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Abstract

We consider a 2n-variable parametric minimization problem, where a parame-
ter A > 0. Then it holds that the parametric minimization problem derives two
problems, which are A-parametric minimization problem (primal) and A-parametric
maximization problem (dual). Both the optimal solutions are expressed in terms
of Gibonacci sequence, which is a parametric generalization of the Fibonacci one.
Either solution is characterized by the backward Gibonacci sequence and its com-
plementary — Hibonacci sequence — In particular, when a parameter A\ = 1, we
show that Gibonacci sequence and Hibonacci sequence are represented by Fibonacci
number. Moreover, for A = 4, both the sequences are represented by Sibonacci
number.

1 Introduction

Recently, in [23,24], Iwamoto and Kimura show that a parametric linear system of equa-
tions plays a fundamental part in establishing a mutual relation between minimization
problem (primal) and maximization problem (dual). The system is of 2n-equation on
2n-variable, called zero-minimum condition. It yields a couple of second-order finite (n-)
linear difference equations on m-variable, which constitute the respective optimal condi-
tions. The respective equations have a minimum solution for primal and a maximum one
for dual. Both the optimal solutions are expressed in terms of Gibonacci sequence, which
is a parametric generalization of the Fibonacci one. Either solution is characterized by
the backward Gibonacci sequence and its complementary — Hibonacci sequence —.

As a historical background, see (i) Bellman and others [1-7,28], [9, 11, 30, 31] for
dynamic optimization, (ii) Iwamoto, Kimura, Fujita and Kira [12-22,25-27] for comple-
mentary duality, and (iii) [8,10,29,32] for Fibonacci number.

In this paper, we consider a 2n-variable parametric minimization problem (Q), where
a parameter A > 0. Then it holds that the problem derives two problems, which are
A-parametric minimization problem (primal) and A-parametric maximization problem
(dual). In the case of A = 1, we show that both Gibonacci and Hibonacci sequences are
represented by Fibonacci number. Thus it turns out that the optimal solutions of the
primal and dual are represented by Fibonacci number. Moreover, in the case of A = 4,
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both the sequences are represented by Sibonacci number. Similarly the optimal solutions
are represented by Sibonacci number.

Section 2 gives a 2n-variable parametric minimization problem, where a parameter A
ranges over (0, c0). The objective function turns out to be nonnegative. It attains zero
iff a linear system of 2n-equations on 2n-variables has a solution. Section 3 presents a
pair of A-parametric minimization problem and A-parametric maximization problem for
A = 1. In Section 4, we discuss A-parametric optimization problems for A\ = 4.

2 Complementary approach
Let ¢ € R! be a given constant. The first minimization problem has a fixed initial state
Tog = C:

n—1
minimize — 2 zgu1 + Z (@1 — z)® + @} + N pi + (e — piesr)’
k=1
+ 20 = Dy (e — I~Lk+1)]

+ (Tpo1 — zn)? + 22+ (N + D + 200 — Dappn
subject to (i) z € R", xop=¢, (ii) pu€ R".

Let us define the objective function by h : R"xR" — R!

=

n—

h(z,p) = —2Acps + [(ro1 — z)® + 2f + Nuf + (1 — 1)’
1
+ 20N = Dag(ptr — par)]
(g —2p) 2 22+ (N2 D)2+ 200 = D)y pi.

E
Il

We have an evaluation as follows.
Lemma 1 [23,24] Let (x, ) be feasible. Then it holds that
h(z,p) > 0. (1)
The sign of equality holds iff
C— 1 = M, T1 = f1— [
(Zm) g —mp = Mg, Tk = g — g 2<k<n-—1
Tp1— Tn = Mln, Tn = fin
holds.

This is a linear system of 2n-equation on 2n-variable (z, ;). We call (Zm) a zero-minimum
condition.



Lemma 2 [23,24] Let
vi=24A £:=1+X (A#0).

