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Multivalued ordinary differential equation 

governed by hypergraph Laplacian * 
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1 Introduction 

The (weighted) hypergraph is defined as a triplet G = (V, E, w) of 

• a finite set V = { v1,..., Vn} (vertex set), 

• a family E c 2v of subsets with more than one element of V, that is, #e ~ 2 for 

every e E E (set of hyperedges), 

• a function w : E→(0, oo) (edge weight). 

This can be interpreted as a model of a network structure in which vertices vい...,VnEV 

are connected by each hyperedge e EE  (see Figure 1). 

As for the case where G is a usual graph (i.e., every e E E satisfies #e = 2), then an 
operator called "graph Laplacian" can be defined as the matrix of order n = #V, which 

describes the random walk movement of particles on the graph. It is well known that 

the network structure of the graph can be investigated through the study of eigenvalues 

of the graph Laplacian, which is called "spectral graph theory" established in the 1980s. 

This theory has been applied to the algorithm of measuring the importance of website, 

which is called PageRank, and the Cheeger type inequality, which is related to the cluster 

analysis (see, e.g., [3, 4, 5, 7] and references therein). 

* Joint work with Masahiro Ikeda (Riken/Keio University). 
Keywords: Hypergraph, hypergraph Laplacian, subdifferential, nonlinear evolution equation, p-

Laplacian. 
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In order to develop the spectral graph theory to more general networks, Prof. Yuichi 

Yoshida introduced an operator called the hypergraph Laplacian La,p in [19]. As seen in 

the next section, La,p is a nonlinear and multivalued operator defined as the subdifferential 

of some convex function. Therefore, we can apply the abstract theory for the nonlinear 

evolution equation to this operator and the differential equation governed by La,p• 

In this paper, we aim to study the hypergraph Laplacian La,p more precisely beyond 

the facts known as the abstract results. In this next section, we state the definition of 

the hypergraph Laplacian and some facts which can be derived from the general theory. 

In Section 3, as for our main assertion, we introduce an inequality which holds for the 

hypergraph Laplacian La,p and quite resembles the Poincare-Wirtinger inequality in PDE. 

We next consider the evolution equation x'(t) + La,p(x(t))ぅ h(t).This ODE has been 

applied to study the Cheeger like inequality and the PageRank of network represented 

by hypergraph (see, e.g., [10, 12, 18]). However, due to the complexity of structure, it 

seems that the argument for usual graphs, namely, the case where Laplacian is a matrix, 

is almost broken and the details of the ODE have not been well discussed yet. By using 

the Poincare-Wirtinger type inequality, in the final section, we show some results for 

this equation other than the solvability, which have been already assured by the abstract 

theory. 

Figure 1: If e E E consists of two elements, then e = { u, v} can be regarded as a segment 

connecting two vertices u, v. Hence every e E E is a binary set, then G represents a 

network composed of points and connecting lines (left figure, called usual graph). The 

hypergraph is a generalization of the usual graph which allows the grouping of multiple 

members (right figure). The weight w(e) represents the multiplicity of connecting lines 

e E E or the degree of ease of a heat/particle flow across the pass e E E. 
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2 Definition and Properties of Hypergraph Laplacian 

2.1 Preliminary 

We first review some well-known facts of maximal monotone operators and subdifferential 

operators for later use (details and their proof can be found in, e.g., [1, 2, 17]). Let H be a 

real Hilbert space with the norm II・ II and the inner product(・,・). A (possibly) multivalued 

operator A : H→ 炉 (thepower set of H) is said to be monotone if ('f/l吋 2，も一＆） 2::0 

holds for anyら ED(A) (the domain of A) and功 E Aも(j= 1, 2). Moreover, a 

monotone operator A is said to be maximal monotone if there is no monotone operator 

which contains A properly. If A is maximal monotone, 

• A(forms a closed convex subset in H for every (E D(A). 

•IfrJmEA知，知→ (strongly in H, and'f/m -----'rJ weakly in H as m → oo, then 

(E D(A) and rJ EA(hold (i.e., the maximal monotone operator is demiclosed). 

