$H^2(ds)$ -Sobolev gradient flow for the modified elastic energy

東北大学大学院理学研究科 岡部 真也 SHINYA OKABE Mathematical Institute, Tohoku University

1 Introduction

The paper is devoted to a $H^2(ds)$ -Sobolev gradient flow for a functional defined on closed curves. We shall announce a result ([20]) which is a joint work with P. Schrader of Murdoch University.

In this paper, we consider a gradient flow for the modified elastic energy defined on closed curves:

$$\mathcal{E}_{\lambda}(\gamma) := E(\gamma) + \lambda^2 L(\gamma)$$

with

$$E(\gamma) := \frac{1}{2} \int_{\gamma} |\kappa|^2 \, ds, \qquad L(\gamma) := \int_{\gamma} \, ds,$$

where $\gamma : \mathbb{R}/2\pi\mathbb{Z} := S^1 \to \mathbb{R}^n$, $n \geq 1$, $\lambda \neq 0$, and s and κ denote the arc length parameter and the curvature of γ , respectively. The functional E is well-known as the elastic energy or the Euler-Bernoulli bending energy, and $L(\gamma)$ denotes the length of γ . The critical points of E with length constraint is called *elastica*. One of tool of analysis on elastica is to construct gradient flows towards elastica. In 1985, taking advantage of the fact that the energy E can be regarded as the Dirichlet energy of the tangent vector of the curves, J. Langer and D. A. Singer [9, 10] considered a H^1 -gradient flow for E, which is a second order parabolic equation with a nonlocal term. The work by [9] was extended into L^2 -gradient flows for E and have been studied by many researchers (e.g., see [2, 3, 5, 8, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25] and references therein). The purpose of this paper is to give a new gradient trajectories to elastica.

In this paper we consider the Cauchy problem on the $H^2(ds)$ -gradient flow for the functional \mathcal{E}_{λ} defined on curves in \mathbb{R}^n :

(GF)
$$\begin{cases} \partial_t \gamma = -\nabla_{H^2(ds)} \mathcal{E}_{\lambda}(\gamma), \\ \gamma(\cdot, 0) = \gamma_0(\cdot). \end{cases}$$

Here $\nabla_{H^2(ds)} \mathcal{E}_{\lambda}(\gamma)$ denotes the $H^2(ds)$ -gradient of \mathcal{E}_{λ} at γ , which is defined in Section 2. We consider initial curves in the class

$$\mathcal{I}^{2}(S^{1}, \mathbb{R}^{n}) := \{ \gamma \in H^{2}(S^{1}, \mathbb{R}^{n}) \mid |\gamma'(u)| > 0 \text{ in } S^{1} \},\$$

which is the set of all regular closed curves in $H^2(S^1, \mathbb{R}^n)$. The main result of this paper is stated as follows:

Theorem 1.1. Let $\gamma_0 \in \mathcal{I}^2(S^1, \mathbb{R}^n)$. Then problem (GF) possesses a unique global-in-time solution $\gamma \in C^1([0,\infty), \mathcal{I}^2(S^1, \mathbb{R}^n))$. Moreover, the solution γ converges to an elastica as $t \to \infty$ in the $H^2(ds)$ -topology.

For gradient flows for the modified elastic energy, it is now a standard result that the flow has a unique global-in-time solution and that the solution converges to an elastica along a time sequence, i.e., the solution sub-converges to an elastica as $t \to \infty$. The point is how to extend sub-convergence to full limit convergence. In general, L^2 -gradient flow and H^1 -gradient flow for the modified elastic energy converge to an elastica as $t \to \infty$ under a translation or reparametrization. On the other hand, Theorem 1.1 asserts that the solution of (GF) converges to an elastica as $t \to \infty$ without any additional modification. This is one of the contributions of Theorem 1.1.

2 Formulation and preliminary

In this section, first we define the $H^2(ds)$ -gradient flow for the functional \mathcal{E}_{λ} .

