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Abstract 

We prove resolvent Lp estimates and maximal Lp―伍regularityestimates for the heat equation 
with Dirichlet, Neumann and Robin boundary conditions in the half space. Each solution is 
constructed by a Fourier multiplier of x'-direction and an integral of x N-direction. We decompose 
the solution such that the symbols of the Fourier multipliers are bounded and holomorphic. We 
see that the operator norms are dominated by a homogeneous function of order -1 for XN-
direction. The basis are Weis's operator-valued Fourier multiplier theorem and a boundedness 
of a kernel operator. 

Keywords : resolvent estimate, maximal regularity, heat equation. 

1 Introduction 

This paper is concerned with resolvent Lp estimates and maximal Lp―伝 regularityfor the heat 
equation with three types of boundary conditions in the half-space with 1 < p, qく oo.The boundary 
conditions are Dirichlet, Neumann and Robin. The resolvent estimate is used for the generation of 

analytic semigroups, and the maximal regularity is used to solve quasi-linear evolution equations 

such as free boundary problems called Stefan problems. Let n Cか bea domain with three disjoint 
boundaries r D, r N and r R・ We allow that one or two of them are empty. We keep in mind the 

following linear problem; 
8四―△u=f in!1x(O,oo), 

u=hn onrnx(O,oo), 

8四＝ hN onrNx(O,oo), 

au+(38四＝知 onrRx(O,oo),

叫t=O= Uo in !1. 

Here unknowns are u, while f, hn, hN, hR and uo are given functions, Bv =船＝ V・ ▽ withthe 
unit outward normal vector v, and a,(3 ＞ 0. Note that the end-point case (a,(3） ＝ （1,0) in 
Robin boundary condition implies Dirichlet boundary condition and the case (a,(3） ＝ （0, 1) implies 
Neumann boundary condition. Not only this non-stationary heat equation but also the following 
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generalized resolvent problem are analyzed; 
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This resolvent equation is derived from Laplace transform of the equation (1). 

In this paper we do not treat the domain with curved boundaries so that the domain is the 
half-space. However the domain will be allowed more general domains like a bounded domain by 

cut-off techniques and localizations. We do not use such procedures since that is common and the 

analysis of the half space is the most important steps. Instead of them, we consider the problem 

with non-homogeneous data, which is a key to treat non-linear problems. After a reduction to 

f = 0, we consider the solution operator from boundary data h to the solutions u. Although these 
solutions are given by a Fourier multiplier of h(x',O) which is independent of XN-variable, we shall 

use h(x'，訊v)by using an integral. We decompose the symbols of the solution operators into new 

symbols and new independent variables. Since the new symbol of the Fourier multiplier operator 

are bounded and holomorphic, we are able to use Fourier multiplier theorem with the connection to 

Mikhlin conditions. We confirm that the operator norm is dominated by a homogeneous function 

of order -1 in x N. Therefore this shows resolvent estimates by a theorem proved in the paper 

[11]. Note that the new decomposed independent variables become suitable right-hand side of the 

generalized resolvent estimates. Moreover we also get maximal Lp―Lq regularity estimates by the 

same method. There are a lot of technical ideas to get the maximal regularity in the half-space. 

However we emphasize that we do not need such elaborate calculations. The basis is developed by 

a book [18] covering various subjects to harmonic analysis and the maximal regularity. 

As previous works, we refer the paper by Shibata et al. [16, 27]. His method is based on a 

sufficient condition forら（賊，X)-boundednessof Fourier multiplier operators due to Weis [30] in 
terms of R-bounded of the symbols under Xis HT space. For the Stokes equations, there are a lot 
of results, e.g. for model problems with Neumann or free boundary conditions [24, 25, 27], Robin 

conditions [22, 28], two-phase problems [26]. Our method has already used for the Stokes equations 

with various boundary conditions [11, 12] in the half space. Recently we proved the same results 

for the layer domain, which is applied for the Stokes equations with Dirichlet-Neumann boundary 

condition in [13], Neumann-Neumann boundary condition in [14], and for the heat equation with 

various boundary conditions in [15]. 