It is well known that the subdifferential operator of a proper lower semi-continuous 

convex function is always maximal monotone. Here the subdifferential of a proper (i.e., 

g芸＋oo)lower semi-continuous and convex functional g : H→(-oo, +oo] is defined by 

(1) 匈： t →{TJ E H; (TJ, z -l) :S; g(z) -g(l) ¥/z E H}. 

By the definition, we also find that 

(2) 0 E og(~) ⇔ g(~) ~ g(z)'vz E H, i.e., g(~) =翌翌g(z).

There are many studies which are concerned with the theory of solvability of evolution 

equations governed by the subdifferential operator, which is the so-called Komura-Brezis 

theory. For instance, the existence of a unique solution to the Cauchy problem for a basic 

equation has been assured as follows (see [14] and [2, Theorem 3.6-3.7]): 

Proposition 1. Let g : H →(-oo, +oo] be a proper lower semi-continuous convex 

function and assume that fo E D(g) := {z E H;g(z) < oo} and h Eび(O,T;H).Then 

(3) { （'（t)+0g(＜（t)）3 h(t) t E (0,T)， 

f;,(O) = ~。,

possesses a unique solution satisfying ~ E W叫0,T; H). Moreover, if t。E[O, T) is a 
1 rto+T right-Lebesgue point of h (i.e.，ヨh(ta+O):= limT→+0 デ ft~o-n h(s)ds), the solution is right-

differentiable at t。andits right-derivative satisfies 

(4) 
d+~ 

dt 
(to) = (h(t。+0)-8g(~(to)))0, 
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where C0 := argminzEC llzll = Pro記0for a closed convex set C C H. 

,..., m) are lower semi-continuous convex functions, their When gμ: H→IR (μ = 1,..., m) are lower semi-conti 

maximum envelope g(~) := maxμ=l,...,m9虞） isalso convex and lower semi-continuous 

on H, and then the subdifferential of g can be define. In the case where H is the finite 

dimensional space, we have the following maximum rule of sub differential (or the so-called 

Danskin-Bertseka's Theorem, see, e.g., [15, Proposition 2.54]): 

p roposition 2. Let H be a finite dimensional space, 9μ : H →股(μ = 1,2,...,m) be 

convex functions satisfying D(gμ) = H, and g(~) := maxμ=l,…，mgパど）． Thenfor every 

~ E H, the subdifferential of g can be represented by 

疇）＝o（虚axm9虞））＝ conv (VE旦く）疇）），

where 

N(~) := {v E {1,2,...,m}; gぷ） ＝温竺mg心｝．
2.2 Definition 

For simplicity, we suppose that the hypergraph G = (V, E, w) is connected throughout 

this paper (general case is discussed in [13]). Namely, assume that for every u, v E V 

there exist some u1,..., uN-1 E V and e1, e2,..., eN E E s.t. 巧ー1,巧 E ej for any 

j = 1, 2,..., N, where u0 = u and uN = v (see Figure 2). 

In this paper, we consider the operators and the differential equations on酎， which

stands for the family of mappings x : V→ 良 Obviously,we can identify記 withthe 

n-dimensional Euclidean space町 byletting Xi:= x(vi) and x ~ (x1,..., Xn)-Hence町

can be regarded as a real Hilbert space with the following standard inner product and 

norm: 

X ・Y := ~苫 x(v)y(v) ＝〗ぶYJ9 llxll :=vx万 x,y E酎．

For later use, we here define 15 : V→股 withSc V by 

ls(V) ：={ ; if VE  S, 

if VE  V ¥ s. 
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e1 

Figure 2: When G is connected, we can select suitable relay points u1, u2,... and bridges 

釘， e公．．． whichconnect the two vertices chosen arbitrarily. This also implies that there 

is no isolated vertex nor island. 