For $\gamma \in \mathcal{I}^2(S^1, \mathbb{R}^n)$, we define the $H^2(ds)$ -inner product by

$$\langle u, v \rangle_{H^2(ds)} := \int_0^{L(\gamma)} \sum_{j=0}^2 \partial_s^j u(s) \cdot \partial_s^j v(s) \, ds, \quad u, v \in \mathcal{I}^2(S^1, \mathbb{R}^n),$$

where s denote the arc length parameter of γ . We denote by $\nabla_{H^2(ds)} \mathcal{E}_{\lambda}(\gamma)$ the $H^2(ds)$ -gradient of \mathcal{E}_{λ} at γ , which is defined by

$$\frac{d}{d\varepsilon} \mathcal{E}_{\lambda}(\gamma + \varepsilon \varphi) \Big|_{\varepsilon = 0} = \langle \nabla_{H^2(ds)} \mathcal{E}_{\lambda}(\gamma), \varphi \rangle_{H^2(ds)} \quad \text{for all} \quad \varphi \in H^2(S^1, \mathbb{R}^n)$$

Since

$$\frac{d}{d\varepsilon}\mathcal{E}_{\lambda}(\gamma+\varepsilon\varphi)\Big|_{\varepsilon=0} = \int_{0}^{L(\gamma)} \nabla_{L^{2}(ds)}\mathcal{E}_{\lambda}(\gamma)\cdot\varphi\,ds$$

with

$$\nabla_{L^2(ds)}\mathcal{E}_{\lambda}(\gamma) = 2\partial_s^4\gamma + 3\partial_s(\kappa^2\partial_s\gamma) - \lambda^2\partial_s^2\gamma,$$

the $H^2(ds)$ -gradient $\nabla_{H^2(ds)} \mathcal{E}_{\lambda}(\gamma)$ is given by the solution of

$$\partial_s^4 \Phi - \partial_s^2 \Phi + \Phi = \nabla_{L^2(ds)} \mathcal{E}_{\lambda}(\gamma)$$

with C^2 -periodic boundary condition. Let $G = G(s, \tilde{s})$ be the Green function, i.e., the solution to

$$\partial_s^4 G(s,\tilde{s}) - \partial_s^2 G(s,\tilde{s}) + G(s,\tilde{s}) = \delta(s,\tilde{s})$$

which is C^2 -periodic, where δ denotes the Dirac delta function. The precise form of G is written as follows:

$$G(x,y;\gamma) = \frac{A(L(\gamma) - |x - y|, |x - y|)}{\beta(L(\gamma))}, \quad 0 \le x, y \le L(\gamma),$$

where

$$A(x_1, x_2) = \sinh \frac{\sqrt{3}x_1}{2} \cos \frac{x_2}{2} + \sinh \frac{\sqrt{3}x_2}{2} \cos \frac{x_1}{2} + \sqrt{3} \cosh \frac{\sqrt{3}x_1}{2} \sin \frac{x_2}{2} + \sqrt{3} \cosh \frac{\sqrt{3}x_2}{2} \sin \frac{x_1}{2},$$
$$\beta(\ell) = 2\sqrt{3} \left(\cosh \frac{\sqrt{3}\ell}{2} - \cos \frac{\ell}{2} \right).$$

Then the $H^2(ds)$ -gradient of \mathcal{E}_{λ} is derived as follows:

$$\nabla_{H^2(ds)} \mathcal{E}_{\lambda}(\gamma) = \int_0^{L(\gamma)} G(s, \tilde{s}) \nabla_{L^2(ds)} \mathcal{E}_{\lambda}(\gamma)(\tilde{s}) d\tilde{s}$$

= $2\gamma(s) - \int_0^{L(\gamma)} \left[2G(s, \tilde{s})\gamma(\tilde{s}) + G_{\tilde{s}}(s, \tilde{s})\gamma_{\tilde{s}}(\tilde{s}) \left(3\kappa(\tilde{s})^2 + 2 - \lambda^2 \right) \right] d\tilde{s},$

and then the $H^2(ds)$ -gradient flow for \mathcal{E}_{λ} is written as

$$\partial_t \gamma(s,t) = -2\gamma(s,t) + \int_0^{L(\gamma)} \left[2G(s,\tilde{s})\gamma(\tilde{s},t) + G_{\tilde{s}}(s,\tilde{s})\gamma_{\tilde{s}}(\tilde{s},t) \left(3\kappa(\tilde{s},t)^2 + 2 - \lambda^2 \right) \right] d\tilde{s}.$$

We define the $H^2(ds)$ -Riemannian distance on $\mathcal{I}^2(S^1, \mathbb{R}^2)$ as follows:

$$\operatorname{dist}(\alpha,\beta) := \inf_{p \in P} \int_0^1 \|p'(t)\|_{H^2(ds_p)} dt, \quad \alpha, \, \beta \in \mathcal{I}^2(S^1, \mathbb{R}^2),$$

where s_p denotes the arc length parameter of p, and

$$P := \{ p \in C^1([0,1], \mathcal{I}^2(S^1, \mathbb{R}^n)) \mid p(0) = \alpha, \ p(1) = \beta \}.$$

By [7, Theorem 1.9.5], since $H^2(ds)$ is a strong Riemannian metric, the distance function defines a metric on $\mathcal{I}^2(S^1, \mathbb{R}^n)$ whose topology coincides with the H^2 -topology.

