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Abstract 

We surve閃somerecent results obtained in the joint paper [33] 
with M. Otani concerning the existence of solutions to a class 

of semilinear evolution equations with nonmonotone mutivalued 

terms. 

1 Introduction 

The aim of this note is to survey some recent results concerning the existence of 

solutions to the parabolic differential inclusion in Qr := [O, T] x D: 
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at -i;;u (t, X)―△Pu(t,x) E―枷(u(t,x))+G(t,x,u(t,x)),(t,x) EQr (1) 

coupled with the initial-boundary conditions 

{ u(t,x) ＝ 0, 

u(O,x) =uo(x), 

(t, x) E [0, T] x 80, 

XE  fl. 
(2) 

Here O is a bounded open subset ofか withsmooth boundary叩， T>0,△Pis the 

p-Laplace differential operator defined by 

△団＝ div(llv'ull~~2• u) with p > max (1尺附），
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枷 denotesthe subdifferential of a proper lower semicontinuous convex function 

¢:股→ ［0, oo] with ¢ (0) = minuE砂 (u)= 0, and G : Qr x股→ 2恥＼｛0}is a 
nonmonotone multivalued mapping. 

Our prototype of (1)-(2) is the case whereゆ三 0and G(t, x, u) = lulq-2u, denoted 
by (E)v, which is studied in [37, 26, 27, 28]. 

If p > q, then for every u。E wJ,P(D), the existence of a global weak (resp. 

strong) solution is shown in [37] (resp. [27]). As for the case where p < q, Tsutsumi 
[37] showed the existence of a time-global weak solution, for the Sobolev-subcritical 
range of q E (p, p*), provided that u。issufficiently small in vV;討(D).Here p* = oo 
forp 2 N andp* ＝晶 forp< N. 

However, concerning the existence of strong solutions, q is assumed to be more 
restrictive than the Sobolev-subcritical in [27, 28], namely, q E (p, p*] with p. < oo 

NP  for N <::: p, and p. = 1 + ~ for p < N. Under this condition, the existence of 2(N-p) 

local solutions is shown in [26, 28] and the existence of small global solution is shown 

in [27, 26, 28]. 
One of the main purposes of our work is to give a new device which enablea us to 

discuss the existence of strong solutions of (1)-(2) for the Sobolev-subcritical range 
of q E (2,p*). In fact, as a corollary of Theorem 6.1 to be given in §6.1, we have: 

Theorem Let max(l, ~芦） ＜p and q E (2,p*), then for any u0 E vV;ド(D),there 
exists Ti。E(0, T] such that (E)v admits a solution u in (0, Ti。)satisfying

{ UE  C(［0,T。kW化(O)），

讐干， g(u)= lulq-2u Eび(0,T。;L叩））．

Furthermore, this result is generalized for the case where g is replaced by upper 

semi-continuous or lower semi-continuous multi-valued functions in the subsequent 
subsections. 

Differential inclusions appear naturally in the study of parabolic problems with 

discontinuous nonlinearities which arise from simplified models in the description of 
porous medium combustion (see [17], [18]), chemical reactor theory (see [19]), and 

game theory (see [15] and [24] for details and their references). To guarantee the exis-
tence of solutions, we need to extend the discontinuous nonlinearity to a multivalued 

mapping by filling the jumps at the discontinuity points of the nonlinearity. 
In the context of elliptic systems, the problem has been studied extensively by 

many authors using different methods. More specifically, Rauch [35] used mollifica-
tions and truncation techniques, while the approach in Chang [14] is based on the 
nonsmooth critical point theory for locally Lipschitz functions, dealing with partial 
differential equations involving a discontinuous reaction term. The variational frame-

work introduced in Chang [14] leads to several results, mentioned, for example, in 

the monographs [21] and [10]. 
In the context of parabolic systems, Carl [8] studied nonlinear dynamic problems 

with nonmonotone discontinuities by adapting Rauch's method to the dynamic sit-
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uation, Papageorgiou [34] extended Carl's work and proposed a different approach 
based on evolution inclusions, a more suitable one to the multivalued character of 
the problem. 

Several other methods have been developed and involved to study the existence of 
solutions to the initial-boundary value problems for parabolic equations with discon-
tinuous or multivalued nonlinearities: the upper and lower solutions method together 

with a generalized iteration in [9], [7] and also in [11], [12] and [13] to prove the exis-

tence of extremal solutions. We also refer to [3] where existence results were obtained 
for a class of parabolic equations with either Caratheodory or discontinuous nonlinear 

terms; and [22] where the existence of solutions to parabolic problems with discontin-
uous and nonmonotone nonlinearity was obtained by passing to a multivalued version 
by filling in the gaps at the discontinuity points. 

The goal of our paper is twofold: it has firstly to set up a framework which en-

ables us to treat wider nonlinearity of G(・, ・, u), more precisely, to cover the growth 
condition on G(・, •, u) up to the Sobolev-subcritical range, and secondly to adapt and 
improve the techniques and arguments developed in [31] and [32] in order to obtain 
existence results for the parabolic inclusion (1) with the initial and boundary condi-
tions (2), generalizing corresponding results given by many authors, especially given 

in [28], [29], and [32] where the semi-linear case p = 2 is considered. Our approach 
uses tools from the multivalued analysis, together with the theory of nonlinear opera-
tors of monotone type and methods from the theory of nonlinear evolution equations. 

