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1. Introduction 

In this paper, we consider the initial-value problem of the following second-order 
differential equation in a Hilbert space H: 

(1.1) 
{u”(t)＋Au(t) ＋u'（t) ＝ 0, t E (0，叫
(u,u')(O) = (uo，妬），

where A is a nonnegative selfadjoint operator in H endowed with domain D(A). The 
initial data (u。直1)are given and assumed to be sufficiently regular (u。濯1E D(Aり
for sufficiently large £ E N). Of course, the typical example of such a problem is the 
initial-boundary value problem of the usual damped wave equation 

(1 2) {：:xu9(：），t:；9△u(x,t) ＋ 如(x,t)＝ 0, ［：]: ：〗:x(□'o::9) ，
(u,8tu)(x,O) = (uo(x),u1(x)) x ED, 

where DC酎 isan open set having a smooth boundary叩， 8t=羞 and△=区N 02 

k=l可・
One can easily find that the solution u of (1.2) satisfies the energy identity 

応 (t)Iii叩） ＋ 1|▽u(t) Iii叩） ＋2 jt I|如 (s)||i知） ds = ||m||i叩） ＋ 1|▽uolli印）

゜which immediately gives the uniform boundedness of the derivative of u. In contrast, 
estimates for the solution u itself is not so clear. Actually, the energy functional 

訊ulli叩） ＋ 1|▽ulli叩） doesnot have a good factor to control the L2-norm of u. In the 

case n =酎， theFourier transform is a powerful tool to analyse the precise behavior 
of solution u. Even if Dナ股凡 thespectral analysis in view of selfadjointness of the 
Laplacian could be a good tool for the analysis of solutions to (1.2). Instead of this, 
aiming for generalization to the case of problems governed by some non-selfadjoint op-
erators, we shall discuss several properties of (1.1) without such tools which force the 
situation to be limited. Here we focus our attention to the framework of energy method. 

In 1961, Morawetz [9] suggests the following procedure for the wave equation (with-
out damping term). Let us consider the initial-boundary value problem of the linear 
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wave equation 

(1.3) 
｛ご(:),t:；9△u(x,t)＝0, 

(u, 8tu)(x, 0) = (uo(x)，附(x)),

(x,t) ED x (0,oo), 

(x, t) E 8D x (0, oo), 

XE  D, 

where O is an exterior domain of a star-shaped obstacle in恥3. She introduced the 

Poisson equation△h=附 andthe auxiliary problem 

(1.4) 
{?，(：)，t];9△x(x,t) ＝0, 

(x, OtX)(x, 0) = (h(x), ua(x)), 

(x, t) ED x (0, oo), 

(x, t) Eぬ X (0, oo), 

XE  D. 

Then one can find the relation恥＝ u.This relation provides that the energy identity 
for x can be regarded as the L2-estimate of u: 

llu(t) 11r2(oiさ||OtX(t)llr2(fl)+ IIVx(t)||;知)さ ||Uo||;叩)＋ ||Vh||｝叩）・

This argument suggests that an L2-estimate of solutions to the wave equation can be 

observed via the energy estimate for the "primitive" of the solution as the one of the 
wave equation. 

Later, in Ikehata-Matsuyama [4], they developed the above "Morawetz's method" 

for the damped wave equation in N-dimensional exterior domain (N 2 2) via the 
following auxiliary problem 

｛応(x,t) —△x(x,t) ＋m(x,t) ＝附(x)，（x,t)E 9 x (0,OO）， 

(1.5) < x(x, t) = 0, (x, t) E 80 X (0, oo), 

(X, OtX)(x, 0) = (0, ua(x)), x E 0. 

The advantage of the technique in [4] is to avoid the analysis of the Poisson equation 

△h = u1, which depends on the structure of the fundamental solution. From this 
viewpoint, Ikehata-Nishihara [5] employ the modified version of "Morawetz's method" 
to the abstract Cauchy problem (1.1) to prove the diffusion phenomena. More precisely, 
in [5], the following modification is used: 

『'（~]: ;u(t) = -u'(t), t E (0, oo), 
U(O) = 0. 