Lemma 2.1 ([1], Lemma 4.2). Let $B_r^{\text{dist}}(\gamma_0)$ be the open ball with radius r > 0 with respect to the $H^2(ds)$ -Riemannian distance.

(i) Given $\gamma_0 \in \mathcal{I}^2(S^1, \mathbb{R}^n)$ there exist r > 0 and C > 0 such that

$$\operatorname{dist}(\gamma_1, \gamma_2) \le C \|\gamma_1 - \gamma_2\|_{H^2}$$

for all $\gamma_1, \gamma_2 \in B_r^{\text{dist}}(\gamma_0)$.

(ii) Given $B_r^{\text{dist}}(\gamma_0) \subset \mathcal{I}^2(S^1, \mathbb{R}^n)$ there exists C > 0 such that

$$\|\gamma_1 - \gamma_2\|_{H^2} \le C \operatorname{dist}(\gamma_1, \gamma_2)$$

for all $\gamma_1, \gamma_2 \in B_r^{\text{dist}}(\gamma_0)$.

It is known that the metric space $(\mathcal{I}^2(S^1, \mathbb{R}^n), \text{dist})$ possesses the completeness. The completeness plays an important role in the proof of Theorem 1.1.

Proposition 2.1 ([1], Theorem 4.3). The space $(\mathcal{I}^2(S^1, \mathbb{R}^n), \text{dist})$ is a complete metric space.

3 Proof of Theorem 1.1

We start with the existence of local-in-time solutions of problem (GF). The $H^2(ds)$ gradient flow for \mathcal{E}_{λ} can be regarded as an ODE in $H^2(S^1, \mathbb{R}^n)$. In fact, the $H^2(ds)$ gradient flow is written as

$$\begin{aligned} \partial_t \gamma(u,t) &= -2\gamma(u,t) + \int_0^1 \Big[2G(s,\tilde{s};\gamma)\gamma(\tilde{u},t) |\partial_{\tilde{u}}\gamma(\tilde{u},t)| \\ &+ \frac{1}{|\partial_{\tilde{u}}\gamma(\tilde{u},t)|} \partial_{\tilde{u}}G(s,\tilde{s};\gamma)\partial_{\tilde{u}}\gamma(\tilde{u},t) \big(3\kappa(\tilde{u},t)^2 + 2 - \lambda^2 \big) \Big] \, d\tilde{u} \\ &=: F(\gamma), \end{aligned}$$

where

$$s = \int_0^u \left| \partial_{\xi} \gamma(\xi, t) \right| d\xi, \qquad \tilde{s} = \int_0^{\tilde{u}} \left| \partial_{\xi} \gamma(\xi, t) \right| d\xi.$$

Thus the existence of local-in-time solutions of (GF) is proved by the generalized Picard–Lindelöf Theorem (e.g., see [26, Theorem 3.A]). In fact, we can verify:

Lemma 3.1. Let $\gamma_0 \in \mathcal{I}^2(S^1, \mathbb{R}^n)$ and $b = \frac{1}{2} \min_{u \in S^1} |\gamma'_0(u)|$. Then there exists a positive constant C depending on γ_0 such that

$$||F(\gamma)||_{H^2} \le C, \quad ||DF_{\gamma}||_{(H^2)^*} \le C,$$

for all $\gamma \in H^2(S^1, \mathbb{R}^n)$ with $\|\gamma - \gamma_0\|_{H^2} < b/C_S$, where C_S denotes the Sobolev constant of the imbedding $H^1(S^1) \subset C^{\frac{1}{2}}(S^1)$.

Then we have:

Proposition 3.1. Let $\gamma_0 \in \mathcal{I}^2(S^1, \mathbb{R}^n)$. Then there exists T > 0 such that problem (GF) possesses a unique solution in $C^1([0,T), \mathcal{I}^2(S^1, \mathbb{R}^n))$.