Then the zero-minimum condition (Zm) yields a pair of linear systems of n-equation on
n-variable:

Casen =1
(EQ) c¢=¢&n ¢ =¢un.
Case n =2
C = 7YT1 — T2 ¢ =Em — po
(EQ> x1 = €xg M1 = Y.
Case n >3
C = YT1 — T2 c =& — o

(EQ) Tho1 = YTk — Thp1  He—1 = Ve — 1 2<k<n-—1
T = Exp Hn—1 = YHn-
Conversely the pair (EQ) yields (Zm) under the condition that either system has a

unique solution. This condition is assured by the nonsingularity of the relevant n x n
martices A,, B, i.e.,

| An| # 0, [Bn] # 0.

The pair (EQ) is divided into two linear systems:

C = X
(EQ.) Tp—1 = VT — Tp41 1<k<n-1

Tp-1 = é-wn

and
¢ = & — po
(EQ/L) He—1 = YHE — HE+1 2<k<n-1
Hn—1 = THn

Tt holds that |A,| = |By|-
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3 Case \=1

Now we consider a series of individual minimization problems by letting the parameter A
vary on the positive half-line (0, c0).

First we consider the Case A = 1. Then v : =2+ A, £ :== 1+ X yields

vy=3 §£=2
We consider
n—1
minimize — 2xouq + Z [(:rk_l — a:k)2 + {L‘Z + Mi + (g — Mk+1)2}
k=1

Q: + (xn—l - ‘Tn)2 + :IJEL + 2:”121

subject to (i) z € R", zg=¢, (ii) p€ R".

Now we define the objective function h : R"xR" — R' by

n—1

Ma,p) = —2cm + Z [(wro1 = 0)? + @ + i+ (e — pee1)?]
k=1

+ (@1 — ) + a7, + 2405
Corollary 1 Let (z, p) be feasible. Then it holds that

hr,p) = 0. (2)
The sign of equality holds iff a zero-minimum condition
C— T = M1, Ty = M1 — M2
(Zmy)  @py = = pp, Tk = pip—prpr 2<k<n-—1
Tp1—Tp = Mn, Tn = Hp

holds.

Corollary 2 The zero-minimum condition (Zm,) has a unique solution (x, u);

x = (X1, Tay vy Thy ooy Tp_1, Tp)
C
= ?(Hn—h Hn—?u H-aHn—kn ceey H17 HU)7 (3)
n
n = (:uh M2y -evy HEy ooy Hn—1, :u”rl)
C

- ?(Gna Gn—17 "'7Gn+1—k7 sy G2a G1)7 (4)



where {G} is called two-step Gibonacci sequence and the sequence {H,} is called Hi-

bonacci (see [23,24]):

G, = 5;0@ H, = 2G, — G_1,
B —a
3—V5 3+V6
a=——7"— f[=——".
2 ' 2
Hence Q attainas the zero minimum at (x, p1).
We remark that the Golden number
1 5
o= V56
2
and its conjugate
_ 1—-+5
pi=1—¢=—¢1= wafo.382
are the solutions to the quadratic equation
tP—t—1=0.
It holds that
3—vV5 _ 3+V5
A e
—2n
mn __ .n 2n
Gn = /B < = ¢ f = Iy,
f—-a ¢—¢

Hn = 2Gn - anl = 2F2'n - F2n72 = F2n+1~
Thus both G,, and H,, are Fibonacci:

Gn == F2n7 Hn = F2n+1~

Corollary 3 The zero-minimum condition (Zm,) has a unique solution (z, u);

r = (Ila Loy vy Thy ooy Tn—1, xn)
C
== 7(F2n—17 FQn—37 --‘7F2n+1—2k7 ceey F37 F1)7
F2n+1
H= (.u‘17 M2y vy PRy -oey Hn—1, .u‘n)
C
= (FQ'rm FZn—27 "'7F2n+2—2k7 ey F47 FQ)
F2n+1

Hence Q attainas the zero minimum at (x, p1).
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Corollary 4 [t holds that

=
=
Vv

0 V(z, p) € R'xR"
(il) h(x,pu) = 0<= (x,u) satisfies (EQ,).

The objective function

3
|
—_

h(z, ) = —2cu + [(@r1 — z)® + 2} + 117, + (e — pas1)’]
1

=~
Il

+ (201 — @)’ + ) + 20,
attains the zero-minimum. Further we have a triple zero property as follows.

