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TOWARDS EQUIVARIANT SCHUBERT CALCULUS FOR 
p-COMPACT GROUPS 

MASAKI NAKAGAWA 

ABSTRACT. This report is based on our talk delivered in Geometry and Topology 
of Transformation Groups held at RIMS on June 14th, 2023. The main aim of this 
report is to explain our attempt to establish equivariant Schubert calculus for certain 
complex reflection groups as well as p-compact groups. Details will appear in our 
forthcoming paper [18]. This is joint work with Hiroshi Naruse. 

1. MOTIVATIONS OF OUR WORK 

First of all, let us briefly introduce three papers that motivate our current work. 

1.1. Totaro's work {2003). We begin with Totaro's work [23]: Let W := G(r, 1, n) = 
Z/rZISn = (Z/rZt ~品 bethe complex reflection group acting naturally on V = en. 
Firstly, Totaro introduces the ring: 

F(r, n) := Z[x1,..., x』/（ei(x'.;,...，叶）（1::; iさn)),

where g(xi,．．．，X:) denotes the ith elementary symmetric P°lynomials in Xi,．．．，x;． 
Then it is known that F(r, n)翫 (Cis isomorphic to the coinvariant ring of W, that 

is, F(r, n) @z C 竺 C[V]w:= C[V] @qv]w C = C[V]/(C[V]f), where (C[V]f) is 
the ideal in C[V] generated by W-invariant polynomials of stri叫 ypositive degrees. 
Moreover, for r = 2, F(2, n) is the integral cohomology ring of the isotropic flag 
manifold Sp(n)/T叫andhence he suggested thinking of F(r, n) as the cohomology 
of a certain "generalized flag manifold". Then he considers the following subring of 

F(r, n): 

C(r, n) := Z[eい...'e』/（e;(x'.;,...,x:)(l ::; i::; n)) C F(r, n), 

where ei = e;(x1,..., Xn) denotes the ith elementary symmetric polynomial in the 
variables x1,..., Xn- One has C(r, n)露 C 竺 (C[V]w応＝ C［Vlsn Rc[V]w C = 
C[V応／（C［V]竺）． Moreover,for r = 2, C(2, n) is isomorphic to the integral coho-
mology ring of the Lagrangian Grassmannian Sp(n)/U(n), and therefore C(r,n) can 
be thought of as the cohomology of a certain "generalized Lagrangian Grassmannian". 
Totaro's primary purpose is to construct a basis for the ring C(r, n), thus generalizing 
the classical result in Schubert calculus for Lagrangian Grassmannians (J6zefiak [12], 
Pragacz [20]). More specifically, he uses the Hall-Littlewood functions Q入(z;t)（入：
partition), specialized t to be〈,togive a basis, which he calls Hall-Littlewood basis, 
for the ring C(r, n)⑭z Z[(]. Here (=〈ris a primitive rth root of unity. Then his 
result is stated as follows: A partition入issaid to be r-regular if no part of入occurs
r or more times, in other words, if m;（入） ＜r for all i, where m;（入） isthe multiplicity 
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of i. Denote by P(r) the set of r-regular partitions. He introduces two rings: 

C(r) := C(r, oo) = Z［釘，e2,..．］／（ら(x1,xふ．．．）（i2': 1)), 

C'(r) ：＝〶認l仏(z;(). 
入EP(r)

Then he showed the following result: 

Lemma 1.1 (Totaro [23], Lemma 3.2). There is an isomorphism 

C(r)露郡］二 C'(r),ei f-----t Q(i) (z; () (i ~ 1). 

It follows from Lemma 1.1 that we have 

C(r,n)露 Z[(]
↑～↑ 

C(r)露 Z[(]/(ei(i > n)) 

C'(r)/(Q(i)(Z；く） （i > n)) 