On the proof of the existence of global-in-time solutions, the following lemma plays an important role: **Lemma 3.2.** Assume that $\gamma \in C^1((a, b), \mathcal{I}^2(S^1, \mathbb{R}^n))$ satisfies

(3.1)
$$\int_{a}^{b} \|\partial_{t}\gamma\|_{H^{2}(ds)} dt < \infty$$

Then $\lim_{t\uparrow b} \gamma(t)$ exists in $(\mathcal{I}^2(S^1, \mathbb{R}^n), \operatorname{dist}).$

Proof. Fix a monotone increasing sequence $\{t_j\} \subset (a, b)$ such that $t_j \to b$ as $j \to \infty$ arbitrarily. We claim that $\{\gamma(t_j)\}$ is Cauchy in $(\mathcal{I}^2(S^1, \mathbb{R}^n), \text{dist})$. Suppose not, there exists $\varepsilon > 0$ such that for all $N \in \mathbb{N}$ we find j > k > N satisfying $\operatorname{dist}(\gamma(t_j), \gamma(t_k)) > \varepsilon$. Since

$$\operatorname{dist}(\gamma(t_j), \gamma(t_k)) \leq \int_{t_k}^{t_j} \|\partial_t \gamma(t)\|_{H^2(ds)} \, dt,$$

this clearly contradicts the assumption (3.1). Then, it follows from Proposition 2.1 that $\gamma(t_j)$ converges to some γ_b as $j \to \infty$ in $(\mathcal{I}^2(S^1, \mathbb{R}^n), \text{dist})$. We note that the limit γ_b is unique. In fact, if we find a sequence $\{\tilde{t}_j\} \subset (a, b)$ such that $\gamma(\tilde{t}_j) \to \tilde{\gamma}_b$ as $j \to \infty$ in $(\mathcal{I}^2(S^1, \mathbb{R}^n), \text{dist})$, taking $\{\bar{t}_j\}$ to be the ordered union of $\{t_j\}$ and $\{\tilde{t}_j\}$, we have $\gamma_b = \tilde{\gamma}_b$. Since $\{t_j\} \subset (a, b)$ is arbitrary, we obtain the conclusion.

Then we have:

Proposition 3.2. Let $\gamma_0 \in \mathcal{I}^2(S^1, \mathbb{R}^n)$. Then problem (GF) possesses a unique global-intime solution $\gamma \in C^1([0,\infty), \mathcal{I}^2(S^1, \mathbb{R}^n))$.

Proof. Suppose that $T_{\max} < \infty$. Since γ satisfies the $H^2(ds)$ -gradient flow for \mathcal{E}_{λ} , we have

$$\mathcal{E}_{\lambda}(\gamma(t)) - \mathcal{E}_{\lambda}(\gamma_0) = \int_0^t \frac{d}{d\tau} \mathcal{E}_{\lambda}(\gamma(\tau)) \, d\tau = -\int_0^t \|\nabla_{H^2(ds)} \mathcal{E}_{\lambda}(\gamma(\tau))\|_{H^2(ds)}^2 \, d\tau,$$

and then

$$\int_0^t \|\nabla_{H^2(ds)} \mathcal{E}_{\lambda}(\gamma(\tau))\|_{H^2(ds)}^2 d\tau \le \mathcal{E}_{\lambda}(\gamma_0).$$

This together with Hölder's inequality implies that

(3.2)
$$\int_0^{T_{\max}} \|\partial_t \gamma(\tau)\|_{H^2(ds)} d\tau \int_0^{T_{\max}} \|\nabla_{H^2(ds)} \mathcal{E}_{\lambda}(\gamma(\tau))\|_{H^2(ds)} d\tau \leq \sqrt{T_{\max}} \sqrt{\mathcal{E}_{\lambda}(\gamma_0)}.$$

Combining (3.2) with Lemma 3.2, we find a curve $\gamma_* \in \mathcal{I}^2(S^1, \mathbb{R}^n)$ such that

$$\gamma(\cdot, t) \to \gamma_*$$
 as $t \uparrow T_{\max}$ in $(\mathcal{I}^2(S^1, \mathbb{R}^n), \text{dist}).$

Then we deduce from Proposition 3.1 that the solution $\gamma : S^1 \times [0, T_{\max}) \to \mathbb{R}^n$ can be extended. This clearly contradicts the definition of T_{\max} .

We turn to the proof of full limit convergence of global-in-time solutions to elastica. If one can verify that

(3.3)
$$\int_0^\infty \|\partial_t \gamma(\tau)\|_{H^2(ds)} \, d\tau < \infty,$$

then Lemma 3.2 implies the full limit convergence of solutions of (GF). By the gradient structure of the $H^2(ds)$ -gradient flow, as in the proof of Proposition 3.2, it is easy to show that

(3.4)
$$\int_0^\infty \|\partial_t \gamma(\tau)\|_{H^2(ds)}^2 d\tau = \int_0^\infty \|\nabla_{H^2(ds)} \mathcal{E}_\lambda(\gamma(\tau))\|_{H^2(ds)}^2 d\tau < \mathcal{E}_\lambda(\gamma_0) < \infty.$$

However, the L^2 -integrability does not imply the full limit convergence. One of tool to extend the L^2 -integrability into the L^1 -integrability (3.3) is Lojasiewicz–Simon's gradient inequality. Although the Lojasiewicz–Simon gradient inequality for the L^2 -gradient flow for E or \mathcal{E}_{λ} has been proved (e.g., see [4, 15]), Lojasiewicz–Simon's gradient inequality for the $H^2(ds)$ -gradient flow for \mathcal{E}_{λ} is one of contributions of the paper ([20]).