When S = { v }, we might abbreviate l{v} as lv. Note that lvi E記 canbe identified 

with the i-th unit vector of the canonical basis of町 andlv ~ (1,..., 1). Moreover, let 

Be C記 bea subset defined with respect to each hyperedge e E E by 

Be := conv{lu -lv E酎； u,VE e} 

(5) ~ conv { (...,O, i.o,...,0,-11,0,...)E町， i,jS.t. V凸 Ee}，

which is called the base polytope for e E E. Here conv Q denotes the convex hull of 

Qc酎．

We here consider 

(6) jし(x):= m8:JC(x(u) -x(v)) = ID8:JC lx(u) -x(v)I = max lxi―Xjl 
u,VEe u,VEe i,j s.t. 

v;,vJEe 

V XE股 ， 

where e E E. By (5), we also have fe(x) = m邸 bEBeb. X. Clearly, le :艮V →股 is

continuous and convex, then fe is subdifferentiable at every x E股v_Since fe(x) is defined 

as th em邸 imumenvelope of % (x) := Xi -X_i ( i (i,j s.t. vi,Vj Ee) and娼 (x)=lv,-1巧 9

we can derive from Proposition 2 

(7) 砂 (x)＝ argm邸 b・ X = { be E Be; be・ X = ~邸 b· X }-
bEBe L ・ bEBe 

Obviously, be ・ x = f.パx)holds for every x E町 andbe E 8fe(x). 

As seen in (1), the subgradient of convex function possibly returns set-value at some 

XE酎 wherethe functional is non-smooth. We here check the case where 8fe(x) is a 

singleton or a set-value. Let V = { vぃV2,Vぁv4}and E = {V}, i.e., the hyperedge includes 

all vertices of V. Remark that f e = J v = m叫，j=l,…，4IXi -Xjl-

(Ex.I) Let x = (xi, x2, X3, x4) = (2, 1, 1, -2). Since fe(x) = X1 -X4, we have 

8fe(x) = (1,0,0,-1) = lv1 ― 1四•
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Namely, 8 f e (x) coincides with the derivative of x→x1 -x4 and becomes a singleton. 

(Ex.2) Let x = (x1, X2, xふ四） ＝ （2,2,0,-1). Since fe(x) =X1 —叩＝ x2 -x4, we have 

8fe(x) =｛（入(1釘― lv,)+ (1 —入）（1四― 1V4) ；入 E [0, 1]} 

= {（入，（ 1 —入）， 0, -1);入E[0, 1]}. 

(Ex.3) Let x = (x1心2心3,X4)= (1, 1, -1,-1). Since fe(x) = X1 —叩＝ X2 ―四＝ X1 一知＝

四ーx3,then 8fe(x) coincides with the convex combination of lv,―lv, = (1,0,0,-1), 

1四― lv4= (0, 1, 0, -1), lv,―1双3= (1,0,-1,0), and 1四― 1眈3= (0,1,-1,0), i.e., 

8fe(x) =｛（入，（1-入），ーμ,-(1-μ))；入，μ E [O, 1]}. 

These examples imply that 8fe(x) becomes multi-valued if v←x(v) takes the maximum 

or minimum value at several vertices v, that is to say, the components of the vector 

x = (x1,..., Xn) take maximum or minimum values for multiple coordinates. 

By using fe defined for each e E E, we set the following continuous convex function 

on股V:

(8) 
1 

匹，p位） ：＝ー w(e)(fe(x))P p E [1, oo). 
p とeEE 

Thanks to the subdifferential formula of the composition of functionals (see, [6, Corollary 

3.5] and also [13, Proposition 2.2]), we can calculate the subgradient of'PG,p like the 

standard chain rule of differential: 

知，p(x)＝区w(e)Ue(x w-1邸 (x)
eEE 

(9) 

= {~w(e)は（x））八； be Ear~翌~b•x}.
Definition 1. The hypergmph (p-)Laplacian Lc,p :酎→ 2JRvon the hypergraph G = 

(V, E, w) with p E [1,(X)）is defined by Lc,p:＝釦G,p•

Remark 1. If p > 1 and G is a usual graph, i.e., each e E E contains two elements, 

Lc,p(x) becomes a single-valued operator. Indeed, since fe(x) = Ix（いー x(vi)Iwhen 

e = {v心｝， weget 
n 

1 
如，p(x)=一〉叫Xi―x氾

2p 
i,j=l 
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where x（叫 isabbreviated to xi and 

% ：={ w(｛V凸｝） if {V凸｝ EE, 

0 if { Vi,叫 (/_E,

i.e., v; and Vj are connected, 

i.e., v; and Vj are disconnected. 