〶 Z[〈］仏 (z ；く） （Hall-Littlewood basis). 
入E'P(r)，ふ:0:n

1.2. Ortiz's work (2015). Next we briefly review Ortiz's work [19]: Let V be a 
complex vector space of dimension n, and W C GL(V) be a finite complex reflection 
group (or pseudorefiection group, unitary reflection group). We fix a basis { e1,..., e叶
for V, and denote by {X1,..., Xサitsdual basis. Let Sx := Sym(V*）竺 C[X1,...,X』
be the symmetric algebra of the dual space V* of V. As usual, W acts on Sx by the 
contragredient action: (w ・ f)(x) = f(w-1 ・ x) (w E W, f E Sx, x E V). Let 
Sy := C[Y1,..., Yn] be another polynomial ring with trivial W-action. Denote by 
s(W) the set of (pseudo)reflections of W, and Isl the order of a (pseudo)reflection 
s E s(W). For a (pseudo)reflection s E s(W), let a. be the corresponding "root", and 
入sbe a non-trivial eigenvalue of s E s(W), which is a primitive lslth root of unity. 
Under the above setting, he introduces the following: 

Definition 1.2 (GKM ring (algebra) of W (structure algebra of W)). 

咋＝｛心＝（料）VEWE V會Sy 1喜；）vJE(aJSy （冒v喜T:1E_ ;(W)) } 
Note that when Isl = 2 (therefore入s= -1) for Vs E s (W), the above condition 
reduces to the usual GKM condition: 

料一心svEaふ＝（叫 (VvE W, Vs E s(W)). 

Since si ・ a8 =入1as,the above condition is equivalent to the following: 

|s|-1 

区ゆ俎~ E Sy ('vv E W, Vs E s(W), 1さVi::; Isl -1). 
j=O 
(si・as)i 

This condition is referred to as Ortiz's GKM condition in the sequel. 
Define a map (-)y : Sx→ Sy by f (X1,..., Xn)← f(Y1,..., Y,砂． Thenthe 
(algebraic) localization map is defined as follows: 

Definition 1.3 ((Algebraic) Localization map). 

幅： Sx@Sy→ ①Sy, f R g←→ ((v ・ f)yg)vEW・
vEW 



59

It follows easily from the definition that the image of叫 iscontained in the GKM 
ring: Im侃 C吋 c④Sy. In the case when W = G(r, 1, n), Ortiz showed that 

vEW 
Im叫＝吋bybuilding an Sy-basis｛炉｝vEWof吋 consistingof elements of Im ¢砧
Theorem 1.4 (Ortiz [19], Theorem 6.1). Let W be G(r, 1, n) and let Sf denote the 
ring of W-invariant polynomials in S x. Then, the localization map喘： Sx@Sy一
④Sy induces the foll induces the following isomorphism: 
vEW 

(1.1) s X R Sy I (f -fy I f E (s度）＋）二咋 CEB Sy, 
vEW 

where (Sf)+= {f ESぽIdeg(!) > O}. 
Note that the left-hand side of (1.1) is the double coinvariant ring of W = G(r, 1, n). 
As for the root system for G(r, 1, n), see e.g., Bremke-Malle [6], Rampetas-Shoji [21]. 

1.3. McDaniel's work (2016). Lastly, we review McDaniel's work [16]: In order to 
state his result, we repeat again the notation and terminologies introduced in the pre-
vious subsection (but slightly changed): Let V be a complex vector space of dimension 
n, and S := C[V] be the ring of polynomial functions on V. A finite pseudo-reflection 
group WC  GL(V) acts on S by (w ・ J)(x) = f(w―1 • x). Denote by sw the ring of 
W-invariant polynomials, and Sw := S/(Sf) the coinvariant ring of W, where (Sf) 
is the ideal in S generated by W-invariant polynomials of strictly positive degrees. 
Then he considers the double coinvariant ring (equivariant coinvariant ring) S 08w S. 

Definition 1.5 ((Algebraic) Localization map). 

喘： S0swS→ ④S, f 0 g f----t (f(v ・ g))vEW・
vEW 

Definition 1.6 (McDaniel's GKM ring). 

畔＝ ｛心＝ （仇）VEWE V聾 1苫1(vstvs;s),ES （冒v喜〗SIE- ；(W) ）｝ 
In order to prove Im喘＝ W屈， hemake use of the (generalized) right divided 
difference operators: 

Definition 1.7 (Right divided difference operators). 

