded below. If g is defined by

9(-) = f(-) +logcoshd(:, p)
then argminy g consists of one point.

Proof. Let {z,} be a sequence of X with lim,,_, . d(z,,p) = oo for each p € X. Then,
it is obvious that lim, o logcoshd(z,,p) = oo. From Lemma 2.4 and Lemma 3.1,
argminy ¢ is nonempty.

We next show that argminy g consists of one point. Suppose that u,v € argminy g
with u # v. Suppose d(u,p) # d(v,p). Then,

1 1 1 1
< — - . st p
glu) < f (2u® 21}) + log cosh d <2u® 2v,p>

f(v) + log cosh (;d(u,p) + ;d(v,p)>

fu)+=f(v)+ %log coshd(u,p) + %log coshd(v,p) = g(u).

It is a contradiction. Suppose d(u,p) = d(v,p). Then,

1 1 1 1
<f(zu®=v)| +logcoshd | zua =
glu) < f (2u69 21}) + log cos d<2u@ 2v,p>

(1 1 1 1 d(u,v) d(u,v)
=f <2u <) 21}) + log <coshd <2u @ 2v,p) cosh 2> log cosh —5

From the convexity of f and Lemma 2.3,

g(u) < %f(u) + %f(v) + log (; coshd(u,p) + ;coshd(v,p)> — log cosh @

Since

d(u,p) — d(v,p)

h
oS 5 ,

1 1 d d
3 coshd(u,p) + 3 cosh d(v, p) = cosh (uw.p) ;r (v.p)

we have

d(u,v)

d(u,p) +d(v,p) log cosh
2 2

fu)+ %f(v) + log cosh

N =

g(u) <
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and hence

d(u,v)
2

f(u) + %f(v) + log cosh w

flu)+ %f(v) + %log cosh d(u,p) + %bg cosh d(v, p) — g(u)
(u) —g(u) = 0.

It is a contradiction. Consequently, argmin x g consists of one point. O

0 < logcosh —g(u)

IN
| = Do =

I
Q o

Definition 3.3. Let f be a proper lower semicontinuous convex function from X into
| =00, 00]. Suppose that f is bounded below. Then we define a new resolvent Ry: X —
X by

Ryx = argmin{ f(y) + logcoshd(y, z)}
yeX

for all x € X. By Lemma 3.2, we know that R; is well-defined.

4 Fundamental properties of resolvents in CAT(—1) spaces

Lemma 4.1. Let X be a complete CAT(—1) space, [ a proper lower semicontinuous
convez function of X into |—oc,00]. Suppose that f is bounded below. Let R,y be the
resolvent of nf for allm > 0. If \,p >0 and x,y € X, then the inequality

pcoshd(R, sy, x)  Acoshd(Rypx,y)
coshd(Ryyx, ) coshd(R,ry,y)

(A + p) coshd(Rasx, Rury) <

holds.

Proof. Let A, ju > 0 and x,y € X be given. Set D = d(Rysz, R, ry) and
2t =tR,;y® (1-— t)RAf:E

for all ¢ €]0,1[. By the definition of Ry and the convexity of f, we have

Af(Rysz) +logcoshd(Rysz, x)
< Af(z:) + logcosh d(z, x)
<tAf(Rupy) + (1 —t)Af(Rasx) + log cosh d(z¢, x).

On the other hand, Lemma 2.2 implies that

coshd(tR, sy & (1 — t)Rysx, z)sinh D
< coshd(R,sy,x)sinhtD + coshd(Ryz,x)sinh(1 — t)D.

If D > 0, we have

EA(f(Bagz) — f(Rpupy))
< log(cosh d(tR,, sy, x) sinhtD + cosh d(Ry sz, x)sinh(1 — t) D) — log sinh D



and hence

A(f(Rayz) = f(Rupy))

< log(cosh d(R,,ty, x) sinhtD + cosh d(Ry ¢, z) sinh(1 — t) D) — log sinh D

t

By I'Hospital’s rule, we have

A(f(Rapz) = f(Rpupy))

log(cosh d(R,,y, ) sinh tD + cosh d(Rx s, x) sinh(1 — t)D) — log sinh D

< lim
t—0 t
D(coshd(R,, sy, x) coshtD — cosh d(Ryyx,x) cosh(1l — t)D)
i50 coshd(R,.;y,)sinhtD + coshd(Ry z, z) sinh(1 — £)D
D coshd(R,fy,x)
~ sinh D (coshd(RMfy,y)

— cosh D) .

It implies that

D coshd(R,ty, x)
\ B < {2} —cosh D
(f(Rayz) = f(Rupy)) < sinh D <COSh d(Ryury. y) ~
and that
D coshd(Ryyx,y)
_ < B '
n(f(Rupy) — f(Bapz)) < sinh D (coshd(R,\fx,f) cosh

Multiplying (1) by p and (2) by A, and adding them, we obtain

pcoshd(R,ry,z)  Acoshd(Ryrx,y)
coshd(Rysx,x) coshd(R,ry,y)

(A + p) coshd(Rypx, Ry py) <

This is the desired result.

Corollary 4.2. Suppose that X and f are the same as the previous lemma.
F(Ry) = argminy f.

Proof. Let u € argminy f and y € X. By the definition of Ry, we have
f(u) +log(cosh d(u, u)) = f(u) < f(y) < f(y) +log(coshd(y, u)).
Thus v € F(Ry). Let u € F(Ry) and y € X. By Lemma 4.1, we have

d(Ryu,y) < coshd(u,y)

F(Bpu) = fly) < sinhd(Ryu,y) \ coshd(Ryu,u)

— coshd(Ryu, y))

and hence

) — f(y) < d(u,y) <coshd(u7y)

— coshd =0.
sinh d(u,y) \ coshd(u,u) o8 (u,y)) 0

It follows that f(u) < f(y). It implies u € argminy f.