Clearly, this functional is differentiable in the classical sense except for p = l and its 

subgradient coincides with its derivative (see [1, Ch.1.2]). Especially, calculating partial 

derivatives for the case where p = 2, we have 

応 G,2(x)＝t Wij(Xi -Xj) = d凸ー tWijXj
J=l J=l 

= (-W;1,..., d; -Wか•.．， -W;n) ・ X, 

where d;:＝こjn=1W勾 denotesthe (weighted) number of vertex connected to v;. Hence 

La,2 = 8r.pa,2 coincides with the classical graph Laplacian matrix for the usual graph, that 
is, La,2 = D -A, where D := diag(d1,..., dn) and A := (W;J) are the square matrices of 

order n = #V called the (weighted) degree matrix and the (weighted) adjacency matrix, 
respectively. 

On the other hand, when G is a hypergraph, La,p(x) possibly returns a set-value on 

LJeEE Uu,vEe { X E記； x(u)= x(v)} (union of hyperplanes) by the singularity of derivative 
of the max-function even if p > 1. 

Remark 2. From the point of view of the graph theory and the discrete convex analysis, 

the function f e :尉→股 isderived from the Lov邸zextension of the following set-

function on 2又thatis, the Choquet integral with respect to the following non-additive 

measure over V (see, e.g, [11, §6.3]): 

凡(S)＝ ｛ ： if e n s, e n sc cJ 0, 

otherwise, 

which is called the cut function with the hyperedge e E E. In [19], a generalization of the 

graph Laplacian (called the submodular Laplacian) is introduced as the subdifferential 

of the energy functional consisting of the Lovasz extension of the general subrnodular 

set-function. 

2.3 Basic Tools 

We here consider the minimizers of fe and 知，p• Remark that f心）乎c,p(x)~ 0 hold for 

any x E記． Bythe definition (6), we obtain 

fe(x) = max lx(u) -x(v)I = 0 ⇔ x(u) = x(v) Vu,v Ee. 
u,vEe 
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Namely, x is the minimizer of f e if and only if the elements of x at vertices contained by 

e E E take the same value. This fact immediately yields that 

如，p（x)＝minやG,p(y)= 0 ⇔ fe(x) = 0 Ve EE 
y鐸 V

(10) ⇔ x(u) = x(v)'vu, v Ee Ve EE ⇔ x(u) = x(v)'vu,v EV 

⇔ヨcE~ s.t.x=clv=(c,...,c), 

since the hypergraph G = (V, E, w) is assumed to be connected. Moreover, we obtain the 

following. 

Theorem 2.1. Let p 2". l. Then x E記 satisfiesOE Lc,p(x) if and only if x = clv with 

some c E股． Furthermore,for every x E□and c E罠， itholds that 

(11) 如，p(x+clv)=やG,p(x), Lc,p(x + clv) = Lc,p(x). 

PROOF. The first result is derived from (2) and (10) directly. We next check (11). 

Since (lu -1』・ lv= 1-1 = 0 holds for any u,v EV, we obtain b ・ lv = 0 for any 

b E Be = conv{lu -lv; u, v E e }. This leads to 

f e (X + cl V) = IJl~ b ・ (X + cl V) = IJl~ b ・ X = f e (X) 
bEBe' ,  bEBe 

for every e E E, x E ~ v, and c E罠． By(7), we also have 

be E ofe(x+clv) ⇔ be ・ (X + cl V) = ~邸 b-(x+clv)
bEB, 

⇔ be・ X = ~邸 b ・ X ⇔ be E ofe(x). 
bEB, 

Therefore, these and the definition (8)(9) entail (11). 