心：〶S →④，心—噂（心），
vEW vEW 

lsl-1 

（ぶ（心））v：＝ど心vsJ
(vsi. as)i. 

j=O 

When Is I = 2 (therefore入s= -1 and i = 1), we have 

閲（叫＝
料—叫

v. as 

which is the us叫 rightdivided difference operators (up to sign). Notice that using 
the right divided difference operatorsぶ， McDaniel'sGKM ring is rewritten as 

鰭＝ ｛心＝ （此）vEWE①s （ぶ（い）vES (？三Ev喜了ss|E一;(W))}
vEW 



60

Then his main result is stated as follows: 

Theorem 1.8 (McDaniel [16], Theorem 1.1). The localization map幡： SiZiswS→ 
①S induces the following isomorphism: 
vEW 

S0sw S 二鰭 c 〶 s.
vEW 

Note that McDaniel did not give an S-basis for鰭・

2. FACTORIAL HALL-LITTLEWOOD P-AND Q-POLYNOMIALS 

In order to establish equivariant Schubert calculus for the complex reflection groups 
G(r, 1, n) and G(r, r, n), a generalization of the factorial Schur Q-and P-functions will 
be needed. Such a generalization has been introduced by our recent paper [17]. 

2.1. Definition of the factorial H-L P-and Q-polynomials. Let x = (xぃX2,・ ・.) 
be a countably infinite sequence of independent variables, and b = (b1, b2,...) another 
set of independent variables. For a positive integer k 2'. 1, we set 

[xlb]k := IJ (x + bi) and [[x; tlbW := (x -tx)[xlb]k-I_ 
i=l 

For a partition入＝ （入1,...，ふ） oflength Ji,（入） ＝R, we set 

[xlb]入:=Il[xilb]入， and[［わ；tlbl]入:=rr[［ふ；tlbl]入i= IT(xi -tx,）［叫b]炉 1.
i=l i=l i=l 

Definition 2.1 (Factorial Hall-Littlewood P-and Q-polynornials). For a sequence of 
positive integers入＝ （ふ，．．．，入t)with £ ::; m, we define 

恥 (xm;tlb)＝声：,s,_,w・ [[xlb]入X凸xx,t_-t:：l
WÈ`  £ w［叫＋も） x凸xxtt--t:：l,

HQ心m;t[b) ＝布ESm/:パ-,'"• [[[x; tlb]]入X'凸xxii_-t:：l
= (1-t)仮

訳：xSm£ w[g xt ]に＋も） X'し］孟X1t -txx:l 
We also define 

HP入(xm;t) := HP.入（Xm;tlO) and HQ入(xm;t):= HQ入(xm;tlO). 

Example 2.2. (1) HQ心m;tlb) = (1 -t)C(入)HP入（叫；tlO,b). 
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(2) 

HP(l)（叫；tlb)= X1十砂＋・・・十Xm＋尼砂，

HQ叫叫；tlb)= (1 -t)(x1＋四＋・・・十Xm),

HP(l2)（叫；tlb)

= (1 + t)［四叫叫）＋ 1-［＿丁b団（1)(Xm)+彗二告戸叫，

where m.x（叫） denotesthe monomial symmetric polynomial corresponding to 
the partition入．

(3) For each integer k ~ 0, let珈 (t)：＝ I1ik=1 1-tk F . For a partition入， weset 
狐＞o(t):= Il;::::1 v叫（入）（t).Then, for a partition入oflength ~ m, we see that 

HP入（Xm;t)= V入＞o(t)P,入（Xm;t)and HQ入（Xm;t)=仏（”m;t), 

where P,心m;t)and Q心m;t) are the usual Hall-Littlewood polynomials in 
Macdonald's book [15, Chapter III]. 

2.2. Basic properties of factorial H-L P-and Q-polynomials. Factorial Hall-
Littlewood P-and Q-polynomials have some nice properties that the ordinary factorial 
S-, P-, and Q-polynomials possess. First we show the vanshing property of factorial 
Hall-Littlewood P-and Q-polynomials: Let b = (b1, b2,...) be a sequence of indeter-
minates, and t an indeterminate. We define 

-b只t):= (-b;, -tb;,..., -tk-1b;) and -bf(t) := () (empty sequence). 
For a partition μ = (μ1, μ公...),we define 

-bμ(t) := (-b悶"1(t),..., -b炉(t),-b『1(t))' 

where九＝叫(μ)is the multiplicity of i (1 ~ iさμサ

Example 2.3. Let μ = (5, 5, 5, 4, 1, 1), then加(μ)= 2, m2(μ) = 0, m孔μ)= 0, 
叫（μ)= 1，叩(μ)= 3, and 

-bμ(t) = (-b5, -tb5, -t2b5, -b4, -bi, -tb1). 