We prove two types of local existence results: one for the case where the multi-

valued mapping u曰 G(・, ・, u) is upper semicontinuous (u.s.c.) with closed convex 

values and the second one deals with the case where u→G (・, ・, u) is lower semi-
continuous (1.s.c.) with closed (not necessarily convex) values. We also discuss the 
extension of large or small local solutions along the lines of arguments developed in 

[28]. 
The existence of local solutions is obtained by following the strategy in [28], i.e., 

we apply Schauder-Tikhonov-type fixed point theorems for the mapping Q : h→ 
G(t,x，血）， whereuh is the unique solution of the problem (1)-(2) with G(t, x, u) 
replaced by h. With the aid of results in [32], it is shown that Q becomes u.s.c. or 
l.s.c. from樗',:＝炉(0,T; £fl(O)) with the weak topology for suitable a, fJ E (1, oo) 

into itself or L尺O,T;じ（0))according to the case where u f--+ G (・, ・, u) is u.s.c. or 

l.s.c., respectively. 
Another crucial step is to show that there exist R > 0 and (a sufficiently small) 

T。>0such that Q maps { h E X,孔'fJ; llh||ギ叫~ R } into itself. For this purpose, 
T。

we rely on arguments similar to those developed in [28] based on some interpolation 
inequalities. In this procedure, we formulate the two different kinds of settings: 

Hilbert-space setting with a = fJ = 2 (in §3.1) and Non-Hilbert-space setting (in 
§3.2). 

The advantage of our treatment lies in the fact that for the existence of time-local 
strong solutions of (1)-(2), it allows the Sobolev-subcritical growth order of G(t, x, u) 
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with respect to u, which has been left as an open problem even for the case where 
G(t, x, u) is a single-valued function. 

The structure of our paper is the following: In Section 2, we prepare some nota-

tions and basic definitions from the nonlinear operator theory and the multivalued 
analysis used in the following sections. In Section 3, we prepare some auxiliary results 
concerning the property of the mapping gin a Hilbert-space setting (§3.1) and in a 

Non-Hilbert-space setting (§3.2). Section 4 is devoted to the study of the local exis-
tence of solutions to problem (1)-(2). We obtain two kinds of existence results: one 
for the case where G is closed convex valued, upper semicontinuous with respect to 

the third variable (§4.1), and the other for the case where the multivalued mapping 
G is lower semicontinuous with closed (not necessarily convex) values (§4.2). Both 
cases are discussed in the Hilbert-space setting and the Non-Hilbert-space setting. In 

Section 5, we study the global existence of solutions, namely, the existence of large 
gl?bal solutions without assuming the smallness of the given data (§5.1) and the 
existence of small global solutions when the given data are taken sufficiently small 

(§5.2). In Section 6, we exemplify the applicability of our results. In particular, it 
is shown that our framework can give a new result concerning an open problem for 

the classical equation (1), i.e., the case where中三 0and G(t, x, u) is a single-valued 

function. 

2 Notations and preliminaries 

For easy reference, in this section, we recall some notations and basic definitions from 
the multivalued analysis and the nonlinear operator theory, which we shall use in the 

sequel. For further details, we refer to [1], [2], [4], [25], [31] and [32]. 
Let X and Y be Hausdorff topological spaces and let 2Y be the family of all subsets 

of Y. A multivalued map F: X→ 2八{0}is said to be upper semicontinuous (u.s.c. 
for short) on X, if for every closed subset C of Y, the set 

『 (C):= {x EX; F (x) n Cc/-0} 

is closed in X. F : X→ 2八{0}is said to be lower semicontinuous (1.s.c for short) 
on X, if 

p+ (C) := {x EX; F (x) c C} 

is closed in X for each closed subset C of Y. 

It is well known that F : X→ 2八{0}i is upper semicontinuous on X with compact 

values, then its graph 

Gr(F) := {(x,y) EX  x Y; y E F(x)} 

is closed in X x Y. Conversely, if F : X → 2八{0}has a closed graph and if for 
each x E X, there exists a neighborhood U of x such that F (U) := LJ F (x) is 

のEU

precompact, then Fis u.s.c. on X (see Propositions 2.22 and 2.23 of [25]). 
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By a section of a multivalued map F : X → 2八{0}we mean any function 

f:X→Y such that 
f (x) E F (x) for all x EX. 

Let (I,~,µ) be a O"-finite complete measurable space and (Y, 11・11) be a separa-

ble Banach space. A closed valued multifunction W : I→ 2八{0}is said to be 
~-measurable (or simply, measurable) if for every open set Uc  Y, we have 

前 (U): = { w E I ; w (w) n Uヂ0}E >·

It is known that W is measurable if and only if for every y E Y, the map 

w ←d (y, W (w)) := inf {llz -YII ; z E W (w)} 

is a measurable豆＝応u{CX)｝ーvaluedfunction (see [25], Corollary 19, p.143). A 
multifunction w : I→2Y with nonempty values is said to be graph measurable if 

Gr(w) := {(w,z) EI x Y; z E W（叫｝ E~ R B(Y), 

where B (Y) denotes the Borel O"-algebra on Y. For multifunctions with closed values, 
the measurability implies the graph measurability, while the converse is true if~ is 
complete. 

For 1 :Spさoo,we denote by St the set of all sections of w which belong to the 
Lebesgue-Bochner space IJ'(I; Y) that is 

St= {v Eび (I;Y);v(w)Ew(w)μ-a.e.}. 

It is easy to check that for a graph measurable multifunction w : fl→ 2八{0},the 

set St is nonempty if and only if w←inf {llxll ; x E W (w)} is majorized by a LP (I) 
-function (see [25], Lemma 3.2, p.175). 

