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In this manuscript we report on results obtained in [Hab+23; NV18] regarding stochastic 

homogenization of networks consisting of elastoplastic springs. The model under consideration 

comes in the form of an evolutionary rate-independent system (ERIS) with random (stationary 

and ergodic) coefficients. As usual in the homogenization of random heterogeneous media, the 

effective properties are defined via statistical averages that, in practice, need to be approxi-

mated. A common approach in mathematical and computational homogenization to tackle this 

difficulty is based on the method of the representative volume element (RVE) approximation, 

see, e.g., [Fey99; Mie02; MTY04; NW19; SH13; Wat+08]. In this approach an approximation 

of the effective properties is obtained by considering a large volume of the random material, the 

so-called RVE, and one expects that by ergodicity converges as the size of the RVE tends to 

infinity. Mathematically it is a challenging problem to prove the convergence of RVEs and to 

obtain optimal bounds on the rate of convergence. The latter is one of the main problems con-

sidered in the field of quantitative stochastic homogenization. In recent years, optimal bounds 

have mainly been found for linear elliptic PDEs (see, e.g., [AKM19; Fis18; GN014; GN015; 

GN020; GOll; G012]), including the system of linear elasticity with strongly correlated ma-

terial properties [GN021]. Only view quantitative results are available for nonlinear elliptic 

systems, such as [AS16; CG23; FN21]. 

The homogenization theory for ERIS, as considered in this report, is less developed: While 

qualitative stochastic homogenization results for various ERIS have been obtained in recent 

years [Heil 7; HS18; NV18], the quantitative theory is still widely open. As we shall outline 

~el°'".:'.n [Hab+23].we _es:ablis~ q~alitat_ive conv~rgence ?f the. RVE approximation for an _E~.IS 
describing a network of elastoplastic springs, and we explore the convergence rates numerically. 

In the following we give a brief description of some of the results obtained in [Hab+23; 

NV18]. Although the results are more general, to simplify the presentation we shall consider 

the simplest setting, namely a two-dimensional network with independent and identically dis-

tributed material properties: Let（訊E)denote the two-dimensional, triangular lattice graph 
with edge set ~ = { e. = ¥g, e) :'e--: g E E0} wher~ E。=｛e1,e2,e~:＝釘十四｝． Each edge e E E 
represents an elastoplastic spring that connects the vertices g and e, and each spring is specified 
by three material parameters (a, h, O"yield) describing the elastic modulus, the hardening param-

eter and the yield stress of the spring. In fact, we assume that these material parameters are 

random variables, and we make the assumption that the random fields (a(e), h(e), O"yieid(e))eEE 

are independent and identically distributed. Furthermore, we assume ellipticity in the sense 

that there exists O <入：：：：： A< oo such that almost surely we have 

入：：：：： a(e),h(e)：：：：： A, 0：：：：：的ieid(e)：：：：： A for all e E E. 

Let O C 配 bea bounded Lipschitz describing the macroscopic domain occupied by the 

rescaled lattice (E訊 cE)with lattice spacing O < c ≪ 1. We describe a state of the lattice by 
y = (u, p) where u denotes the displacement field and p the plastic strain. For simplicity we 
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assume that the displacement vanishes at the boundary of 0. A convenient way to implement 

this is to extend y to the entire lattice by setting it zero outside of 0. This leads to the following 

state space for y = (u, p), 
Ye:= L加(cZ2n 0)2 x碕(cEn 0) 

where L5(cZ2 n 0戸＝ ｛U: cZ2→配： u(x)= 0 for x rf_ O} and L和(cEnO戸＝ ｛p: cE→股：
p(e) = 0 for all e with fo, e} n O = 0}. ½ equipped with the norm 

ll(u,p)IIY, :=心|u(x)l2L lu(x)l2+Llp(e)l2)½ 
eZ2 eZ2 EE 

is a Hilbert space_:_, For _a,_di~placement u and an edge e E cE we define the discrete measure of 
strain 8u(e) := ~- The evolution of the spring network is then modeled by a ERIS le-~I 
of the form 

O E 8Rc（払（t))+Dふ(t,Ye(t)), 

where Ye E W叫0,T; ½) describes the evolution of the state, 

1 
£e(t, y)：＝戸 L (a(e/c)(au(e) -p(e)げ＋h(e/c)p(e)2)-c2区 l(t,x) ・ u(x) 

eEEE xEeZ2 

is an energy functional with loading l, and 

叩 y):= f2 L 疇 1a(e/c)lp(e)I
eEcE 

is a dissipation functional. We understand the system (Y,芯芯） asan ERIS in the spirit of 
[MR15] and appeal to the concept of energetic solutions. 