For a partition μ of length C(μ)さm,consider the substitution Xm =（互砂，．．．，知）
with -bμ(t). Then, using Definition 2.1, one can show the following: 

Proposition 2.4 (Vanishing property). Let入，μ be partitions of length at most m and 
setμ:=μ+ (l門＝伽＋ 1,四＋ 1,...,μm + l). Then the factorial Hall-Littlewood 
P-and Q-polynomials satisfy the following vanishing property: 

(1) lfμ"j)入， wehave 

闊 (-bμ(t),_O,...,O;tlb)=O and HP,入(-bp,(t);tlb) = 0. 
ヽ
m-f(μ) 

(2) Ifμ=入， wehave 

ふ叫（入） q 

闊 (-b山）三，t|b）＝ n g(n(-tk-1%＋tmp（い），

ふ m心） q-l

恥 (-b入(t);tlb)＝狐＞o(t)リリ [g(-tk図＋t叫（況））．
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Example 2.5. 

HQ(2,2,1,1)(-b(2,2,1,1)(t), 0,,,,, 0 lb) 

= (t -l)b1 x t(t2 -l)b1 x (t -l)b2 x t2(t2 -l)b2 x (tb1 -的） x(t2b1 -b外

Next we show the T-cancellation pmpe巾yof the factorial Hall-Littlewood P-and 
Q-polynomials: Let rミ2be a fixed positive integer and (= (r be a primitive rth 
root of unity. For an indeterminate a, define a宜） ：＝ （a,a(,a(2,...,aぐ―1).

Definition 2.6 (T-Cancellability). Let T :Sm. A symmetTic polynomial f(x1,..., Xm) 
with coefficients in a ceTtain TingコZ[(]is said to have the T-cancellation pmpeTty if 
f(ar((), Xr+i,..., Xm) does not depend on a. 

By specializing t to be (, the factorial Hall-Littlewood polynomials HP.心m;(lb)
and HQ心m;(lb)are symmetric polynomials with coefficients in Z[(]@Z[b] = Z[〈］⑳
Z[b1, b公...]. Thus one can ask if these polynomials have the T-cancellation property. 
In a recent paper [17, §4], we have given genemting functions for the factorial Hall— 

Littlewood P-and Q-polynomials. For instance, by Corollary 4.4 in [17], HP.入（叫m;(lb)
is given as the coefficient of u—入＝叫ふ．．． u戸 in

(2.1) (1 -1 (）［り（且 u;iーニ：且こーこ— <m-i+l) Xu~ も
Substituting (x1,..., Xr) with ar((), we have 

n佑一ぐax"糾-〈X]＝ "糾ー(x]
j=l 
糾ーくj-la

j=r+l 
Ui - Xj , 叫一 Xj

j=r+l 

sinceぐ＝ 1.Therefore, (2.1) does not depend on a nor x1,..., Xr after the substitu-
tion. From this, we have 

p roposition 2. 7 (r-Cancellation property). Assume that r：：：：： ＂l● The factorial Hall-
Littlewood polyonomials HP.入(xm;(lb) and H仏（叫m;(lb) have the r-cancellation prop-
erty. 

3. FINITE LOOP SPACES, GENERALIZED HOMOGENEOUS SPACES, p-COMPACT 
GROUPS 

In this section, we briefly explain the topological background of our study. 

3.1. Finite loop spaces, generalized homogeneous spaces. First recall some 
classical results which go back to 1950s: For a compact Lie group G, denote by BG 
its classifying space. Then the following results due to Borel and Bott are classical: 

Theorem 3.1 (Borel [3]). Let G be a compact connected Lie group, H a closed con-
nected subgroup of maximal rank. Then there is an isomorphism 

H*(G/ H; (Ql)竺 H*(BH;(Ql)鉦（BG;IQI)(Ql. 

Theorem 3.2 (Bott [4], [5]). Let G be a compact connected Lie group, and T a 
maximal torus. Then the integral coho mo logy H* (G /T) is concentrated in even degrees 
and torsion free. 

The original proof of these results relies on the differentiable structure of the compact 
Lie groups, and therefore is not purely homotopy theoretic. Thus it is natural to ask if 
there exist purely homotopy theoretic proofs of the theorems of Borel and Bott. One 
of first attempts to this direction was given by Rector [22]: 
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Definition 3.3. (1) A loop space X = (X, BX, e) is a triple consisting of a topo-
logical space X, a pointed (connected) topological space BX, and a homotopy 

equivalence e : DEX二 X.The space BX is called the classifying space of 
北'.