Then
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Corollary 4.3. Suppose that X and f are the same as the previous lemma. Then
coshd(y, Rysx) coshd(Ryyx, z) < coshd(y,x)

for each y € argminy f.

Corollary 4.4. Suppose that X and f are the same as the previous lemma. If
argminy f is nonempty, then Ryy is quasinonezpansive.

5 A-convergent proximal-type algorithm

Theorem 5.1. Let X be a complete CAT(—1) space, f a proper lower semicontinuous
convex function of X into | — co,00]. Suppose that f is bounded below. Let R,s the
resolvent of nf for all n > 0 and {x,} a sequence defined by 1 € X and

Tptl = OpTp D (1 - an)RAnfz"’

where {a, } is a sequence in [0,1] and {\,} is a sequence of positive real numbers such
that Y"1 (1—an)\, = 0. Ifargminy f is nonempty and sup,, oy, < 1, then both {xz,}
and {Rx, rxn} are A-convergent to an element xy of argminy f.

Proof. Suppose that argminy f is nonempty and sup,, ay, < 1. Let v € argminy f be
given. By Lemma 2.1 and Lemma 4.4, we have

coshd(u, zn41) < oy, coshd(u, z,) + (1 — o) coshd(u, Ry, pzpn) < coshd(u,zy).
and hence
d(u, Tpy1) < d(u, ).
Thus, {d(u,z,)} converges to some 8 € [0, 00[. By Lemma 2.1 and Lemma 4.3, we have

coshd(u, xp41) < oy, coshd(u, xy,) + (1 — o) coshd(u, Ry, rxp)
coshd(u, x,)
coshd(xy,, Ry, )

< ay coshd(u, ) + (1 — o)

1
< cosh 1-a b N
< coshd(u, zn) + (1 — an) coshd(u, ) <Cosh d(zn, R, 1%n) >
and hence
0> (1—ay)coshd( ) : -
> an (¢0)] u? .Z"n COSh d(,rna R)\nfxn)
coshd(u, 1) coshfg 1=0
cosh d(u, z,,) cosh § o

as n — 0o. Since sup,, @, < 1, we have

lim d(%n, R,\nfxn) =0.

n—oo



On the other hand, it follows from Lemma 4.1 that
A (f(Ra, pxn) — f(u)) < coshd(u, xy,) — coshd(u, Ry, f2r,)
for all n € N. It then follows from Lemma 2.1 that
(1 — an) A\ (f(Rx, zn) — f(u)) < coshd(u,z,) — coshd(u, 1)

and hence
Z (1 — an) A\ (f(Ra, szn) — f(u)) < coshd(u,zq) — cosh f < oo.

Since Y07 (1 — oy, )X = 00, it follows that
lirginff(RAnfxn) — f(u) =0.
By the definition of {z,} and {R\, z,} and the convexity of f, we also have

—oo < inf f(X) < f(Rx, s2n) < f(Rx, Tn) +1logcoshd(Ry, s, xn) < f(z)

and

—oo <inf f(X) < f(wny1) < anf(@n) + (1= an)f(Rr, 2n) < f2n)

for all n € N. Thus { f(x,)} converges to v € R and {f(Rx, fz,)} is bounded. Let {n;}
be any increaseing sequence in N. Since sup,, o, < 1, we have a subsequence {n;; } of
{n;} such that {amj} converges to some § € [0,1[. Then letting j — oo in

1
1—a,

ij

(£@ni, 1) = @, Fl@n))) < F(Ba,, ) < Fan,):
Thus {f (R, Fn,, )} also converges to . Consequently, it follows from
i

lim (f(R)\nfl‘n) — f(u)) =0

n—oo

that

lim f(zn) =~ = f(u) = inf f(X).

n—oo

Let {z,,,} be an arbitrary subsequence of {z,,}. Let

{zo} = A({zn}) and {z} = A({zn, }).

There exists {xm]} C {xy, } and w € X such that z,, 3 w. Since f is A-lower semicon-
tinuous,

F(w) < lminf f(e,, ) = f(u).

j—)OO
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Thus w € argminy f. we also have

lim sup d(w, x,,) = lim sup d(w, x,,)
n— o0 i—00

= limsup d(w, x,, )
j—o0

< limsup d(z, Tn,, )
j—o0

< limsupd(z, z,,)

1—+00

< lim sup d(l’o, {L‘m)
1—+00

< limsup d(xg, z,) < limsup d(w, z,).
n—oo n—roo

hence z = x9g = w € argminy f. Thus {z,} A-converges to zp € argminy f. On
the other hand, Let {¢} = A({Rx, y=s,}) such that any {Ry, jzn,} C {BRx, ron}. It
follows that

limsupd(Ry, fon;,q) <limsupd(Ry, jon,,z0)

1—00 i—00

(
< limsupd(R, T Tn,;) + limsup d(x,,, zo)
1—00 1—00
< limsupd(z,,, o)
1—00
< limsup d(x,, zo)
n—roo
(
(
(
(

< limsupd(x,, q)

n—oo

<limsupd(xy, Ry, f,) + limsupd(Ry, f2n,q)

n—oo n—oo

<limsupd(Ry, fZn,q)

n—oo
= limsupd(R), Tn,,q)
1—00
Consequently, we conclude that both {z,} and {R), fx,} are A-convergent to an ele-
ment xg of argminy f. O
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