In [NV18, Theorem 4.10] we prove that as E→0 the ERIS (Y,パら冗0)r -converges to a 
homogenized, continuum model that comes in the form of an ERIS with 

• a state space 

Yhom := H―J(O)d x (L2(0;L2(0)l x L2(0;1名(Q))，糾om=(u,P,Xs), 

where (0, JP') denotes the probability space that is used to model the random coefficients 
(a, h, CJyield) and L即） denotesa space of corrector fields; 

• an energy functional 

Chom(t，糾om):=~la lE[A（几▽:+xs).（凡▽up+Xs)l-f。l(t,x) ・ u(x) dx, 
where A denotes the random, symmetric 3 x 3-matrix defined by 

州）•（:) := ta((o,ら））（d;責＋h((O,e』)PT, d,p E記
Pl ¥P i=l 

• a dissipation functional 

饂 m（Yhom):= L lE[p(w,p)] dx, 
゜where p:配→尺 denotesa random, positively-one-homogeneous density and is defined 

by 
3 

p(v)：＝区叩1a((O,ei)) I叫
i=l 
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We note that the state如omof the homogenized system consists of the displacement u, the 

plastic strain p, and additional variable Xs・ Both, p and Xs are internal variables that describe 

the microscopic configuration of the network. 

Let Yhom = (u,P,Xs) denote the unique solution with initial condition Yhom(O) = 0 to the 
homogenized ERIS. In [Hab+23, Theorem 3.6] we prove that the displacement component u of 

the solution Yhom is the unique solution in W叫0,T; HJ (0)) of the force balance equation 

—• ・びhom(t)= l(t) in O for a.e. t E (0, T) 

where O"hom(t) is given by the hysteretic stress-strain relation 

びhom(t)= Whom [ sym▽Uhom](t). 

Here, Whom : W叫O,T恨 2X2)→w1,1, sym (O,T；記は） isa generalized Prandtl-Ishlinskii hysteresis 
operator that describes the homogenized mechanical properties of the network. It itself is defined 

with help of an ERIS with a very large state space. Its size is comparable to the infinite product 

space露び(0。,lP'。)where(0。,lP'。)isthe probability space that we use to model distribution of 
the triple (a, h直yieict)Tfor a single edge. In view of this, in practice, the hysteresis operator Whom 

needs to be approximated. In [Hab+23, Section 4.2] we introduce an RYE-approximation for 

Whom: Roughly speaking, given a prescribed curve of strains t >--+ F(t) E厨孟， weapproximate 
t →Whom[F](t) by considering the ERIS of the random network (with lattice spacing f = 1) 
restricted to a large box of size L ≫ l with boundary conditions that enforce that the strain 
differs from the prescribed F only by the strain of a periodic displacement. The spatial average 

of the stress tensor of the associated solution then yields an approximation W瓜F]for Whom[F]. 
In [Hab+23, Theorem 4.6] we prove that the RYE-approximation WL converges to Whom as 

L → (X)． 
In contrast to Whom, which is a deterministic operator, the approximation罰 isa random 

operator in the sense that different samples for the random field (a(e),h(e),p(e))eEE lead to a 

different WL, In [Hab+23, Section 6] we numerically explore the random fluctations of WL 

as L→ (X)．We mainly focus on the case where F(t) describes monotone uniaxial loading. 
Numerically we make the interesting observation that the variance of WL decays with the rate 

of the central limit theorem. For the system of linear elasticity with material properties that 

feature a rapid decay of correlations, this behavior is well understood even on the level of rigorous 

proofs. However, it is an interesting open problem to rigorously understand the scaling behavior 

in the case of linear elastoplasticity. 
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