Remark 3. Theorem 2.1 implies the lack of coerciveness of'PG,p・ Indeed, 

如，p(x+clv) 四，p(x)

llx + cl vii llx + cl vii 
＝ →0 as lei→00. 

3 Poincare-Wirtinger Type Inequality 

仁l

By the general theory of gradient flows, the solution to the evolution equation ((t) + 

8g(f(t))ぅ0acts toward the minimizer of the energy functional g and the limit of solution 

limt→= f(t) attains the minimum of g. According to this fact, we can expect that the 

hypergraph Laplacian Lc,p has the effect of homogenizing the values of x and then the 

solution might move toward the mean value of the initial state. 
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Based on this, we here define the averaging of x by 

(12) 
歪＝（エx(v))lv =（国i,···,¾立）

that is, a vector whose elements are the mean value of x. Then we can obtain the following 

inequality. 

Theorem 3.1. Let p ~ l. Then every x E Illv and y E Lc,p(x) satisfy 

(13) 

where 

(14) 

llx-xllpさpra,炉 G,p(x)＝恥，pX. Y, 

炒 (N*)P-1
rc,p := 

mineEE w(e) 

and N* is the "diameter" of G, i.e., 

N* := m~. dist(u, v), 
u,vEV 

dist(u,v) := min { N; 恥，．．．，UN-lE V，ヨe1,．．．,eN E E s.t. 
u9-1, Ut Eet Vi = 1, 2,．．., N (Uo = u, UN = V)．}. 

PROOF. Since be・X = fe(x) holds for every x E賊Vand be E afe(x), the representation 

of La,p implies x ・ y =冗eEEw(e)(fe(x))P = p改G,p(x)(recall (9)). In order to show 

||x -団||pさ p rG,pやG,p(x),fix u, v E V arbitrarily and select 附，．・・墨N-1E V and 

e1,..., eN E E such that ui-l,糾 Eei for any i = 1, 2,..., N, where u。=uand邸＝ V 

(recall that G is assumed to be connected and note that N :S N*). Hence by using 

Holder's inequality, we have 

N N 

lx(u) -x(v)I :S区lx(ui-1)-x（糾） :SLfe.(x) 
i=l i=l 

(N*)lfp' 
1/p 

L w(e)(fe(x))P) = 
(N*)lfp' 

さmlneEEW(e)1/pし） mlneEEW(e)1/p (P如，p(x))l/p'

where p'= p/(p -1) is the Holder conjugate exponent. Recalling (12), we obtain 

1区lx(u)
(N*)lfp' 

lx(u)ー百(u)I~ ~), lx(u) -x(v)I ~ ~ (pcpa,p(x))11P 'vu EV. 
n 

vEV 
―mineEE w(e)1IP 

Therefore, by the general ineq叫 ityllzll :::;と7=1にI,we can derive (13) with (14)．ロ
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One might find some similarities between (13) and the Poincare-Wirtinger type in-

equality in PDE (see, e.g, [8, §5.8.1 Theorem 1]): 

1 r. 11P 
u―五iudxl[(n):s; 1 I I▽u||い=1Jou (―▽・(|▽u1p-2▽u))dx ¥/uEW1・P(fl). 

For the hypergraph Laplacian, we also obtain the inverse inequality: 

Theorem 3.2. Let p ?". l. Then every x E酎 andy E La,p(x) satisfy 

(15) llx-歪||P:2 p "'(G,p吹G,p(x)= "'(G,p x ・ Y, 

where 

(16) 
1 

rG,p := 
叩／2区eEEw(e). 

PROOF. Since歪(u)＝歪(v)= ¾ L~=l X; holds for any u, v EV, we have 

fe(x) = ffi3?C lx(u) -x(v)I = ffi3?C lx(u)ー百(u)＋豆(v)-x(v)I 
u,VEe u,VEe 

:::;Llx(v)一酌(v)I:::;v'nllx-了||．
vEV 

Hence we have 

匹 G,p(X)::;np/2(~w(e)) llx-団||p

which yields (15) with (16). 仁l

Remark 4. One of the differences between the hypergraph Laplacian and p-Laplacian in 

PDE is that 8cpc,p is not strongly monotone. Indeed, let #V = 4, E = {V}, w三 1,and 

X = (x1, X2心3，四）：＝ （1,a1,b1, -1), Y = (Y1, Y2, Y3,肌）：＝ （1, a2, b2, -1). 