The structure of the paper is as follows. First we introduce some notations and state our main 

theorems in section 2. Then, in section 3, we prepare some known results. Since the equations are 

inhomogeneous, we transform the equation into homogeneous except for boundary data h. This 

is as usual and is stated in section 4. In section 5, we solve the equations in the half space by 

partial Fourier transforms. Three types of boundary conditions are treated similarly. The solution 

formula is Fourier multiplier type concerned with e―ふ哀呵"N.From so called Volevich's trick, the 
solutions are given by an integral form whose integrands are Fourier multiplier operators which act 

hand枷 h.In the last section 6, we prove the main theorem. We decompose the symbols while 

paying attention to the desired estimates. Resolvent estimate is straightforward from the theorem 

prepared in section 3 and the estimates of e―ふ哀平xNwith complex variables. Maximal regularity 
estimates are also same as resolvent estimates by the prepared sufficient condition. 
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2 Main theorem 

We formulate the resolvent and the non-stationary problems in the half-space. Let認 and闘 be
the half-space and its flat boundary and let Q+ and Qo be the corresponding time-space domain; 

JR~:= {x =(xi,..．←切v)E股NIXN > 0}， 良点：＝｛x = (x', 0) =(xi,..., XN-l, 0) E股N},

Q+：＝畔 x(O,oo), Qo:＝吋 x(O,oo).

The resolvent problem is as follows; 

｛畑—凶＝ fin認，（1)
auー (38匹＝ h on闘．

Here 枷＝~ and a,(32 0 ((a,(3） =I= （0, 0)). The case (a,(3） ＝ （1, 0) implies Dirichlet, and the 
case (a,f3）瓢，1）implies Neumann. 
The non-stationary problem is as follows; 

｛邸—△U=FinQ十 9
au -(3枷 U=H  on Qo. 

(2) 

Given a domain D, Lebesgue and Sobolev spaces are denoted by伝(D)and W{!'(D) with norms 
II・||ら(D)and II ・ llw:『(D)・ Same manner is applied in the X-valued spaces L瓜恥X)and W;'(JR,X). 
For a scalar function f, we use the following symbols; 

▽!=(8if,...,珈f），▽勺＝ （ai切fI i,j = 1,...,N). 

Even though g = (g1,...,gf,) E xN for some N, we use the notations g E X and llgllx as 

区f=1Ilg』|xfor simplicity. Namely, we use e.g. II(!，▽f，▽打）1|ら（D)=区aEN似,|a|冬211a;:f||伝(D)・
Let F and F-1 denote the Fourier transform and its inverse; 

1 
訂］（e）：＝ J即¢叫(x)dx, 戸［g](x):=~Im即戸g(e)de.

Although we usually consider time interval lR+, we regard functions on JR to use Fourier trans-

form. To do so and to consider Laplace transforms as Fourier transforms, we introduce some function 

spaces; 

Lp,O,-ro (JR, X) := {! :囮→ XIe―-rot f(t) Eら（恥X),f (t) = 0 fort < O}, 

w;:o，'YO（股，X):= {f E Lp,O,-ro（恥X)I e―巧ot冴f(t)Eら（恥X),j=l,...,m}, 
for some,o 2 0. Let,C and,C -1 denote two-sided Laplace transform and its inverse, defined as 

.C[f]（入） ＝JOO e―入tf (t)dt =巧→T[e―-ytf](T),
-oo 

£い[g](t)＝云JOO心 (>-)dT= eザ心[g(,+ i-)](t), 
-oo 

where入＝1+ iT E <C. Given s > 0 and X-valued function f, we use the following Bessel potential 
spaces to treat fractional orders; 