(2) A morphism f : X ----+ Y of loop spaces is a pointed continuous map Bf : 
BX→ BY. The homotopy fiber of Bf over the basepoint of BY is called the 
generalized homogenous space of Bf, and denoted by Y/f(X), or just Y/X if 
f is understood. 
(3) We will call a topological space X finite (more precisely, Z-finite) if the integral 
cohomology H*(X) is finitely generated Z-module. 

Finite loop spaces seem to be nice homotopy theoretic analogues of Lie groups. How-
ever, as Rector proved, for example, there are uncountable number of homotopically 
distinct finite loop spaces BX with DBX':::c:'SU(2). 

3.2. p-Compact groups. The above mentioned defect of finite loop spaces was over-
come by the concept of p-compact groups due to Dwyer-Wilkerson [9]. Without en-
tering the details, we briefly summarize this concept: Let p be a fixed prime number. 
A space X is lFP-finite if H*（ふ凡） isa finite dimensional graded vector space over 
恥． Thep-completion construction of Sullivan, Bousfield-Kan produces for each space 

ぇ’X, a map X→ A space X is called lF P―complete if this map is a homotopy p• 

equivalence. Denote by z; the ring of p-adic integers,②the field of p-adic numbers. 
Definition 3.4 (Dwyer-Wilkerson [9]). A p-compact group is a triple（ふBX,e),
where BX is a pointed, connected p-complete space, X is lFP―finite, and e: X c:=: DEX 
is a homotopy equivalence. 

p-Compact groups have the following nice properties: 

(1) Any p-compact group X has a maximal torus i: T---+X. 
(2) The Weyl group応＝ Wx(T)of Xis a finite p-adic reflection group, that is, 
a pair (Wx, Lx), where Lx is a 尻—lattice and Wx is a finite subgroup GL(L砂
generated by reflections. 

Furthermore, the classification of p-compact groups has been completed by Andersen-
Grodal-M¢ller-Viruel [1], Andersen-Grodal [2]. 

3.3. T-equivariant cohomology of homogeneous spaces of p-compact groups. 
Let X be a p-compact group with a maximal torus T of rank£. The generalized or 
p-compact flag manifold X /T is the homotopy fiber of the map Bi : BT --+ Bぷ
As before, Wx denotes the Weyl group of X. Then, by using the Eilenberg-Moore 
spactral sequence associated with the fibration X /T'---t BT --+ BX, we obtain the 
following Borel presentation of the T-equivariant cohomology of X /T 

Proposition 3.5 (Borel presentation). 

H氾／T;(i,,) ~ H*(BT如 RH*(B噂） H*(BT；②）．

Moreover, it is known that 

H*(BT;〇P）空Q員X1,...,Xt] and H*(BX; ~』空如Xi,...,Xp]Wx. 
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Therefore, we have 

H亨／T；②）竺 H*(BT;Q:)@圧 (B心）が(BT;Q:)

合
囚`，．..,Xe,Y1,..., Ye] 

(J -JY | f E （②［ふ，．..,X応）＋）
= double coinvarint algebra of W:ぽ

Example 3.6. Let X(r, 1, n) be the p-compact group corresponding to G(r, l, n) = 
(Z/rZt ><1 Sn. Then we have 

叩 X(r,1, n)/T; Q~) 全
Q:[X1,..., Xn, Yi,..., Y,』

(e;(Xf,..., X~) -e;(Yi八．．．，Y;)(1さiさn)）'

Thus the double coinvariant ring of G(r, 1, n) can be realized as the T-equivariant 
cohomology ring of a "generalized flag manifold" X(r, 1, n)/T (cf. Totaro's work 
introduced in § 1. 1). 

Theorem 3.7 (Andersen-Grodal-M0ller-Viruel [1], Theorem 1.5). Let X be a con-
nected p-compact group, p odd, with a maximal torus T and the Weyl group Wx. Then 
H*(X/T；尻） isa free'4,-module of rank IW:叫， concentratedin even degrees. 

Using this theorem, one can prove the following Schubert presentation of the T-
equivariant cohomology of X /T 

Theorem 3.8 (Schubert presentation). Let X, p, T, Wx be as above. Then H紅／T勾
is a free H*(BT;尻)-moduleof rank IW:叫， concentratedin even degrees. 