By letting la』,|b』<1(j = 1,2), we have argmaxvEvx(v) = argmaxvEVy(v)＝町 and

argminvEvx(v) = argminvEVy(v) = V4. Then fe(x) = fe(Y) = (1-(-1)) = 2 and 

恥，p(x)= Lc,p(y) = (2P-1, 0, 0, -2P-1). 

Hence we obtain (Lc,p(x) -Lc,p(y)) • (x -y) = 0 although aj, bj E (-1, 1) can be chosen 

arbitrarily so that xヂyand団＝ y.That is to say, (Lc,p(x) -Lc,p(y)) ・ (x -y) can not 

be bounded from below by llx -YII nor II (xー百）ー (y-g)||． 
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4 Evolution Equation with Hypergraph Laplacian 

4.1 Cauchy Problem 

Using the Poincare type inequalities provided in the previous section, we here consider 

the following Cauchy problem of a multi-valued nonlinear ordinary differential equation 

associated with the hypergraph Laplacian: 

(17) ｛が(t)＋恥，,(x(t))3 h(l) 

x(O) = xo, 

tE (O,T), 

where x : [O, T]→酎 isan unknown function and h : [O, T]→酎 isa given external 

force. Since La,p coincides with the subdifferential 8r.pa,p, the Komura-Brezis theory 

(Proposition 1) is applicable to (17) and we can assure that for any given data x0 E 

D（如，p）＝酎 andh E び(O,T皇り thereexists a unique solution x E W叫O,T；町）．

We here aim to discuss the time global behavior of solution to (17) more precisely as a 

result which can not be discussed only by the abstract theory. 

We test the equation (17) by lv = (1,..., 1). Note that x • lv = ~い xi holds for 

any x E記 andb ・ lv = 0 for any b E Be= conv{lu -1叫 u,v E e} (recall our proof for 

Theorem 2.1). Therefore, we have y • lv = 0 for every y E La,p(x), which implies 

，
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that is, for every t E [O, T], 

(18) 
t 

歪（t)=瓦＋J五(s)ds.

゜Especially，豆（t)=瓦 holdsfor any t 2'. 0 if h = 0. 
By this "mass" conservation law of (17), we obtain the following decay estimate of 

solution tending to the mean value of initial state. 

Theorem 4.1. Let x be a solution to (17) with h三 0and define X(t) := llx(t) -瓦||．

Then for every t 2'. 0, 

(X(0)2-p -~t) ~(2-p) ~ X(t)~ (X(0)2-P -~t) ~(2-p) 
rG,p 十恥 ，pJ + 

if 1 ~ p < 2, 

X(O) exp(-,晶t)さX(t)さX(O)exp (-r晶t)

(1  + p-2 ―1/（p-2) 1 ―1/(p-2) 

X(O)P-21Gp t):::; X(t)こ(X(O)P-2+ pr:p2t) 

if p = 2, 

if p > 2, 
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where (s)+ := max{s,O} and rc,p,iG,p are constants defined by (14), (16), respectively. 

PROOF. Since冗＝ clvwith c = ¾ ~vEvxo(v), we have for every y(t) E Lc,p(x(t)) 

y(t) ・ (x(t)一瓦） ＝匹G,p(x(t))-c(y(t) ・ lv) = P'Pc,p(x(t)). 