H;,o,-ro（恥X):= {!:艮→ XIA訂：＝£□1入18.C[J](>-)](t)E Lp,O,-y(lR,X) for any 12,o}-
Let ~c :=｛入 E<C ¥ {O} I I arg刈< } 1r - c }. We are ready to state our main results. 
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Theorem 2.1 (resolvent Lq estimate). Let O < c < 1r/2 and 1 < q < oo. Then for any入EE釘

fE伝（記）， hE｛匹(Rざ） if /3＝ 0, 
W』（認） if/3＞0,

problem (1) admits a unique solution u E WJ（認） withthe resolvent estimate; 

||（入u，入1/2▽u，▽％）1|伝(Rグ）こ {G||（f，入h，入1/2▽h，守h）||ら（認） if /3 ＝ 0, 
GIi (f, >, 1/2 h,▽h)||ら（詑） if/3＞ O 

for some constants C = C N,q,0,a,/3・

Theorem 2.2 (maximal L砂 qestimate). Let 1 < p, qく ooand 1o 2". 0. Then for any 

F E Lp,O,-ro (JR, Lq（記））， HE｛四，0，70（股，ら（砂）叫，0，70（恥，W点記）） if (3＝ 0, 
H 1/2 p,0,70（良，ら（認））叫，0,-yo（良，Wれ認）） if(3 ＞0, 

problem (2) with U,。=0admits a unique solution U E WJ,0,70（恥伝（認）） nLp,O,-ro (JR, W.ほ（認））
with the maximal L砂 qregula呻ty;

lie叫叫U,A臼／2vu，▽初）1|ら(lR,Lq(JR1:)）:::; { 
GIie―#（F,8直，A戸▽H炉 H)||ら（艮，Lq（認）） if(3＝0, 

C||e―#（F,A戸H，▽H）||ら（恥，Lq（呼）） if(3＞ O 

for any 1 2". 1o with some constants C = CN,p,q,-yo,a,{3• 

3 Preliminaries 

In this section we prepare some theorems which are used later. First we recall a theorem regarding 
the generation of analytic semigroups. 

Theorem 3.1 ([16, Theorem 3.1.8]). Let 1 < q < oo, D(A) CW,知） bea subspace, D(A) C Lq(O (A) c Lq(O) 
be dense, A: D(A)→ L叩） isa linear operator satisfying II Au||Lq(n) S CllullwJ(n) for all u E D(A) 
and the following resolvent estimate hold; there exists O < e < 1T /2 and C > 0 such that E0 C p(A) 
and for any入EE0, f EL氾）， wehave 

||（入u,、>.1/2▽u，▽％）1|ら(n)S Cllf||ら(n), u :=(入-A)―1/(E D(A)). 

Then the operator A generates (a。)-semigroup{T(t)｝をoonら(!1),which satisfies, by letting u(t) := 
T(t)uo for uo E L叩），

u(t) E C1((0, oo), Lq(O)) n c0((0, oo), D(A)) n c0([0, oo), Lq(O)), 
u'(t) = Au(t) (t > 0), 

ll(tu'(t), u, t1/2▽u, t▽%）||ら(O)S C||uo||ら(n),

llu'(t)||ら（n)S Clluollw3cn)・

Moreover, {T(t)}t::o:o can be analytically extended to a sector E汀／2+0and 

T(t)T(s) = T(s)T(t) = T(t + s) (t, s E E1r;2+0), ~ Ii~,,n IIT(t)uo -uollLq(n) = 0. 
ET/＋C3t→O 
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Following this theorem, theorem 2.1 derives the analytic semigroup {T(t)}貶oon Lq（股l/-)whose 
generator A has the domain D(A) ：= ｛U E四（記） 1 au -9恥 U= 0 on闘｝ by setting h = 0. 
This just solves the heat equations with various boundary condition since we are able to take 

a,{3〉0((a,{3)ヂ(0,0)). 
For non-trivial initial data, we have the following lemma. 

Theorem 3.2 ([16, Lemma 3.2.1]). Let 1 < p, qく oo. Then for any uo E (X, D(A)h-1/p,p(C 

B 
2(1-1/p) ;,~-'m(!1)), u(t) = T(t)uo satisfies 

ll(u'，▽％）1|柘(O,oo,Lq(O))-C::: Clluo II B~~-1/p) (fl)" 

This theorem implies that it is enough to consider zero-initial data for maximal regularity 

theorem. 

Next, we consider some sufficient conditions to get Lq e~timate and Lp―Lq estimate. We begin 
with a Fourier multiplier theorem on the whole space. Let均：＝ ｛z E C ¥ { 0} I I arg z I <'f/} U { z E 
C ¥ {O} I 1r -'f/ < I arg zl} for'f/ E (0, 1r /2). 