Corollary 5 Let a feasible (x, ) satisfy (Zmy). Then it holds that

h(z, 1)

n

= —clc—m)+ Y [(@r1 — z)* + 7]

k=
(tZ1) o
= —cpn+ ) [+ (e — )] + 20,
k=1
= 0.
that is
h(z, 1)
= —Fonp1(Fong1 — Fon1) + [<F2n72k+3 — Fonai1)’ + F22n_2k+1}
(tZy) =

—

= —Fop1Fon + [F22n_2k+2 + (Fon—ok42 — F?n—2k)2] +2F;
1

=~
Il

= 0.

This yields a pair of quadratic equalities for the Fibonacci sequence {F,}.

Corollary 6 It holds that

[FQZkﬂ + (Fores — F2k+1)2] = (Fong1 — Fon—1)Fong,

Z [(F2k+2 — Fy)® + F22k+2] = By Fonya.
k=0



Proof. It suffices to note that

F2k+3 - F2k+1 = F2k+2a F2k+2 - F?k = F2k+1-

O
The pair is reduced to
n—1
(F3y + Fo) = FanFonp
k=1
that is
2n
Y F = FoFanga (10)
k=1
This is what we called Lucas formula [13,29].
3.1 Fibonacci Duality
First we consider
minimize Z [(zro1 — zi)* + 7]
P, k=1
subject to (i) x € R", zg=c¢
and
n—1
Maximize 2cp — Z [t + (e = prrn)®] — 20
k=1
Dy
subject to (i) pu€ R".
Then both Py and D; are dual to each other. An equality condition is
C—I1 = [ Ty = M1 — M2
(ECy) Tp1 —Tp = My Tp = pp—p1 K=2,3,...,n—1
Tp—1 — Tn = Hn Tn = HUn-
F
The primal P; attains a minimum m = 7 2 atx = (21,22, ...,x,), while the dual
2n+1
F:
D, does a maximum M = —2—* at g = (ju1, flos - - - fin)
2n+1
v = c Fon1-2k
. = c—ntizzk
F s
41 (11)
_ F2n+272k:
= ¢ —m

F2n+l
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that is
x:(xlax27"'axka'-'7mn): F (FQ’IL 1 FQ'{L 35 "'7F27L+1—2k:7 "'7F1)
2n+1
(12)
o= (fans oy ooy My ooy i) = F ———(Fan, Fono, o Fongoor, -, F).
2n+1
4 Case \=14
Let us consider the Case A =4. Then v:=2+ A, £ := 1+ X\ yields
7=6 =5
We consider
n—1
minimize — 8xgpu; + Z a6+ (e — peg)?
k=1
Q + 62y (py — )]
4
+ (Tpo1 = 20)? @, + 1Tp5 + 62,y
subject to (i) x € R", zp=c¢, (i) p€ R"™
This objective function is denoted by h(z, u).
Corollary 7 Let (x, p) be feasible. Then it holds that
h(x,p) > 0. (13)
The sign of equality holds iff a zero-minimum condition
c—xy =4y, TL =y — e
(Zmy)  wpy = = A, T = gk — e 2<k<n-—1
Tp—1 — Ty = 4/1%7 Tp = Hn
holds.
Corollary 8 The zero-minimum condition (Zmy) has a unique solution (x, u);
T = (1'1, T2y ooy Thy «-vy Tp-1, xn)
¢
= Hi(anly HTL*Q’ “-aanky ey H17 HO)? (14)
B = (H’l? M2y oeoy Hky oooy Hn—1, un)
c
=g —(Gn, Guty oo, Gk -ooy Goy GY) (15)



where

/Bn —a”
f—a’

a=3-2V2, f=3+2V2.

G, = H, = 5G, — G,_1.

Hence Q4 attainas the zero minimum at (x, p1).