Theorem 3.1. Let $\sigma \in \mathcal{I}^2(S^1, \mathbb{R}^n)$ be a stationary point of \mathcal{E}_{λ} . Then there exist constants $Z \in (0, \infty)$, $\delta \in (0, 1]$, and $\theta \in [\frac{1}{2}, 1)$ such that if $\gamma \in \mathcal{I}^2(S^1, \mathbb{R}^n)$ with $\|\gamma - \sigma\|_{H^2} < \delta$ then

$$\|\nabla_{H^2(ds)}\mathcal{E}_{\lambda}(\gamma)\|_{H^2(ds)} \ge Z|\mathcal{E}_{\lambda}(\gamma) - \mathcal{E}_{\lambda}(\sigma)|^{\theta}.$$

We prove Theorem 3.1 along the strategy given by [6]. More precisely, we will verify that

- (i) analyticity of \mathcal{E}_{λ} ,
- (ii) $d^2 \mathcal{E}_{\lambda}$ is a Fredholm operator with the index 0.

Similarly to [4] we can verify condition (i). However, a difficulty arises from condition (ii). Indeed, if $\varphi \in \operatorname{Ker}(d^2 \mathcal{E}_{\lambda})$, then any reparametrization of φ also belongs to the space $\operatorname{Ker}(d^2 \mathcal{E}_{\lambda})$. For, problem (GF) and functional \mathcal{E}_{λ} are invariant under any reparametrization. Therefore, in order to prove Theorem 3.1, first we fix a suitable parametrization. Let $H^1_{zm}(S^1, \mathbb{R}^n) := \{\alpha \in H^1(S^1, \mathbb{R}^n) \mid \int_{S^1} \alpha du = 0\}$ and define

$$\Phi: \mathcal{I}^2(S^1, \mathbb{R}^n) \to H^1_{zm}(S^1, \mathbb{R}^n), \quad \Phi(\gamma) := |\gamma_u| - L(\gamma).$$

Then $\Omega := \Phi^{-1}(0)$ is the subset of $\mathcal{I}^2(S^1, \mathbb{R}^n)$ consisting of curves which are parametrized proportional to arc length. For the restricted functional $\mathcal{E}_{\lambda}|\Omega$ we have:

Proposition 3.3. Let $\varsigma \in \Omega$ be a stationary point of \mathcal{E}_{λ} . Then there exist constants $Z \in (0, \infty), \ \delta \in (0, 1], \ and \ \theta \in [\frac{1}{2}, 1)$ such that if $\alpha \in \Omega$ with $\|\alpha - \varsigma\|_{H^2} < \delta$ then

$$\|d(\mathcal{E}_{\lambda}|\Omega)(\alpha)\|_{T_{\alpha}\Omega^*} \geq Z|\mathcal{E}_{\lambda}(\alpha) - \mathcal{E}_{\lambda}(\varsigma)|^{\theta}.$$

Since any $\gamma \in \Omega$ is parametrized by a fixed parameter, we can eliminate the difficulty on condition (ii). Then Proposition 3.3 can be proved along the strategy given by [6]. Combining the Lojasiewicz–Simon gradient inequality in Proposition 3.3 with the estimate

(3.5)
$$\|d(\mathcal{E}_{\lambda}|\Omega)(\alpha)\|_{T_{\alpha}\Omega^{*}} \leq \|d\mathcal{E}_{\lambda}(\alpha)\|_{H^{2^{*}}} \leq C \|\nabla_{H^{2}(ds)}\mathcal{E}_{\lambda}(\gamma)\|_{H^{2}(ds)}$$

Finally, employing Theorem 3.1, we prove full limit convergence of solutions of (GF) to elastica. First we prove the subconvergence of the solution to an elastica γ_* . Then, applying Theorem 3.1, we obtain Lojasiewicz–Simon gradient inequality with respect to the stationary point γ_* . However, in order to apply the Lojasiewicz–Simon gradient inequality to the global-in-time solution of (GF), we have to verify that the global-in-time solution belongs to the H^2 -neighborhood of γ_* for sufficiently large t > 0. To this aim, we prepare the following Palais–Smale type condition for $\mathcal{E}_{\lambda}|\Omega$.