A set KこIJ'(I; Y) is said to be decomposable if for all u, v E K and all A E ~ 
we have 

収 A+VXJ¥A EK, 

where XA denotes the characteristic function of A. It is clear that the set S~ is 
decomposable. 

In the remaining part of this section, we collect some definitions and properties 
concerning maximal monotone mappings. Let H be a real Hilbert space with inner 

product (・,・)Hand norm ll・IIH and let A: H→2H be a maximal monotone operator 
with domain D(A) := { x EH; Ax -=J 0 }. The minimal section of A is the function 
A0:H→H satisfying the following conditions: 

AO (x) E A (x) and 11 AO (x) I I H = inf { 11 ~ 11 H ; ~ E A (x)} V x E D (A). 

Recall that, the graph of any maximal monotone operator is demiclosed, i.e., 
closed in H x Hw, where Hw denotes the space H furnished with the weak topology. 
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Let cp: H→匝：＝恥U{ +oo} be a lower semicontinuous convex function. We say 

that cp is proper if its effective domain 

D(cp) := {x EH; cp(x) < +oo} 

is non-empty. The multivalued map如： H →呼 definedby 

8cp (x) = {g EH; cp (y) -cp (x) ~ (g, y -x)H for ally EH} (3) 

is called the subdifferential of cp (in the sense of convex analysis). It is known that the 

subdiff erential如 ofa proper lower semicontinuous convex function cp is a maximal 
monotone operator with domain 

D（如）：＝｛xEH;如（x)-/=0} CD  (c.p). 

We shall use a0c.p instead of（如）0to denote the minimal section of the maximal 

monotone operator心

3 Auxiliary results 

In what follows, we always assume that O is a bounded open subset of酎 with

finite Lebesgue measure denoted by IOI, N ~ l, T > 0, QT := [O, T] x O and put 
芥'B:＝炉 (o,T; £f3(0)) with 1く a,(3＜oo.We often denote芥'fJsimply by X, if 

no confusion arises. 

Definition 3.1. Let G: QT x股→2八{0}be a multivalued mapping. The multivalued 

map G: X→2x¥ {0} defined by 

G (u) = {g E北';g(t,x)E G(t,x,u(t,x)) a.e. (t,x) E Qけ (4)

is called the realization of G(・, ・, u) inぷ

Definition 3.2. We say that the realization G of Gin Xis a.e.-demiclosed if for any 

sequence（叫）nENof functions from QT into賊 whichconverges almost everywhere in 

QT to a function u :伍→股 andfor any sequence (gn)nEN of functions from QT into 
股 suchthat 

gn (t, x) E G (t, x, Un (t, x)) for each n EN and almost all (t, x) E Qゎ

which converges weakly in X to a function g E X, then one has g E G (u), that is, 

g(t,x) E G(t,x,u(t,x)) for almost all (t,x) EQT・

The following result plays an essential role in the later arguments. 
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p roposition 3.3. Let G : Qr x尺→2IRbe a nonempty closed convex valued multi-

加 ctionsuch that: 

For almost all (t,x) E Qr, G(t,x,・)：艮→ 2爪{0}i is upper semicontinuous. 

Then the realization G of G in X is a.e.-demiclosed. 

Proof. We can repeat the same argument as that in the proof of Proposition 3 in [32] 
with obvious modifications, namely by replacingび(0,T;び（D))withぷ門 口

Let ¥JI（恥賊＋） bethe family of all lower semicontinuous convex functions ¢ : 

股→ [O,oo] such that 

¢(0) = mip¢(u) = 0. 
UER 

Let¢ E 1¥（恥恥） anddefine c.p : L叩） →罠十 by

叫）＝｛tf゚団(x)|pdx + JQ¢(u(x)）dx 

+oo 

with max (1，息苔） ＜p and 

if uED(c.p), 

otherwise, 

叩）＝ ｛U EWド(St);¢(u) := 1 ¢(u(x))dx < +oo}. 
Q 

Then cp becomes a proper lower semicontinuous functional defined onび(0)and we 
have 

with domain 

和 (u)＝ー△四＋枷(u)

D（如）＝ ｛uED(cp)；△pU E L2 (D)，ヨbE L2 (D) 

such that b (x) E 8¢ (u (x)) a.e. x ED}. 

Moreover, for any z =―△Pu+ b E如 (u)with b E枷 (u)one has 

llzlli2ミ:II • Pull~2 + llblli2 and(―△pu,b)だ 2::0 

(see Lemma 1 of 6tani-Staicu [31]). 

(5) 
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3.1 A direct treatment in the L2-framework 

In this subsection, following the strategy in [28], we develop a direct treatment for 
our problem in拓：＝び（O,T;び(D)).We first recall the following standard result 
from Komura-Brezis theory (see Theorem 3.6 of H. Brezis [4]). 

p roposition 3.4. Let ¢ E 1¥（艮恥）． Thenfor any h E知 andu0 E D (cp), the 
problem 

(E)h{ 〗t,（tX9)X:-0，△；t□'XE]。;?~ ~~(~,x)) + h (t, x), (t, x) EQT, 

u(O,x)=u0(x), xED, 

admits a unique solution uh E C([O, T]; L叩）） satisfying

叫8t，△四h,bhE兄＝ L2(0, T；L2 (D)), 

where bh is the section of枷(uh)satisfying (E)凡 i.e.，詈—△凸＋ bh = h. 