Thus, there exists a free H*(BT;'4,)-basis, say｛叩｝wEWx, so that, at the co homo-
logical level, we have the following presentation: 

Hテ(X/T；尻）竺① H*(BT；尻）叩・
wEWx 

More generally, one can consider more general homogeneous spaces of p-compact 
groups. In fact, Castellana constructed various morphisms between p-compact groups 
that are analogues of the classical Whitney sum map ([8, Theorems A, B]. For in-
stance, from Theorem A, one has a morphism j : U(n) := X(l, 1, n)―→ X(r, 1, n). 
The homotopy fiber北'(r,1, n)/U(n) of the map Bj : BU(n)→ BX(r, 1, n) can be 
considered as a generalization of the classical Lagrangian Grassmannian. We call the 
homogeneous space X (r, 1, n) /U (n) the generalized Lagrangian Grassmannian. By us-
ing the Eilenberg-Moore spectral sequence again, one can compute the T-equivariant 
cohomology of X(r, 1, n)/U(n) in a similar way to Example 3.6. 

4. TOWARDS EQUIVARIANT SCHUBERT CALCULUS FOR THE p-COMPACT GROUP 

X(r, 1, n) 

As mentioned in §1.1, Totaro suggested to think the ring F(r, n) or the coinvariant 
ring of G(r, 1, n) as the cohomology ring of a certain "generalized flag manifold". In-
deed, as we saw in Example 3.6, the double coinvariant ring of G(r, 1, n) can be realized 
as the T-equivariant cohomology ring of the'[J-compact flag manifold X(r, 1, n)/T 
In this last section, we briefly explain our attempt to establish equivariant Schu-
bert calculus on generalized homogeneous spaces associated with the'[J-compact group 
X(r, 1, n). We proceed the argument along the same lines as those developed by Ikeda-
Naruse [11], Ikeda-Mihalcea-Naruse [10]. Thus, let X(r, 1, n) be the'[J-compact group 
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corresponding to G(r, 1, n) = (Z/rZt ~ Sn with a maximal torus T, and U(n) (= 
X(l, 1, n)) be the "subgroup" corresponding to Sn C G(r, 1, n). Our primary goal is to 
describe the T-equivariant cohomology Hテ(X(r,1, n)/U; R) and Hテ(X(r,1, n)/T; R) 
(R = C,Q~, or尻）．

4.1. Complex reflection group G(r, 1, n). We summarize the basic data of the com-
plex reflection group G(r, 1, n) needed to describe our idea (For details, see e.g., Lehrer-
Taylor [14, Chapter 2]). The group G(r, 1, n) is defined as the semi-direct product of 
(Z/rZt with Sn, namely G(r, 1, n) := (Z/rZt ~ Sn. Thus an element of G(r, 1, n) is 
a pair (r,(J'), where r = (r1,...,rn) E (Z/rZt and(J'＝ ［(J'(l) u(2) ・ ・ ・ (J'(n)] E Sn. 
The product of (r, (J') and (s, T) is given by 

(r,び）・ (s,T):= (T•r+s,(J'T), 

where T ・ r := (rT(l),'rT(2),...ぶ (n))and the addition is taken mod r. It is often very 
useful to view an element (r,び） asthe r-colored permutation of n letters. In this 
manner, we write an element (r, (]') as［(J'(l）い） (]'(2)伍）．．．び(n)(rn)]. Occasionally, 
we write j bars over i instead of i(j)_ For example, an element ((1,0,2), [2 1 3]) E 

G(3, 1, 3) is written as [2(1) 1 (O) 3叫＝ ［2 1⑳ It is known that the group G(r, 1, n) 
has the following presentation by generators: G(r, 1, n) =〈so,s1,s2,...,sn-1〉,where
s0 := [I 2 • • • n], and si := [1 • • • i + 1 i • • • n] =(ii+ 1) for 1 ~ iさn-l. Thus the 
subgroup generated by si (1さi~ n -l) can be identified with the symmetric group 
Sn. The generators。issubject to the following relations: 

s~ = 1, sos1so釘＝ S1SoS1So,So均＝ SiSQ(i 2: 2). 