In that case, one can have u(t) = e-tA(u0＋附）＋U'(t),where (e―tA応0stands for the C,。―
semigroup generated by -A. A suitable energy estimate for U combined with the above 
decomposition provides estimates for diffusion phenomena. We refer Chill-Haraux [1] 
for a further detailed discussion based on the spectral analysis. 

The asymptotic expansion of solutions to (1.2) with n =賊N has been dealt with 
in [11]. The strategy in [11] heavily depends on the knowledge of the Fourier analysis, 
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but (one of) the expansion is written in term of the heat semigroup et△ as 

1 
[M/2] [M/2]-j 

u(t) ~ i I: I: 叫—t)パー△）勾十k△叫。
j=O k=O 

[M/2] [M/2]-j [M/2]-j-k 

ここ区 aJ,K約 (-t)パ—△)勾十k+Ret△
1 

j=O k=O £=0 

- e (ぅuo+ u1) 

where aj,k and/3£ are the appropriate constants (determined through the Taylor expan-

sion for the Fourier symbol of the solution map). This expansion seems to be reasonable 
from the viewpoint of an abstract framework in Hilbert spaces. 

In the present paper, an alternative framework for the asymptotic expansion for 

(1.1) via energy methods with a decomposition is proposed. This part is based on 

[10]. Incidentally, we have found a technique applicable to the following singular limit 

problem of the abstract Cauchy problem 

(1.6) ｛eu:＇（t) ＋Auc(t) ＋叫(t)= 0, t E (0,oo), 

(u,:,外）（0)= (uo，妬）

with the parameter c > 0. This part is based on the joint work [6] with Professor Ryo 

Ikehata (Hiroshima University). The problem is to analyse the behavior of solution u6 

when c tends to 0. An expected limit problem can be seen as 

(1.7) 
｛知(t)＋砂(t)= 0, t E (0, oo), 

u(O) = u。
which seems to be not reasonable if Au0十附＃ 0.This kind of problem has been dealt 

with in Kisynski [7] via the spectral analysis. In [7], it is proved the following. 

Theorem 1.1 (Kisynski [7]). Let u0 be the solution of (1.7). Then 

{:|妬(t)-e-tAUo||H = 0(e1/2) が(u。濯1)E D(A1/2) X H, 

II砂(t)+ Ae―tAuo -e―*(Auo+祖)|IH= O(c112) if (uo，祖） ED(A312) x D(A叫

as E:→ +0. 
The factor e―t/0(Au0+u1) is so-called the initial-layer which bridges the gap between 

(1.6) and the limit problem (1.7) (for the general theory for singular limit problems with 

boundary layer, see e.g., the book of Lions [8]). Ikehata discussed in [3] the singular 

limit problem (1.6) from the viewpoint of the (modified) Morawetz's method explained 

above. Although, in Chill-Haraux [2] the analysis of the singular limit problem has 

been developed by the spectral analysis, in the connection explained above, we shall 

explain how to apply the decomposition in the idea of asymptotic expansion to the 

singular limit problem (1.6). 
This paper is organized as follows. In Section 2, a decomposition of solutions to 

the abstract second order differential equations is explained. In Section 3, we give the 
idea of asymptotic expansion of solutions to (1.1) and the (successive) construction of 

each asymptotic profiles via the decomposition. The verification is done by the energy 

method. In Section 4, we treat (1.6) from the viewpoint of our decomposition. 
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2 A decomposition lemma 

Here we introduce the following abstract Cauchy problem with inhomogeneous term: 

(2.1) 
{ew”(t) ＋Aw(t)＋w'（t) ＝F(t)，t E (0,OO）， 

(w,w')(O) = (wo,w1), 

where c > 0, (w0,w1) E D(A1i2) x Hand FE  C([O,oo);H). Then we can prove the 
following decomposition for w. 

Lemma 1. Let w be the solution of (2.1) for E: > 0. Set v and U as the respective 
solutions to the following problems: 

(2.2) 

(2.3) 

｛が(t)＋Av(t) ＝ F(t)，t E (0,00）， 

v(O) = Vo・

{cU"（t)＋AU(t)＋U'（t) ＝ -V'（t)，tE (0,00）， 

(U, U')(O) = (D;。，に），

where v0 E D(A1l2) and (U0,広） ED(A) X D(A1l2). If 

Vo+ cU1 = wo, U1 + Au;。=-W1, 

then one has 
w(t) = v(t) + EU'(t). 