Then we can define a multivalued mapping g礼s:h→ G伍）， therealization of 
G(・,・，血） in1-ls, for all S E (0, Tl, i.e., 

YHs (h) := {g E応； g(t,x)EG(t,x，血（t,x)) a.e. (t, x) E Qs} (6) 

with 

IIIYH8(h)lll'Hs := sup{ Ilg (t, x)ll'Hs ; g (t, x) E G (t, x, uh (t, x)) }, (7) 

where uh is the solution of (E)h. 
Here we introduce the following growth condition on G. 

(GC)* We say that a multivalued map G: Qr x股→ 2良 satisfies(GC)*, if there exist 
nonnegative numbers k E [O, 1), q, Cq and a function a(•) E L1(Qr) such that: 

IIIG(t,x,u)lll2 :S la(t,x)l+kl8°¢(u)門＋Cqlul2(q-l) 

for a.e. (t, x) E Qr, ¥:/u E D(8¢), 

where IIIG(t,x,u)III := sup{ l~I; ~ E G(t,x,u)} and q E [2,p*]. 

Here p* denotes any finite number if N'.S p ; and p* = 1 + Np 
2(N-p) 

(8) 

if p < N. 

Note that by virtue of the Sobolev-Poincare embedding theorem, there exists a 
constant Kg > 0 such that 

Kq llull£2cq-1J ::; I|▽ullLP Vq E [2,p*] Vu E wi,P (D). (9) 
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Here for R > 0 and S E (0, Tl, we put 

K炉：＝ ｛hE応； 11h11弘さだ｝． (10) 

Then we can show that 9118 maps K炉intoitself for suitably chosen R > 0 and 
SE (O,T]. 

Proposition 3.5. Let¢ E ¥[I（恥股＋） andG: Qr x股→ 2JRsatisfy (GCL and let 
u。ED (r.p). Then there exist R > 0 and Tt.。>0depending on k, Ila||い(QT),q and 

叫 0)such that g加。 mapsK炉 intoitself. 

3.2 Non-Hilbert-space setting 

In this subsection we develop another framework to treat our problem in a (non-
Hilbert) Banach space. Throughout this subsection, we always assume that 

2N 
max (1, ~) 

N+2 
<p<N 

and denote vV;化(0)by V and its dual by V*. Then V is compactly embedded in 

L叩）， since2 < p* = -§!!: N-p・ 
To define the Banach spaces where we work, we need to introduce a couple of 

exponents given by 

s = s(N,p) := p:_(p＊；p-2) = N(p;＋-PP-2), r = r(N,p) ：＝ s-p*+1 . 

Then we note the following relations. 

Proposition 3.6. We have: 

(i) max (2,p) < p* < s. 

(ii) 1 < s'＝出 <r< 2. 

(iii) 2 < r'＝六 <p*.

(iv) (p*)'＝乙 <r.

Now we define the Banach space xf in which we work by 
X尽：＝び(0,S; £T(S1)) with り：＝ p＊ご＞p'>l. 

We also introduce the following growth condition on枷（・）．

(GC)¢ There exists a constant C¢ such that 

lll8¢(u)III := sup { l~I; ~ E 8¢(u)}::;; C¢ (lulP*-1 + 1) Vu E股．（11)
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Then in parallel with Proposition 3.4, we have the following proposition. 

Proposition 3. 7. Assume that ¢ E ¥Ji（恥幻 satisfy(GC)1>- Let h E X尽with
S E (0, T] and u。E び (0). Then (E)h with T = S admits a unique solution 

血 EC([O, S]；び(n))satisfying 

s 

喜匹~lluh(t)IIぷ＋p*cp1"1 luh(t) 11r:+p-2dt 

さlluoll;:+ pて(cp)llh||：炉＇
where ep = p*2-1 （が＋い）pKsp, Ksp := infwEvll;ド(O)¥{O}号旦

LP* 

＿正止ユ＿正ユ
叫）＝ P-1 （が十p-2) p-1 p-1 

e p*-1 ¥ p*-1 j e,p' 

uh E C([O, S]；げ(D)) Vr E [1,p*), 

uh E L00(0, S；v*(D)) nび (0,S; V), 

△凸 Eび(0,S; V*), 

如／8tE V1(0,S;V*) +xf +び（O,S;L叩）），

似 Eび(0,S;び（D)),

where bh is the section of⑳（固） satisfying(E)凡 i.e.，詈—△pUh +似＝ h.

(12) 

Now we define a multivalued mapping Q樗＇r:he--+改叫， therealization of 

G(・,・，叫 inX空， forS E (0, Tl, i.e., 

鰭 (h):={ g EX尉； g(t,x)E G(t,x,uh(t,x)) a.e. (t,x) E Qs} 

with 
Ill虹(h)lllx~,r := sup { llgllx~,r; g(t, x) E G(t, X，固（t,X)) }, 

where固 isthe solution of (E)h. 
Here we introduce the following growth condition on G. 

(GC)* : We say that a multivalued map G: Qr x罠→ 2JRsatisfies (G C) *, ifthere exist 

nonnegative numbers q E (p*,p*), Cq and a function a(・) EX炉suchthat: 

IIIG(t,x,u)|||::::; la(t, x)I + Cq lulq-l 

for a.e. (t,x) E Qr, Vu ED（枷），
(13) 

where IIIG(t,x,u)III := sup{ l~I; ~ E G(t,x,u)}. 
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For R > 0 and S E (0, Tl, we put 

K~~,r := {h EX空； llhllx炉::;R }. (14) 

x~,r 
Then, in parallel with Proposition 3.5, we can show that g樗'rmaps K記 intoitself 

for suitably chosen R > 0 and SE (0, T]. 

p roposition 3.8. Assume that ¢ E W（恥記） satisfies(GC)¢ and G : Qr x股→
2八0satisfies (GC)*. Then for any uo E訳 (S1),there exist R > 0 and Ti。E(O,T] 

X尉
depending on llallxt,r, q and lluolb• such that 9xfり~ maps K~10 into itself. 