Let us introduce the following elements: ti := [1 • • • i -1 z i + 1 • • • n] for 1さ
i ~ n. With respect to the generators, these elements are given by t1 = s。and
ti= si-lti-lsi-l (i = 2,...,n). Then, the set s(G(r,1,n)) of (pseudo)reftections 
consists of the following elements of two types: 

(i)杯t7asi,j= t化―a(ij)(1さ i~ n, 0 ~ a < r), where si,j = (ij) is the 
transposition of i and j. 
(ii)だ（1~ i ~ n, 1 ~a< r). 
With these notations, we make the following definition: 

Definition 4.1 (Grassmannian elements of G(r, 1, n)). An element w = [mi (m) （rn) ... mii'.n}l 
E G(r, 1, n) is said to be Gmssmannian if there exists k with O ~ k ~ n such that 
門，．．．，rk> 0, rk+l = ・ ・ ・＝靡＝ 0,and m1>匹＞．．．＞叫， mk+l< mk+2 < ・ ・ ・ < 
叫•The set of all Gmssmannian elements in G(r, 1, n) will be denoted by G(r, l, n)0. 

Example 4.2. Gmssmannian elements of G(3, 1, 2) are given as follows: 

[11]=1, [I2]=tい ［了2i= tr, 匝1]= t吟1, 匝可＝ tlt吟1,

匝了＝tit砕1，匝1]= t~s1, ［豆I]= t1t~s1, 匝I]=tit令S1・

Let us relate the set of Grassmannian elements G(r, 1, n)0 with a certain combi-
natorial object: In the above definition, putting u := [m1 四•.． m』 E Sn, we 
see that w = t品t品・..t出び． Weassociate the elements w with an r-regular par-
tition入(w):=（吋，m;2,..．，叫）． Notethat the largest part of入(w)is ::; n since 
n ?".叫＞．．．＞叫?".1. Let P言bethe set of r-regular partitions入suchthat 
入1さn.Then we have the follwing: There exists a one-to-one correspondence between 
G(r, 1, n)0 and Pi~ (r) . With the above notation, the correspondence is given by 
W = t~1t品・．． t盟k び E G(r, 1,n)゚←→入(w)= (m~1,m;2,···, 叫） EP言·
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We also use the following description: Since G(r, l, n) is defined as the semi-direct 
product of (Z/rzr with Sn, an element V E G(r, l, n) is written uniquely as V = 
t~'t;2... tかa,where O ~ r; < r (l ~ i ~ n) and a E Sn. Thus one can take the set 
{ t?... t~n I oさr;< r (l ~ iさn)}as coset representatives of G(r, l, n) / Sn, Then 

sn we have the following: There exists a one-to-one correspondence between Pf:,('and 

G(r, 1, n)／Sn. The correspondence is given by (r) 

v=t『•.． t~n E G(r, l,n)/Sn←→入(v)=（が”...1勺 EP言
4.2. Algebraic localization map. It would be convenient to work with an algebraic 
model of the T-equivariant cohomology of X(r, l, n)/U(n). Moreover, it would be 
desirable to construct the theory independent of n. Thus we will take n = oo. Let 
r ~ 2 be a fixed positive integer, and (= (r be a primitive rth root of unity. Let 
G(r, l, oo) = UnG(r, 1, n) and S00 = Uか況． Let A（ェ） ＝ Ac（x) denote the ring of 
symmetric functions over (C in countaby many variables尤＝ （xぃx2,...),and consider 
the following subring: 

r(r)(x) := (C加 (k季0mod r)] = (C加，P2,・ ・ ・,Pr-1,Pr+l, ・ ・ ・,P2r-1,P2r+l, ••,]CA(x), 

where Pk= Pk（ゎ） isthe kth power sum symmetric function. By Definition 2.1, one 
can check directly that the polynomials HQ心 m;tlb),HP,入（叫；t)and H仏（叫；t)
have the usual stability property: Let入bea partition of lengthさm.Then 

H仏 (x1,...,Xm, O; tlb) = H仏(xじ•.． ,Xm;tlb), 

HP入(x1,...,Xm, O; t) = HP,入(xぃ・..,Xm; t), 

H仏 (xi,...,Xm, O; t) = H仏(xi,...,Xm; t). 