Proposition 3.4. Let $\{\alpha_j\}_j \subset \Omega$ be a sequence of curves such that $\mathcal{E}_{\lambda}(\alpha_j)$ and $\|\alpha_j\|_{L^2}$ are bounded, and $\|d\mathcal{E}_{\lambda}(\alpha_j)\| \to 0$ as $j \to \infty$. Then $\{\alpha_j\}_j$ has a subsequence converging in H^2 .

Then we have:

Theorem 3.2. Let γ be a global-in-time solution to problem (GF). Then there exists a stationary point $\gamma_{\infty} \in H^2(S^1, \mathbb{R}^n)$ such that

$$\gamma(t) \to \gamma_{\infty} \quad in \quad H^2 \quad as \quad t \to \infty.$$

Proof. Let

$$\alpha(t) := P(\gamma(t)) - \frac{1}{L(\gamma(t))} \int_0^{L(\gamma(t))} \gamma(t) \, ds,$$

where $P(\gamma(t))$ is the arc length proportional reparametrization of $\gamma(t)$. From parametrization and translation invariance of the energy we have

$$\lambda^2 L(\alpha) < \mathcal{E}_{\lambda}(\alpha) = \mathcal{E}_{\lambda}(\gamma) \le \mathcal{E}_{\lambda}(\gamma_0).$$

Moreover, using the Poincaré–Wirtinger inequality, we see that $\|\alpha(t)\|_{L^2}$ is also bounded. From (3.3) there exists a monotone divergent sequence $\{t_j\}$ such that

$$\|\nabla_{H^2(ds)}\mathcal{E}_{\lambda}(\gamma(t))\|_{H^2(ds)} \to 0 \quad \text{as} \quad j \to \infty.$$

This together with (3.5) implies that

$$\|d\mathcal{E}_{\lambda}(\alpha(t_j))\|_{(H^2)^*} \to 0 \quad \text{as} \quad j \to \infty.$$

From now on we abbreviate $\alpha(t_j)$ to α_j . Since $\{\alpha_j\}$ satisfies the assumption in Proposition 3.4, there exists a subsequence, still denote $\{\alpha_j\}$, converging in H^2 to a stationary point α_{∞} . Now by Theorem 3.1 there are constants Z > 0, $\delta \in (0, 1]$, and $\theta \in [\frac{1}{2}, 1)$ such that if $x \in \mathcal{I}^2(S^1, \mathbb{R}^n)$ with $\|x - \alpha_{\infty}\|_{H^2} < \delta$ then

(3.6)
$$\|\nabla_{H^2(ds)}\mathcal{E}_{\lambda}(x)\|_{H^2(ds)} \ge Z|\mathcal{E}_{\lambda}(x) - \mathcal{E}_{\lambda}(\alpha_{\infty})|^{\theta}.$$

Since the $H^2(ds)$ -Riemannian distance and the standard H^2 metric are equivalent, there exist $\tilde{\delta} > 0, r > 0$ such that

$$B_{\tilde{\delta}}^{H^2}(\alpha_{\infty}) \subset B_r^{\text{dist}}(\alpha_{\infty}) \subset B_{\delta}^{H^2}(\alpha_{\infty}).$$

For any $i \in \mathbb{N}$ such that $\alpha_i \in B_{\delta}^{H^2}(\alpha_{\infty})$ we let $\beta_i(t)$ be the $H^2(ds)$ -gradient flow with initial data $\beta_i(t_i) = \alpha_i$. Then due to the uniqueness of the flow, for all $t > t_i$, $\beta_i(t)$ is a fixed (i.e. time independent) reparametrization and translation of $\gamma(t)$, namely

$$\beta_i(t) = \gamma(t) \circ \omega_{\gamma(t_i)}^{-1} - \frac{1}{L(\gamma(t_i))} \int_0^{L(\gamma(t_i))} \gamma(t_i) \, ds,$$

where

$$\omega_{\gamma}(u) := \frac{1}{L(\gamma)} \int_0^u |\gamma'(v)| \, dv.$$

Using the isometry property we have

(3.7)
$$\|\nabla_{H^2(ds)}\mathcal{E}_{\lambda}(\beta_i(t))\|_{H^2(ds)} = \|\nabla_{H^2(ds)}\mathcal{E}_{\lambda}(\gamma(t))\|_{H^2(ds)}$$