4 L ocal existence of solutions 

4.1 The upper semicontinuous case 

In this subsection, we give a couple of existence results for the problem (1) -(2) 
when the multivalued map G is upper semicontinuous with closed convex values. 

Namely, we assume the following: 

(H~): G: Qr x股→快 isa multivalued map with closed convex values satisfying the 
following conditions: 

(i) For almost all (t,x) EQT, G(t,x,・） ：股→虎＼｛0}i is upper semicontinu-

ous. 

(ii) For each u E股， G(・, ・, u) : QT→ 2爪{0}is,C (QT) -measurable. 

Our result in the L2-framework is stated as follows: 

Theorem 4.1. Assume that </> E w（罠」恥） andlet G : Qr x罠→ 2八{0}be a 
multivalued mapping with closed convex values satisfying (Hも） and(GCL. Then for 

each u。ED(cp) = vV;』,P(O)n D（贔）， thereexists Ti。=T。(cp(u0))E (0, T] such that the 
initial boundary value problem (1)-(2) admits a solution u on [O, Ti。]satisfying 

，
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(15) 

where b and g are the sections of 8¢(u) and G(t,x,u(t,x)), respectively, satisfying 

(1), i.e.，盟―△Pu+b=g.
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We now give a couple of results in the Non-Hilbert-space setting. 

Theorem 4.2. Assume that</> E ¥[I（恥幻 satisfies(GC)q, and let G : Qr x民→

2八{0}be a multivalued mapping with closed convex values satisfying (Hも） and

(GC)*. Then for each u0 E v*(D), there exists Ti。=T。(lluollLP*)E (O,T] such that 
the initial boundary value problem (1)-(2) admits a solution u on [O, T0] satisfying 

u E C([O, Ti。]；Lr(D)) ¥;/戸 E[1,p*), 

u E L00(0, Ti。;E(9)）nび (0,S; V), 

△PU E LP'（0,T。;V*),
枷／8tEび (0,T。;V*)+X屁＋び(0,T。；び（D)),

bEび(0,T。；び（D)),g EX犀

(16) 

where b and g are the sections of 8¢(u) and G(t, x, u(t, x)), respectively satisfying (1), 

i. e.，盟—△Pu+b=g.

Corollary 4.3. Assume that ¢ E W（良恥） satisfies(GC)q, and let G : Qr x股→

2 IR¥ {0} be a multivalued mapping with closed convex values satisfying (Hも） and
(GC)* with a E X炉n兄． Thenfor each uo E D(r.p) = T1/i化(0),there exists 
T。=T。(lluollLP*)E (0, T] such that the initial boundary value problem (1)-(2) admits 
a solution u on [O, Ti。]satisfying (15). 

4.2 The 1 ower semicontinuous case 

In this subsection, we are concerned with problem (1) -(2) for the case where 
the multivalued map G is lower semicontinuous with closed (not necessarily convex) 
values. Namely, the multivalued map is assumed to satisfy the following condition: 

(Hも） ：G: Qr x股→ 2八{0}is a multivalued map with closed values such that: 

is lower semicontinuous (i) For almost all (t, x) E Qr, G (t, x, ・)：罠→ 2八{0}is 1 

(ii) G: Qr x股→ 2八{0}is £(Qr)RB(賊)-measurable.

Then our result in the £2 setting is stated as follows: 

Theorem 4.4. Let ¢ E w（恥R+)and let G : Qr x股→ 2爪{0}be a multivalued 
mapping with closed values satisfying (Hも） and(GCL. Then for each uo ED（ゃ） ＝ 

囮叩） nD（贔）， thereexists Ti。=To（叫0))E (0, T] such that the initial boundary 
value problem (1)-(2) admits a solution u on [O, Ti。]satisfying 

｛二□°二°iご］yQ)C)0,ntmuouson[0,T。]，

讐△pU, b, g Eび(0,T。；び（D)),

(17) 
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where b and g are the sections of EJの(u)and G(t, x, u(t, x)), respectively satisfying (1), 

i. e.，靡―△四＋ b=g. 

As in Theorem 4.2 and Corollary 4.3, we obtain the following results in the Non-

Hilbert-space setting. 

Theorem 4.5. Assume that¢ E ¥Ji（恥幻 satisfies(GC)¢, and let G : Qr x股→

2八{0}be a multivalued mapping with closed values satisfying (H各） and(GC)ベ
Then for each u0 E LP'(O), there exists Ti。=T。(lluollLv*)E (0, T] such that the 

initial boundary value problem (1)-(2) admits a solution u on [O, Ti。]satisfying 

u E C([O, Ti。]；U(Q)）咋 E[l,p*), 

u E L00(0, Ti。;E(9)）nU(0,T。;V),
△pu € LP'（0,T。;V*),
枷／8t€び(0,T。 ;V*) +X肛＋び(0,T。;L叩）），
bEび(0,T。；び（D)),g EX屈，

(18) 

where b and g are the sections of 8の(u)and G(t, x, u(t, x)), respectively satisfying (1), 

i. e.，盟ー今u+b = g. 