We remark that the Silver number
T=1+V2 ~2414
and its conjugate
Ti=2-—7=-71=1-v2~-0414
are the solutions to the quadratic equation
t*—2t—1=0.

The Sibonacci sequence {S,,} is defined as the solution to the second-order linear difference
equation

Tpto — 2T —2Tp =0 21 =1, 29 =0.
Hence it satisfies
Spi1 = 25, +S,1 S1=1, Sp=0.
It holds that
a=3-2V/2=72=772 [=342/2 =17
B — an 2 _ =2n S,

T (16)

1
H, = 5G, — G,y = 5(55271 — Son—2) = 252, + Son—1 = Sapt1.

Thus both G,, and H,, are Sibonacci:

Gn = S;n ) Hn = SZnJrl- (17>

Corollary 9 [t holds that

=
=
=
S~—
Vv

0 Yz, p) € R'xR"
(ii) h(x,pu) = 0<= (x,un) satisfies (EQ,).
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The objective function h(z, ) attains the zero-minimum. Further we have a triple
zero property as follows.

Corollary 10 Let a feasible (x, p) satisfy (Zmy). Then it holds that

h(z, 1)
= —cle—ax1)+ [(xk,l — )% + 4:1:2]
k=1

=

n—

= —cm+ )[4+ (e — prsr)®] + 5
1

=~
Il

= 0.
Hence we have

h(z, p)

n

—H,(Hy — Ho1) + Y [(Hug1-k — Hyoi)* +4H, ]

k=1

n—1

== *HnGn + Z 4G2+1 k + 7L+1 k — Gn k)2] + 5G%
k=1

= 0.

This yields a pair of quadratic equalities for the Gibonacci and Hibonacci sequences

{Gn}, {Hn}.
Corollary 11 [t holds that

n—1

> [4H} + (Hipr — H)?] = Hu(H, — Hoy),
- (18)
> [(Gryr — Go)* +4Gr ] = H,G,.
k=0
The pair is reduced to
n—1
Z (4851 + (Sokts — So41)?] = Sant1(Sans1 — San—1),
= (19)

1

[(Sokt2 — So)® +45510] = S2n(Sant2 — Son).

=0

3
|

x>



Thus we have an equality on quadratic sum for {S,}

2n 1
DSk = 5SS
k=1

(20)

This is A = 4 (Sibonacci)—version of Lucas formula [13,29], which is A = 1 (Fibonacei)—

version.

4.1 Sibonacci Duality

Second we consier a pair The dual-pair (a pair which is dual to each other) is

n

minimize Z [(qu — )’ + 433%]
k=1

P,
subject to (i) x € R", zg=c

n—1

Maximize Scpy — Z (1647 + (1 — por1)’] — 202

k=1

D,
subject to (i) pe€ R"

Then both Py and Dy are dual to each other. An equality condition is

c—mx = 4y Ty = {1 — M2

(ECy) Thoy — Ty = 4 Tp = —prr1 kK=2,3,....n

Tp—1 — Tp = 4/1471 ITn = HUn.

n—1

The primal Py attains a minimum m = (1 —

n

¢ at = (1, piz, - - s fin) :

n

dual Dy does a maximum M =4

T = ¢ Hn—k = ¢ Gn+1—k
k H, HEk 7Hn
that is
&
x=(T1, Tay oo Ty ooy Ty) = ?(Hn,l, H, o ....,H,, ...
n
C
/'l’:(lu’lv M2, 7:U‘kv'/4L’n) = H (Gn7 Gn—17 "'JGn+1—k7
n
where
6n_an
Gn ) Hn = 5Gn - anl-
b—a

a=3-2V2, f=3+2/2.

)02 at x = (z1, 22, ..

-1

., Zy), while the

(21)
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Then
4G, = H,— H,_;, Hy =G, =1. (23)

Hence the the optimum point (x, u) satisfies (EC;) and the optimum values are same
m = M.

We note that both G,, and H,, are Sibonacci:

Son
Gn = 22 ) Hn = S2n+1-
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