It follows that the trajectories $\beta_i(t)$ and $\gamma(t)$ have the same $H^2(ds)$ -length. Let $T_i > 0$ be the maximum time such that

$$\|\beta_i(t)\|_{H^2} < \tilde{\delta} \quad \text{for all} \quad t \in [t_i, T_i).$$

Define

$$H(t) := \left(\mathcal{E}_{\lambda}(\gamma(t)) - \mathcal{E}_{\lambda}(\alpha_{\infty}) \right)^{1-\theta}.$$

Then H(t) is positive and monotonically decreasing because $\mathcal{E}_{\lambda}(\alpha) = \mathcal{E}_{\lambda}(\gamma)$. Since the Lojasiewicz–Simon gradient inequality (3.6) holds for $\beta_i(t)$ with $t \in [t_i, T_i)$, we observe from $\mathcal{E}_{\lambda}(\beta_i(t)) = \mathcal{E}_{\lambda}(\gamma(t))$ and (3.7) that

$$-H'(t) = -(1-\theta) \left(\mathcal{E}_{\lambda}(\gamma(t)) - \mathcal{E}_{\lambda}(\alpha_{\infty}) \right)^{-\theta} \frac{d\mathcal{E}_{\lambda}(\gamma(t))}{dt}$$

= $(1-\theta) \left(\mathcal{E}_{\lambda}(\gamma(t)) - \mathcal{E}_{\lambda}(\alpha_{\infty}) \right)^{-\theta} \| \nabla_{H^{2}(ds)} \mathcal{E}_{\lambda}(\gamma(t)) \|_{H^{2}(ds)}^{2}$
 $\geq (1-\theta) Z \| \nabla_{H^{2}(ds)} \mathcal{E}_{\lambda}(\gamma(t)) \|_{H^{2}(ds)}.$

Integrating the inequality over $[t_i, T_i)$ we get

$$(1-\theta)Z\int_{t_i}^{T_i} \|\nabla_{H^2(ds)}\mathcal{E}_{\lambda}(\gamma(t))\|_{H^2(ds)} dt \le H(t_i) - H(T_i)$$

Now if we fix a $j \in \mathbb{N}$ such that $\|\alpha_j - \alpha_\infty\|_{H^2} < \tilde{\delta}$ and let $W := \bigcup_{i>j} [t_i, T_i)$, we have

(3.8)
$$\int_{W} \|\nabla_{H^2(ds)} \mathcal{E}_{\lambda}(\gamma(t))\|_{H^2(ds)} dt \leq \frac{H(t_i)}{(1-\theta)Z}$$

In fact, there exists $N \in \mathbb{N}$ such that $\|\beta_N(t) - \alpha_\infty\|_{H^2} < \tilde{\delta}$ for all $t > t_N$. If not, then for each $i \in \mathbb{N}$ there exists $T_i > 0$ such that $\beta_i(T_i)$ is on the boundary of the ball $B_{\tilde{\delta}}^{H^2}(\alpha_\infty)$,

and there exists a subsequence, still denoted $\{t_i\}$, such that the intersection $\bigcap_{i\geq j}[t_i, T_i)$ is empty. By the choice of $\tilde{\delta} > 0$, Lemma 2.1 applies and there is a C > 0, depending only on α_{∞} and r, such that

$$\begin{split} \delta &= \|\beta_i(T_i) - \alpha_{\infty}\|_{H^2} \le \|\beta_i(t_i) - \alpha_{\infty}\|_{H^2} + \|\beta_i(t_i) - \beta_i(T_i)\|_{H^2} \\ &\le \|\alpha(t_i) - \alpha_{\infty}\|_{H^2} + C \operatorname{dist}(\beta_i(t_i), \beta_i(T_i)) \\ &\le \|\alpha(t_i) - \alpha_{\infty}\|_{H^2} + C \int_{t_i}^{T_i} \|\partial_t \gamma(t)\|_{H^2(ds)} \, dt, \end{split}$$

where we have used (3.7). However, then the integral $\int_W \|\nabla_{H^2(ds)} \mathcal{E}_{\lambda}(\gamma(t))\|_{H^2(ds)} dt$ cannot be finite, contradicting (3.8). Thus there exists $N \in \mathbb{N}$ such that $\beta_N(t) \in B^{H^2}_{\tilde{\delta}}(\alpha_{\infty})$ for all $t > t_N$ and therefore

$$\int_{t_N}^{\infty} \|\partial_t \gamma(t)\|_{H^2(ds)} \, dt < \infty,$$

that is, the $H^2(ds)$ -length of $\gamma(t)$ is finite. Hence it follows from Lemma 3.2 that the flow converges in the $H^2(ds)$ -distance, and therefore also in H^2 , where we used Lemma 2.1.