Proof. By a suitable approximation, we can assume without loss of generality that v0, 
u。andU1 are regular enough. 

Put w = v +EU'. Then we easily have心(0)= v0 + EU1 = w0. The equation in (2.3) 
gives 

心'=v'+EU" = -(AU+ U') 

which yields w'(O) = -(AD;。＋駅） ＝w1. Moreover, one can show by the equation in 
(2.2) that 

(cw'+ w)'= -(EAU -v)'= -EAU'-Av+ F =-Aw+ F. 

The uniqueness of solutions to (2.1) provides面＝ w. ロ

Rema成 2.1.In Ikehata-Nishihara [5], the decomposition w = v + U'as also used as 
explained in Introduction. In [5], U was regarded as the solution of the first order 
equation U'+AU= -u'(t) which includes u itself in the inhomogeneous term. From 
this viewpoint, the possibility of a further decomposition cannot seen. 

The merit of this decomposition is the following. The problem of U has the same 
structure as the one of w. Therefore we can successively apply Lemma 1 to the remain-
der term in the following way: 

w = v + sU'= v + s(v. + su;)'= v + s(v. + s(v.. + sUし）＇）＇＝．．．
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which suggests the expansion 

W = V +c:v: +ぎv~し＋・・・

in some sense. This consideration will be used in the proof of asymptotic expansion 

(c: = 1) and also in the proof of singular limit problem (0 < c < 1). 

3 Asymptotic expansion 

Here we give a successive derivation of arbitrary order of the asymptotic profiles of the 

solution u to (1.1). To shorten the notation we set Uo = Uo十附． ApplyingLemma 1 

with (v0, Ui。， U1)= (u0, 0, -u1) to (1.1), we first have u =Vo+ U{ with 

(3.1) 

(3.2) 

｛げ(t)＋A%（t)＝0, tE (0,OO）， 

Vo(O) =叫

｛賃(t)＋AUl(t)＋U{（t)＝-VJ(t)，tE(0,OO）， 

(U1, U{)(O) = (0, -u1). 

We can find the well-known representation of the first asymptotic profile Vo(t) = e-tA叫．
Then we apply Lemma 1 with（一附，0,附） to(3.2), we secondly have U1 =Vi+ U~ with 

(3.3) 

(3.4) 

{w(t)＋Aい(t)＝-W(t) ＝Ae-tAu;，tE (0,OO）， 

½(O) ＝一附・

｛賃(t)＋叫(t)＋U;（t)＝-V1’(t)，tE (0,OO）， 

(U2,U似）（0)= (0，附）．

The problem (3.3) gives ½(t) = -e―tA附＋ tAe―tAu~ which suggests that the second 

asymptotic profile is given by 

V{(t) = Ae―tA附十 Ae―tAu~ -tA2e-tAu~. 

As in the same way, we successively determine Vm (m 2'. 2) by the respective solutions 
of the following problems 

(3.5) 
｛見(t)＋AVm(t)＝-Vi-1(t)，tE (0,OO）， 

Vm(O) = (-lr附・

Then by induction, we can verify the following representation of Vm form EN. 

Definition 1. Form EN, define 

vm(t） ＝ （ーl)m［言(;□11)（一：↑叫—tA叫＋ （ーl)mド (m;-1) （-!］心—tAU1] ，
note that Vm satisfies (3.5). 
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Moreover, by the direct calculation we reach the representations of号岳 whichare 
nothing but the representation of all asymptotic profiles of the solution u to the problem 

(1.1). 

Definition 2. Form EN  U {O}, define如 as

疇）＝ e―tA叫

加 (t)＝Am 図（二_1,) （一：↑喜—,A叫十 t(2：：：十＿K1) （-;叫-tAUll

Then the following assertion holds, which describes the asymptotic expansion of 

solutions to the damped wave equations. 

Theorem 3.1 ([10]). Assume (u0，附） E [D(An＋い］2for some n E N. Let u be the 

solution of (1.1) and let（叫）mENu{o}be given in definition 2. Then there exists a 
positive constant Cn > 0 such that for every t：：：：：〇，

u(t)―ど加(t) ：：：：： C叫＋ ttn-½ (lluollD(An十})+ ||附 ||D(An+½)).
m=O IIH 

Since for every m = 0, 1,..., n, one can find the following estimate for可五1 as 

llum(t)IIH：：：：：でm(l+ t)-m(||吋||D(Am)+||u1IID（か））

for some Cm, we can say that加 issurely the m-th order asymptotic profile of the 
solution u to (1.1). 