Hence multiplying (17) by x(t)ー坑 weobtain the following identity: 

(19) 
l d 
--||x(t) —疇＋P如，p(x(t)) = 0. 
2 dt 

Then applying Theorem 3.1 and 3.2, we deduce 

d 
(20) -2而，~llx(t) 一団(t)llp::; itllx(t)-瓦||2::;ー2r心llx(t)一豆(t)||互

which together with団(t)＝詞 leadsto the inequalities in Theorem 4.1. 口

Remark 5. By Remark 4, 8cpa,p is not strongly monotone and then it is difficult to show 

the asymptotic behavior of two different solutions x(t) and y(t) by the standard method 

via a priori estimate of x(t) -y(t). However, by virtue of Theorem 4.1 and the triangle 

inequality, we easily obtain the following. 

Corollary 1. Let x, y be the solutions to (17) with h = 0 and the initial data x0, y0, 

respectively. If西＝侃 thenwe have for every t ;::: 0 

(xtp-~町） ~(2-p) + (y□2-p -~町） ~(2-p) if 1 ::; p < 2, 

llx(t) -y(t)II ::;く (X。+％）exp(-ra~t) if p = 2, 

(； 2 + p̀p2t)―l/(p-2) + (YF2 + ~t) —l/(p-2) if p > 2, 

where X。:=||Xo -瓦||andYo := IIYo -面||．

Remark 6. Multi-valued operators in the evolution equation possibly cause the "jump" of 

the derivative and then the solution to set-valued differential equations might not belong 

to C1-class in general. For (17), we can construct an example of solution whose derivative 

is not continuous. 

Let #V = 4, E = {V}, w三 1,and p = 2. Then the solution to (17) with h三 0and 

x0 = (2, 1, -1, 2) is 

{ 2e―29 if t :::;抄log2, 
X4(t) = -X1(t), x1(t) = V2e―t 

if t ~抄 log2, 

孤＝｛ :戸 if t ~抄 log2, 
X3(t) =―四(t).

if t ;:=:抄log2, 



35

Indeed, when O :::; t < t。:＝½log 2, we have by x1(t)>吟（t)>知(t)＞四(t)

fe(x(t)) = x1(t) -X4(t) = 4e―2t, 

8炉℃，2(x(t))= fe(x(t))(l, 0, 0, -1) = (4e―2t, 0, 0, -4e―2t) 

(recall Ex.1 of §2.2), which satisfies x'(t) = (-4e-2t, 0, 0, 4e-2t)＝直知，2(x(t)).If t > t。,
we have by x1(t) =四（t)>知（t)=四(t)(see Ex.3 of §2.2) 

fe(x(t)) = x1(t)一四（t)=四(t)-X3(t) = 2v'2e―t, 

底，2(x(t))=｛疇e―t （入，（ 1 —入），ーµ, -(1-μ))；入，μ E [O, 1]} 

ぅ (v'2e―t,v'2e―t,-v'2e―t,-v'2e-t) = -x'(t). 

Hence x(t) fulfills -x'(t) E如c,2(x(t))except fort= t。.Moreover,we can easily check 

that 

(-8如，2(x(t)））゚＝ー (8改G,2(x(t)））゚

{ （-4e-2t, 0,0,4e-2t) 

ー (-J2e-t, —J2e―t' ⑫e―t, J2e―t) 

if O~t<t。,

if t ~ t。,

coincides with the right derivative of solution生(t)for every t：：：：〇．

By this example, one might perceive that the solutions to (17) first behave to bring 

the maximum value and the minimum value in e EE  (i.e., x1(t) and四 (t))closer and the 

other components with middle value（巧（t)and叩 (t))halt. After the components with 

the maximum or minimum value touch others, these components simultaneously act and 

the jump of time-derivative occurs. 

4.2 Periodic Problem 

Next we consider the following time-periodic problem: 

(21) 
｛が(t)＋ LG,p(x(t））ぅ h(l)

x(O) = x(T). 

tE (O,T), 

As for the known results, [2, Corollaier 3.4] assures the solvability of the time-periodic 

problem of nonlinear evolution governed by the subdifferential operator with the coercive-

ness. For the case where the subdifferential is not coercive, [9, Theorとme3] guarantees 

the existence of a periodic solution to t'(t) + 8g(t(t))ぅh(t)under the assumption that 
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} J。~ h(t)dt belongs to the interior of the range of 8g. However, the fact that y ・ lv = 0 for 

every y E Lc,p(x) implies that R(Lc,p) C {clv E股見 CE罠｝上＝ ｛X E R兄豆＝ O},which 

has no interior point. Hence, to the best of our knowledge, there are very few abstract 

theory which can be applied to our problem (21). 