References

- Martins Bruveris, Completeness properties of Sobolev metrics on the space of curves, J. Geom. Mech. 7 (2015), no. 2, 125–150. MR 3356589
- [2] Anna Dall'Acqua, Chun-Chi Lin, and Paola Pozzi, A gradient flow for open elastic curves with fixed length and clamped ends, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 17 (2017), no. 3, 1031–1066. MR 3726834
- [3] _____, Elastic flow of networks: short-time existence result, Journal of Evolution Equations (2020), 1–46.
- [4] Anna Dall'Acqua, Paola Pozzi, and Adrian Spener, The Lojasiewicz-Simon gradient inequality for open elastic curves, J. Differential Equations 261 (2016), no. 3, 2168– 2209. MR 3501845
- [6] Paul M. N. Feehan and Manousos Maridakis, Lojasiewicz-Simon gradient inequalities for analytic and Morse-Bott functions on Banach spaces, J. Reine Angew. Math. 765 (2020), 35–67. MR 4129355
- [7] Wilhelm P. A. Klingenberg, *Riemannian geometry*, second ed., De Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin, 1995. MR 1330918

- [8] Norihito Koiso, On the motion of a curve towards elastica, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr., vol. 1, Soc. Math. France, Paris, 1996, pp. 403–436. MR 1427766
- [9] Joel Langer and David A. Singer, Curve straightening and a minimax argument for closed elastic curves, Topology 24 (1985), no. 1, 75–88. MR 790677
- [10] _____, Curve-straightening in Riemannian manifolds, Ann. Global Anal. Geom. 5 (1987), no. 2, 133–150. MR 944778
- [11] Chun-Chi Lin, L²-flow of elastic curves with clamped boundary conditions, J. Differential Equations 252 (2012), no. 12, 6414–6428. MR 2911840
- [12] Anders Linnér, Some properties of the curve straightening flow in the plane, Trans. Amer. Math. Soc. 314 (1989), no. 2, 605–618. MR 989580
- [13] Anders Linnér, Curve-straightening in closed Euclidean submanifolds, Comm. Math. Phys. 138 (1991), no. 1, 33–49. MR 1108035
- [14] Carlo Mantegazza, Alessandra Pluda, and Marco Pozzetta, A survey of the elastic flow of curves and networks, Milan J. Math. 89 (2021), no. 1, 59–121. MR 4277362
- [15] Carlo Mantegazza and Marco Pozzetta, The Lojasiewicz-Simon inequality for the elastic flow, Calc. Var. Partial Differential Equations 60 (2021), no. 1, Paper No. 56, 17. MR 4218365
- [16] Matteo Novaga and Shinya Okabe, Curve shortening-straightening flow for non-closed planar curves with infinite length, J. Differential Equations 256 (2014), no. 3, 1093– 1132. MR 3128933
- [17] _____, Convergence to equilibrium of gradient flows defined on planar curves, J. Reine Angew. Math. 733 (2017), 87–119. MR 3731325
- [18] Shinya Okabe, The motion of elastic planar closed curves under the area-preserving condition, Indiana Univ. Math. J. 56 (2007), no. 4, 1871–1912. MR 2354702
- [19] _____, The dynamics of elastic closed curves under uniform high pressure, Calc. Var. Partial Differential Equations **33** (2008), no. 4, 493–521. MR 2438744
- [20] Shinya Okabe and Philip Schrader, *Convergence of sobolev gradient trajectories to elastica*, 2023.
- [21] Alexander Polden, *Curves and surfaces of least total curvature and fourth-order flows*, PhD Thesis, Universität Tübingen (1996).
- [22] Fabian Rupp and Adrian Spener, *Existence and convergence of the length-preserving* elastic flow of clamped curves, arXiv:2009.06991 (2020).

- [23] Adrian Spener, Short time existence for the elastic flow of clamped curves, Math. Nachr. 290 (2017), no. 13, 2052–2077. MR 3695810
- [24] Yingzhong Wen, L² flow of curve straightening in the plane, Duke Math. J. 70 (1993), no. 3, 683–698. MR 1224103
- [25] _____, Curve straightening flow deforms closed plane curves with nonzero rotation number to circles, J. Differential Equations 120 (1995), no. 1, 89–107. MR 1339670
- [26] Eberhard Zeidler, Nonlinear functional analysis and its applications. I, Springer-Verlag, New York, 1986, Fixed-point theorems, Translated from the German by Peter R. Wadsack. MR 816732