Here we already have found the decomposition 

dn+1Un+1 
u(t) ＝と叫(t)+~(t)dtn+l 

m=O 

where Un+l is the solution of 

(3.6) 
｛犀(t)＋AUn+1(t)＋誓(t)＝ -V;(t)，t E (0,00）， 

(Un+l, U~+l) (0) = (0, (-1 r+l附）．

Via the energy method, we can prove Theorem 3.1. To achieve this, we need to control 
the inhomogeneous term -V~ (given by the operator A and the C,。-semigroupe―tA). 
The following b邸 icestimate for the analytic semigroup e―tA is crucial. 

Lemma 2. If f EH, then for every n EN  U {O} and t 2 0, 

(3.7) lie―tA fll2十□1tsnllA吋le―sAfll2 ds = llf||乞

Moreover, if f E D (A n/2), then there exists a positive constant C { depending only n} 

such that 

1t(l + stllA悶le―sA1112 ds S C(lllll2+IIAn/21112). 

゜
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Sketch of the proof of Theorem 3.1. We only demonstrate the us叫 energyestimate for 

Un+l・ To simplify the notation, we use U = Un+l and V = Vn. The computation is the 

following: 

d 訓|A112Ullt+ IIU'＋噂］ ＝2(U', AU) H + 2(U" + U', U'+ U) H 

= 2(U',AU)H + 2(-AU -V', U'+ U)H 

= -2IIA112u||t-2(V', U')H―2(V', U) H 

::; -IIA112u||》＋ ||U'||t+IIA訂協＋ IIA112v||t,

羞[IIA112u11t+ IIU'llt] = 2(u', u" + Au) H 

= -2111/'llt -2(U', V') H 

= -IIU'llt + IIAV||t, 

where we have used the equation in (3.6) and the fact V'= AV for some V. These 
inequalities imply that 

d "Jt [(4 + t) (IIA112Ullt + IIU'llt) + 2IIA112Ullt + 2IIU'＋噂］
三ー(1+ t)IIU'llt -llA112u||i + (6 + t) 11Av11t + 211A112v11t. 

The integrability of (1 + t) IIAVII分andIIA1l2v11沿(byLemma 2) shows the estimate 

悶『((1+ t)IIU'(t)llt) + 100 (1 + t)IIU'(t)||kdt < +oo, 

゜ dn+iu 
which is the end of estimate for U'. To reach the estimate for ~, we argue by dtn+l' 
induction with a similar energy method for聖(£ = 1,... n) by computing the derivative 

of 

(ae + t）況十1(IIAl/2皇 1:+11~ >
(ae + t戸(IIAl/2がu 2 +|が+1u dtu 2 

dt[ H dt[＋1十 dt£ し）
with suitable positive constants ac. As a result, we obtain 

sup (（l +t)2n+1 |dn+1U(t) 2) < +00 
tこo dtn+1 H 

which is the desired estimate. 口

4 Singular limit problem 

The content of this section is based on [6]. The problem in this section is the singular 

limit problem (1.6). From the viewpoint of the decomposition in Lemma 1, we reprove 
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Theorem 1.1. It should be noticed that if we proceed the same strategy in Section 3 for 

the singular limit problem (1. 7), then we will apply Lemma 1 with (u0 + E附，0,一附）．
This implies 

lluc(t) -e―tA(uo + rn1)IIHさCc:112(lluo IID(A112) + llu1 IID(A'/2)) 

which is properly weaker than the first assertion in Theorem 1.1. In the other words, 
we cannot deal with the initial data (u。墨1)in the energy space D(A112) x H in this 
treatment. 