Although (21) cannot be solved by known results, one might perceive that the hy-

pergraph Laplacian has properties similar to those of the Neumann-Laplacian in PDE so 

far, for instance, the lack of coerciveness, the mass conservation law, and the convergence 

of solution toward the mean value of initial state. So we can expect that a solution to 

(21) can be constructed by employing a technique for parabolic equations governed by 

the Neumann Laplaci皿 (see,e.g., [16]). Note that 

(22) 

゜-＿
 dt り-h 

T
 ーーん

is obtained as a necessary condition of the existence of solutions satisfying x(O) = x(T) 

by (18) with t = T. 

Theorem 4.2. Let h E LP'(0, T国） withp':= max{2,p'} and assume (22). Then (21) 

possesses at least one solution x E W叫O,T；記）．

PROOF. We set the following approximation problem with the p紅 ameterc > 0: 

(23) 
｛店） ＋ exe(t) ＋ LG,pに(t)）ぅ h(t)

叩（0)=叩(T).

t E (O,T), 

Since 

ふ (x):= ~llxll2 +如，p(x)

satisfies the coerciveness and如如(x)=EX+ Lc,p(x), (23) possesses a unique periodic 

solution叩 EW叫O,T国） forany given h Eび(O,T；町） （see [2, Corollaire 3.4]). 

Multiplying (23) by lv, integrating over [O, Tl, and using the condition x0(0) = x0(T) 

and (22), we get 

［ （図年(t))dt=O,

which implies that there exists some t0 E [O, T] such that E7=1 Xc:i（む） ＝ 0, that is, 

訊）＝ 0.Testing (23) by lv again and integrating over [t0, t] (t E [t凸＋Tl),we have 

信Xc:i(t))= lt e―c:(t-s)（言いs))ds ⇒ °Xe(t) = lt e―c:(t-s)万(s)ds,
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which leads to 

(24) 
T 

喜匹T11可(t)II::::;1'I|h(s)llds. 

Multiplying (23) by叩 andintegrating over [D, T], we have 

E: 1Tに(t)ll2dt+ p 1二，pに(t))dt

゜
：：：：： （［llh(t)IIP'dty/p'[ (1Tに(t)一可(t)IIPdt)1/p +(［戸(t)|IPdt)l/pl 

Let C denote a general constant independent of c > 0. Then by (13) and (24), 

T 

(25) c 1 に（t)112dt+ 1Tに(t)IIPdt：：：：： c 

Lett。E[D, T] attain the minimum oft→ ||x0(t)II-Clearly (25) implies llxc(to)II：：：：： C. 

Testing (23) by x~, we get 

(26) foT1|め(t)ll2dt：：：：： ［肪（t)ll2dt. 

We here use the chain rule for the subdifferential (see [2, Lemme 3.3]): 

d 
Ye:(t) ・ x:(t) =一匹，pに(t)) a.e. t E [O,T], 

dt 

where Ye: : [O, T]→記T is the section of Lc,pに） satisfying(23), i.e., x~(t)+s叩(t)+Ye:(t) = 

h(t) and Ye:(t) E Lc,p(xe:(t)) for a.e. t E (O,T). Since llxe:(to)II::; C, (26) yields 

(27) sup||叩（t)II::; C 
O≪:t≪:T 

and 

(28) 1T IIYe:(t)ll2dtさC.

゜By (26)(27)(28), we can discuss the standard argument of convergence of solutions and 

equation as c→0, whence it follows Theorem 4.2. 仁l

Remark 7. The uniqueness of time-periodic solution dose not hold in general. Indeed, 

let # V = 4, E = {V}, w三 1,p = 2, a,(3 ＞0 and 
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