Corollary 4.6. Assume that ¢ E ¥J!（恥恥） satisfies(GC)q, and let G : Qr x股→

2爪{0}be a multivalued mapping with closed values satisfying (H各） and(GC)* with 

a E xf n1ir. Then for each u0 E D(cp) = wJ,P(D), there exists Ti。=To(lluolb*）←
(0, T] such that the initial bounda内1value problem (1)-(2) admits a solution u on 

[0, T。]satisfying (17). 

To prove these results, the following fact plays a crucial role. 

Lemma 4.7. Let all assumptions in Theorem 4-4 or Theorem 4.5 be satisfied. Then 

for any S E (0, Tl, the mapping 9x : K岱→ X with X =応。rX=X尽becomes

lower semicontinuous from xw into xw and L1(Q8). Here xw denotes X endowed 

with the weak topology. 

Remark 4.8. (1) Under the assumptions assumed in Lemma 4-7, 9x is also lower 

semicontinuous from xw into xs, X with the strong topology, for the following cases: 

(i) The case where X = 1-ls and (8) holds with q E [2, p』andk = 0. 

(ii) The case where X = X尉and(13) holds with q E加 p*).

(2) For the semi-linear case p = 2, under assumptions assumed in Theo詑 m4.4 

with the condition on q in (GC)* replaced by the Sobolev subcritical condition, i.e., 

q < 2*, 91-ls becomes lower semicontinuous from 1-ls intoじ(Qs)-Moreover if (8) 

holds with k = 0, then 91-ls becomes lower semicontinuous from 1-l8 into 1-ls with the 

strong topology. 
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5 Global existence of solutions 

In this section, we discuss the global extension of local solutions given in the previ-
ous section. So in what follows, we always assume that G satisfies required assump-

tions with Qr and a E L1(Qり(ora Eび(0,T; Lr(D))) for any T > 0. 
Let u(t) be a time-local solution of problem (1)-(2) on [O, T;。]given in Theorems 

4.1 and 4.4 (or Theorems 4.2, 4.5, Corollaries 4.3, 4.6). Then叫 (t)defined on [O, T.り
with刀＞ T。iscalled an extension of u(t) if 

(i) 匹 (t)is a solution of (1)-(2) satisむing(15) (or (16)) with T;。replacedby T1 

for all T1 E (T;。,Te)．
(ii) 叫t)= u(t) for all t E [O, T0], 

and u叫t)defined on [O, 7五） iscalled a maximal extension of u(t), if um(t) is an 

extension of u(t) and there is no extension of um(t), i.e., um(t) can not be continued 

to the right of Tm as a solution of (1)-(2) with same regularity as (15) (or (16)). 
We first prepare the following alternative lemma. 

Lemma 5.1. Let u(t) be a time-local solution of problem (1)-(2) on [O, T;。]given in 

Theorems 4-1 and 4.4 (or Theorems 4,2, 4,5, Corollaries 4,3, 4,6). Then (under 

the same assumptions of the above theorems) we have 

(1) There exists a least one maximal extension um(t) of u(t) defined on [O, Tm) 
with Tm E (T;。,＋oo].

(2) Let um(t) be any maximal extension of u(t) defined on [O, Tm), then the follow-
ing alternative (i) or (ii) holds. 

(i) Tm= +oo, 

(ii) Tmく十oo and 

t鷹 cp(um (t)) = +oo (or 良児llum(t)IILP*= +oo). (19) 

By virtue of Lemma 5.1, to prove the existence of global solutions, it suffices to 

establish a priori bounds for'fJ(u(t)) or llu(t)IILP*・ 

5.1 Large global solutions 

Theorem 5.2. Let q = 2 or q < p be satisfied. Then any local solution of (1) -(2) 
given in Theorems 4-1, 4-2, 4-4, 4-5 and Corollaries 4-3, 4-6 can be continued globally 
to [O, +oo). 
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5.2 Small global solutions 

In this subsection, we show the existence of small global solutions for sufficiently 
small data a(t) and u0(x). In what follows we use the following notation: 

｛f(t)｝£ :＝｛ごOO［口s）ds for f E Lに(0,OO）， 

~~J00ln}(s)ds for f E L1(0,T) with O < T < oo, 
0'.".:t<oo Jt 

where f (s) is the zero extension of f (s) to [O, oo). 

Theorem 5.3. Let max (p, 2) < q, then there exists a (sufficiently small) number 

ro > 0 such that if { Ila(・, t)IIじ(!l)}£さ roand r.p(uo)さro(resp. { Ila(・, t)||｛叩） ｝£さ ro

and lluollLP*さ r0),then any local solution given in Theorems 4-1 and 4.4 (resp. 
Corollaries 4.3 and 4-6) can be continued globally to [O, +oo). 

To prove this result we prepare the following lemma which is essentially proved 

in the proof of Lemma 4.3 given in [28]. 

Lemma 5.4. Let f E L1 (0, T) and j (・) be an absolutely continuous positive function 
on [O, S] with S E (0, T] such that 

羞j(t) + 0:j (t)1H s; If (t)I a.e. t E [O, S], (20) 

where a and 8 are given positive parameters. Then we have 

sup j(t)さmax(j (0), (0:8w) —¾) + 2 (w + 1) {lf(t)I}£, (21) 
O~t~S 

where w is an arbitrary positive constant. 

6 Examples 

In this section, we exemplify the applicability of our results. 