To fill the gap, we introduce the resolvent operator J0 = (l+c:A)-1, that is, h = J0g 

is the solution of the equation h+c:Ah = g. Then we apply Lemma 1 with (v0, Ui。,Uリ＝
(uo + EJ0u1, -EJ0u1, -J0u1). This enables us to find the relation U0 = V0 +幼し「~ with 

(4.1) 

(4.2) 

｛砂(t)＋Ave(t) ＝ 0, t E (0, OO）， 

叫0)= u。+cJc附，

{eu['（t)＋AUe(t) ＋ U;(t) ＝―砂(t)= Av0(t), 

(Uc,切）（0)= (-d0uぃーJ凸）．

t E (0,oo), 

Since the resolvent equation shows the estimate 

IIJegllt + cllA112 Jeg||〗さ ||g|| わ,

the following estimate for the solution V6 = e―tA(u0 + sJ0u1) of (4.1) holds via Lemma 

2, 2100 IIA廷 (t)||;dts|A1/2廷 (O)||］s||A1/2Uo|m+c1/2||u晶）2．

゜
（ 

Moreover, by the equation in (4.2) we have 

羞(sllU'(t)||い ||Alf2U(t)I位） ＝2(U'(t), sU"(t) + AU(t)) H 

= 2(U'(t), -U'(t) + A廷 (t))H 

1 
< -||Avc(t)||》-2 

which implies 

sllU'（鳴＋ IIA112U(t)lltS cllJcu1|仇+星||Al/2Jf;叫協＋~(IIA112uollH + s112llu1IIH『
:::; ~ (IIA112uollH + s112lluillH r. 

Consequently, we obtain the first estimate in Theorem 1.1: 

llu(t) -e―tAuollH S llu(t)一覧(t)IIH + clle―tA Jcu1IIH 

= cllU'(t)IIH + clle―tA Jcu1IIH 

5 
S ~ (s112 IIA112uollH + cllu庫）．-2 
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For the second estimate for (u0，祖） ED(A312) x D(A1i2), we divide the solution Ue: as 

Ue: = u1e: + u2e: with 

(4.3) 

(4.4) 

{c叱(t)＋A匹 (t)＋ uし(t)＝ 0, 

(u10, uし）（0)= (uo, -Auo), 

{eu公(t)＋ A匹 (t)＋ U公(t)= 0, 

(u20, u羞）（0)= (O,g), 

t E (0, oo), 

t E (0, oo), 

where we put g = Au。+u1for short. Since typical terms related to the initial layer 
do not appear in the solution u10 of (4.3), we shall only explain the strategy for the 

analysis of the other solutio~ u20. By using Lemma 1 with (cJ0g, -EJ0g, -J0g) to (4.4), 

we have匹＝ Ee-tAJ0g + EU.公with

(4.5) 

Then setting 

{efj羞(t)＋瓜（t)＋仇(t)＝ cAe―tAJ0g, t E (0, oo), 

(ff2c,仇）（0)= (-deg, -Jog). 

匹 (t)= -2e―tAJ0g + tAe―tAJ6g 

(in view of the same manner in Lemma 1), we find that U20 =瓜— e四 satisfies

(4.6) 
{eu羞(t)＋AU叫t）＋は（t）＝—心(t), t E (0, oo), 

(U2c, U公）（0)= (c:Jcg, -g). 

This suggests the relation U2,: + u2,: = sW2,:, where w2,: is the solution of 

(4.7) 
{eW羞(t)＋AW瓜t)＋w公(t)=—V;~(t), t E (0, oo), 

(W2t:, W幻(0)= (J0g, 0). 

Consequently, connecting the above decomposition, we arrive that 

叫 t)= se―t闊g+s仇(t)

=ce―tA Je:g + E:以(t)+ sU~0(t) 

=ce―tA Je;g + E:以(t)-c心 (t) ＋召W~e;(t)

which can be regarded as the first order differential equation for u20. By estimating 

W公viathe energy method and solving this equation, we can reach 

Theorem 4.1 ([6]). Let u20 be the solution of (4.4). Then there exists a positive 
constant C such that for every t ~ 0, 

llu20(t) -s(e―tAg-e―tfe:g)IIHさCs3/2IIA1/2gllH・

Although the estimate in Theorem 4.1 differs from the second estimate in Theorem 
1.1, it can be seen (and can be verified) that the derivative of the profile (of order c) 
satisfies 

d -［e(e―tAg-e―*g)] = -c:Ae―tAg+ e―tfcg = e―t/eg + 0(e) 
dt 

which is nothing but the initial layer term found by Kisynski. 
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