From this, we can let the number m of variables go to infinity, to define symmetric 
functions H仏（x;tlb), HP.心；t),and H仏（x;t) respectively. Then the following fact 
holds: 

p roposition 4.3 (cf. Macdonald [15], III, §7, Examples 7). Let匹＝炉~ denote the (r) 

set of r-regular partitions. Then the set {HP.入（エ；〈）｝入EPcr)(resp. {HQ入（x;(）｝入EP(r))
is a C-basis for r(r)(x). 

Set C[b] = C[b1, b2,... ], and consider the following ring: 

r(r)(xlb) := r(r)(x) R C[b]. 

By Definition 2.1, the highest homogeneous component of H仏 (x;(lb) in x coin-
cides with H仏（エ；く）． Therefore,taking Proposition 4.3 into account, the functions 
HQ入(x;(lb)（入 EPぃ） forma basis for r(r)(xlb) over C[b]. 

Definition 4.4 (Algebraic localization map). The algebraic localization map 

is defined by 

<I> : rぃ(xlb) → 任 C[bl,
vEG(r,l,00)/S00 

f(xlb) ←→ <I>(f(xlb)) =（幻（XIb)))vEG(r,l,00)/S00 

<I>v(f(xlb)) := f(-bv((), 0, 0,...). 

For v = t~'.. -t~n E G(r, 1, oo)/S=, the sequence -bv(() is given by 

-bv(() = (-b?((),...,-b；れ（く）），

where -b;(() = (-bi, -(bぃ...,-(i-1bi) and -b『（く） ：＝ （）． 
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Since we have bijections G(r, 1, 00)/800空冗）竺 G(r,1, oo)0 as mentioned in the 
previous subsection, we do not distinguish these three sets. Note that the map <I> is 
the algebraic counterpart of the geometric localization map at "torus fixed points". 
Therefore we often use the notation f(xlb)lv instead of <I>v(f（叫b)),emphasizing the 
restriction to each torus fixed point. For example, by Example 2.2, we know that 

HQ(l)(x; tlb) = (1-t)(x1 +四＋・・・）．

hi 

Therefore, for r = 3 and t = w := e3, the images of the algebraic localization map 
are given by 

HQ(1)l0 = 0, 

HQ叫(1) = (w -l)b1, 

HQ(1)|(1,1) ＝ （研— l)bぃ

HQ叫(2) = (w -l)b2, 

HQ叫(2,1) = (w -l)b1 + (w -l)b公
HQ叫(2,1,1) ＝ （足— l)b1+ (w -l)b2, 
HQ叫(2,2) = (研 -l)b2,

HQ叫(2,2,1) = (w -l)b1 +(己 -l)b釦

HQ叫(2,2,1,1) = (w2 -l)b1 +（研— l)b2.

The G KM ring'1!嘉，l,oo)can be defined in a similar manner to Definition 1.2. Since 
we are interested in the generalized Lagrangian Grassmannian X(r, 1, n)/U(n), we also 
introduce a "parabolic" analogue of the algebra'1!嘉，l,oo)(see e.g., Kumar [13, Defi-
nition 11.1.16]). Denote this ring by砂G(r,l,00)/S00 ・ This is an algebraic counterpart of 

the T-equivariant cohomology ring Hテ(X(r,1, n)/U(n); <C). Then, using Proposition 
2.4 and Ortiz's GKM condition, we can prove the following result: 

Theorem 4.5. The algebraic localization map <I> is injective, and induces the isomor-

phism <I> : r(r)(xlb)二屹(r,loo)/S00・ 

We know that the set {HQ入(x;〈|b)｝入EP(r)is a <C[b]-basis for r(r)(xlb). Thus, putting 
m :=<I>(H仏 (x;(lb)), then we obtain the following corollary: 

Corollary 4.6. The set｛応｝入EPcrJdefined as above is a <C[b]-basis for the GKM ring 

w° G(r,l,00)/S00 ・ 

Further consideration shows that the basis {HQ心；(lb)｝入EP(r)for r(r)(xlb), or 
equivalently,｛ゅふ芦） for鱈，l,oo)/Soohas some plausible properties that the us叫
equivariant Schubert classes of G / P have, where G is a complex semisimple Lie group 
and P a parabolic subgroup (cf. Ikeda-Naruse [11, Proposition 2.1], Kumar [13, 
Theorem 11.1.7]). In this sense, our basis is what should be called the Schubert basis 
for the generalized Lagrangian Grassmannian X(r, 1, n)/U(n). 
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