6.1 Classical problem 

To demonstrate that our framework covers a broad range of the application even 
for classical problems, we consider some open problem for the following equation in 
Q00 := [O, +oo) x D: 

(P) { ：:9(：9)X:；知(t,X)-g(t,x,u(t,x)） ＝ f(t,x) [:： : ：□oo) X叩，

u(O, x) = u0(x) x ED, 



16

which corresponds to (1)-(2) with Qr = Q00, ゆ(•)三 0 and G(t, x, u) = g(t, x, u) + 
f(t, x) is a single-valued function. This problem with u0 E Wi化(D),especially for 
the case p = 2, is extensively investigated by many authors. As for the local well-
posedness in the £2-framework for the semi-linear case, p = 2, is shown under the 
Sobolev-subcritical growth condition on g, i.e., 

lg(t,x,u)I ~ Cq (lulq-l + 1) with q < 2* for a.e. (t,x) E Q00, (22) 

where 2* = oo if N ~ 2 ; and 2* = ~ if 2 < N. 
N-2 

On the other hand, the study for the quasi-linear case, p -/= 2, is not amply 
pursued. Tsutsumi [37] and Ishii [26] studied the case where p, q E (2, oo); g(t, x, u) = 
lulq-2u; f三 0.In [37], it is shown by using Galerkin's method that there exists a 

global weak solution u of (P) satisfying u E £00(0, T; Wiド(D))，盟 Eび(O,T;L叩））
for all T > 0, for the following two cases: 

(i) q < p and uo E TVi討(0).

(ii) p < q < p* and u。belongsto the so-called "Stable Set" W, which is assured 

by the smallness of u。inW化(D). Here p* is the Sobolev critical exponent 
associated with the embedding wJ,P(D) c L叩） givenby p* = oo for p > N 

and p*＝晶 forp < N. 

The existence of strong solutions u satisfying (15) is also discussed in [27, 26, 28]. 

The existence of a global strong solution for case (i) above is shown in [27]. For the 
case where p < q, the existence of a strong solution is discussed for more restrictive 
range of q, more precisely, under the growth condition: q ::::; p* (p* is the exponent 

given in (GC)』．
The existence of a local strong solution is shown in [26, 28] for any u0 E w;化(D),

and the existence of a global strong solution is shown in [27, 26, 28] for small u。in
wJ,P(n). 

On the analogy of the semi-linear case p = 2, it is reasonable to support the 
conjecture that the existence of local solutions for (P) is assured under the Sobolev-

subcritical growth condition q < p*. In the former studies, however, this conjecture 
was not confirmed because of the lack of the elliptic estimate for —• p, which is the 

essential tool for the proof of this conjecture for the semi-linear case p = 2. 
Our framework here provides another approach giving a positive answer to this 

conjecture, which does not rely directly on the elliptic estimate for —心·

Theorem 6.1. Let max (1 2N , *2) < p and assume 

(H9) g: Qr x尺→民 satisfiesthe following conditions: 

(i) For almost all (t,x) E Q00, g(t,x,・)：賊→恥 iscontinuous, 
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(ii) For each u E 賊， g(·,•,u):Qoo → ffi. is £ (Q 00) -measurable. 

(iii) There exists non-negative numbers q E (1,p*), Cq,l, Cq,2 such that: 

lg(t, x, u)IさCq,llulq-l + Cq,2 a.e. (t, x, u) E Qoo X罠．（23)

Then for any u。EW化(D)and f E xf nび(O,T;L叩））， thereexists Ti。E(O,T] 
such that (P) admits a solution u satisfying 

{ U EC( ［0,T。];'~炉(O) ），
璧△pU,g(・, ・, u) Eび(0,T。；び（D)).

(24) 

Moreover, we have: 

(i) Let 1 < q ::; 2 or 2 < q < p be satisfied, then the local solution given above 

can be continued to [O, +oo). 

(ii) Let max (p, 2) < q and Cq,2 = 0, then there exists a (sufficiently small) number 

ro > 0 such that if {IIJ(t)IIぃ｝tごr。andlluollw5,P::; ro (resp. {IIJ(t)II乞｝tごr。
and lluollp• ::; r0), then the local solution given above can be continued to 
[O, +oo), provided that q::;几 (resp.p* < q < p*). 

Proof. It is easy to see that (Hb), (GC*) and (GC*) are derived from (H砂with

G = g + f and a= f + Cq,2-We note that the case 1 < q < 2 can be reduced to the 
case q = 2, since 

lulq-l ::; lul + 1 Vu E艮， VqE (1, 2). (25) 

Then we can apply Theorem 4.1 and Corollary 4.3 for the existence of local solutions. 

To derive the continuation of local solutions, it suffices to apply Theorems 5.2 and 

5.3. ロ

6.2 The case where D (¢)＝配

Let fJ (·)＝如(•) be a maximal monotone graph in尉 x応 suchthat 

¢(0) = 0 = mip¢(u 
uE団

（） 

and there exists C1 > 0 such that 

C1 (lul2(so-1) -1)ご|a0¢(u)l2for all U ED（の） ＝印， 1< s。<(X)．（26) 

We also introduce a class of continuous functions Cq by the following: f E Cq if 
and only if f :臣→尉 iscontinuous and satisfies 

lf(u)I ::::; Cq lulq-l + c。VuE尉， (27) 

where 1 < q < max (p*, s0), Cq ~ 0, C,。~ 0. In the following we consider the case 

where 

G(t,x,u) = G。(u)+fe(t,x),
where fe(t, x) is a given forcing term defined on Q00. 

(28) 
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6.2.1 Th e upper semicontinuous case 

Take Ji, f 1, Ji, f 2 E Cq, such that 

f1 (u) < f2 (u) ¥:/u E (-oo,O], 

訂(u)< ft (u) ¥:/u E [O, +oo), 

f2 (0) < 1: (0), 

and define 
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(29) 

Then it is easy to see that G (t, x, u) = G。(u)+ fe (t, x) is a closed convex and upper 
semicontinuous multivalued function satisfying (Hも）． Wehere note that there is no 
continuous section of G。(・).

Since f{, f1, ft, f2-E Cq, by virtue of (27), there exist C,。2:0, and Cq 2'. 0 such 
that 

IIIG(t,x,u)lll2 :SC,。+|fe(t, x)l2 + Cq lul2(q-l) (t, x, u) E Qoo X罠＼ （30) 

(I) Local solutions 

(1) Let q E (1, max (p*, so)), Uo E D(cp) = wJ,P(D) n D(¢) and fe E 
Lに(0,oo; L叩）））． Thenwe can apply Theorem 4.1 to assure the exis-
tence of local solutions satisfying (15). 

In fact if q E (1,p*), then in view of (30) and (25), we can easily check (8) 

of (GC)* with k = 0, Cq = Cq and a= C,。+|f『EL1(Qけforany T > 0. 
As for the case where 1 < q < s0, since for any E > 0 there exists C0 > 0 
such that 

lul2(q-1) :S E lul2(so-1) + Cs for all u E股 (31) 

in view of (26), for sufficiently small E > 0, we can show that (8) is satisfied 
で

with k = E ~ E (0, 1), a(t, x) = lfe(t, x)12+c,。＋Cq(C0+E)E L1(Qr) for 
any T > 0 and Cq = 0, q = 2. 

(2) Let q E (l,p*), uo E D(cp) = l¥i炉(D)n D（贔） andfe Eび（伍） nx炉
for any T > 0. Furthermore we assume that ¢ satisfies (GC)¢-Then in 

view of (30) and (25), we can check (13) of (GC)* with Cq =（Cq)112 and 

lal = (I.I'.氾＋で。）1/2EL刊伍） nx摩forany T > 0. Hence Corollary 4.3 
assures the existence of local solutions satisfying (15). 

Furthermore we have: 

(II) Large global solutions 
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(3) The case where 1 < q :=; 2 or 2 < q < p : 

Theorem 5.2 assures that every local solution can be continued globally to 

[O, +oo). (Note that the case 1 < qく 2can be reduced to the case q = 2 

by (25).) 

(4) The case where q < s0 < +oo : As already mentioned above, (8) is satisfied 
with Cq = 0, q = 2. Then we can apply Theorem 5.2 with q = 2 to assure 

the existence of global solutions. 

(III) Small global solutions 

(5) The case where max (p, 2) < q < p* : We here assume that ff and ff 
、―・

satisfy (27) with C,。=0.Then (30) is satisfied with C,。=0and we can 
、-．

apply Theorem 5.3ぎithk = 0, Cq = Cq and a = If平if1 < q :=; p. ; and 

with k = 0, Cq = (Cq)1l2 and a= lfel if p. < q < p*. Thus the existence 
of global solutions is assured for sufficiently small 11,。andf e in the sense 

of Theorem 5.3. 

6.2.2 The lower sernicontinuous case 

Let -oo :Sr。<0< r1 :S十ooand take j+, 1-E Cq such that 

f―(u) < j+ (u)'vu E (ro, r1) 

and define 

G。(u)~ { ~+(~;!r (u)] n Qn :：二ご：r：OOr)09)， 

[f―(u), j+ (u)] n Qn if u E (ro, r1), 

(32) 

where (Qn := { q E (Q : lOnq E Z} with n sufficiently large so that [f―(u), j+ (u)] n 
ふ＃ 0for all u E (ro, r1). 

Then it is easy to see that G(t, x, u) = G。(u)+ fe (t, x) is a closed but not convex 
valued lower semicontinuous function satisfying (Hも）， andthat there is no continuous 
section of G0(・). Furthermore, since f±E Cq, (30) is also satisfied. 

Thus the same assertions on the existence of local and global solutions as those 
in the previous case hold. 

6.3 The case where D (¢) 
． 
is precompact 

Here we consider the case where D (¢) is precompact, i.e., 

D（の） ＝｛uE配； ¢(u)< +oo} c [a,b] with -oo <a< 0 < b < +oo. 

Typical examples are given by 
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(i) 

(1) 

¢ (u) = I[a,b] (u) = { 
0 if u E [a, b], 

十oo otherwise, 

and 
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(2) 

叫＝ ¢h(u)=｛ h(U) if u € (a,b)， 
+oo otherwise, 

where h Eび ((a,b)；尉） isconvex and satisfies 

lim-h(u) = li:μi-h(u) = +oo. 
u→a+O', u→b-0 

Then we have 

枷 (U)= O</Jh (U) = { 
h'(u) if u E (a, b), 
0 if u tf-(a, b). 

We again define G0(u) by (29) (resp. (32)) and G (t, x, u) by (28). Assume that 
f戸(resp. f±)belong to C（旧り；囮り． Then since D (8I1a,bJ) = [a, b] and D (8¢h) = 
(a, b), we can verify (GC)* with k = 0, Cq = 0 (for any q E [2,p)) and a(t, x) = 
Ct+ fe(t, x), where Ct = max { 111±(r)I ; aさ rS b, i = 1, 2 } (resp. Ci = 
max { If士(r)l;asrさb}).

Hence, for every u。E D (cp) and fe E Lに([O,oo);び（!.1)),Theorem 5.2 assures 
the existence of global solutions of (1) for the case where G。isu.s.c (resp. l.s.c). 
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