Theorem 3.3 ([18, Theorem 4.3.9, Proposition 4.3.10]). Let m :炉→ Cbe bounded and halo-n 
morphic for some O <'f/ < 1r /2 then the Fourier multiplier F-1mF is a bounded linear operator on 
伝（良刈 forany 1 < q < oo. 

We prepare a theorem to prove the main theorems concerning the half space:..This gives an easy 

way to show a boundedness of an operator. Let us difine the operators T and T7 by 

T[m]f(x) = 100戸 m(（＇，砂＋恥）凡 f](x,yN)dy凡

゜
＜ 

勾m>,]g(x,t)＝ぢJOO町疇＇ぶ責）瓦 ,I,g](x,YN, >..)dyN, 

゜= [e丸下;~tT[m斗乃→(e―唸）］（x,t), 

where入＝ 1 + iT E以 m,m.¥:貶↑→(C are multipliers, and f :認→ (Cand g：訟 X政→ C. 

Theorem 3.4 ([11, Theorem 6.1]). (i) Let m satisfy the following two conditions: 
(a) There exists TJ E (0,1r/2) such that {m(・,xN),xN > O} C H00(乞りー1).
(b) There exist T/ E (0, 1r /2) and C > 0 such that sup＜℃f:；；-1 lm(e,xN)I S Cx記forall XN > 0. 
Then T[m] is a bounded linear operator on Lq（齢1/-)for every 1 < q < oo. 
(ii) Let,o :0:: 0 and let m入satisfythe following two conditions: 

(c) There exists TJ E (0, 1r/2 -c) such that for each XN > 0 and 1 :0::,o, 

埓 3(T,〈）→m(（＇ぶ） EC

is bounded and holomorphic. 

(d) There exist TJ E (0,1r/2 -c) and C > 0 such that sup{lm入(e,xN)II (T,~1) Et!;(} s CxN1 for 
all 1 :0::,o and邸＞ 0.

Then T1[m入]satisfies 

lie―7丸glら（恥，Lq（認））三 C||e―1tg||与(ll!.,Lq（呼））

for every 1 :0::,o and l < p, q < oo. 
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4 Reduction to the problem only with boundary data 

In this section we show that it is enough to consider the case f = 0 or F = 0 by subtracting 
solutions of inhomogeneous data. 

4.1 Whole space 

We start considering with the whole space problem 

入u―△U=f in良凡
叩］—△U=F in酎 X(0, oo) 

subject to the initial condition U(x, 0) = 0. The following theorem is prepared. 

Theorem 4.1. Let l < p, q < oo, 0 < E < 1r /2 and,o ~ 0. 

(3) 

(4) 

(l) For any入E~e,f EL国）， problem(3) admits a unique solution u E WJ国） thatsatisfies 
the following estimates: 

| （入u,入1/2▽u，▽％） 1ら（的） :SCN,q,ell/||ら（か）・

(2) For any F E Lp,O,"fo（民，Lq（か））， problem(4) admits a unique solution 

U E WJ,o,'Yo（恥，ら（か））nLp,O,"fo (lll, W,点記）））

that satisfies the estimate: 

lie→暉U,1U,A¾l2▽u，守U)IILp(Ill,Lq（か）） s;CN,p,q,"/o lie―"/tF||ら(lll,Lq（砂））｝

for any 1 2: 1o-

The proof is given in appendix. 

4.2 Half space 

For f E Lq（詑）， letf° be odd extension to JR凡givenby 

f°(x) ：＝ ｛f(x) for XN > 0, 
-f(x', -XN) for XNく 0.

Wehavef° EL国）． Thefunction v := F-1（入＋幻式）サ(!0)belongs to W.急（記） andsolves 
heat equation （入—△）v=f°in 艮N_ We see vlll:点＝ 0as follows; 

v(x’,0) ＝ （2いJ股N1 eix’<＇(J-0000（入＋芦対）―1名 [f°l(＜）d(N)必＇
互 [v|び =o](t)= (2い[0000（入＋文c)―1名 [f°l(C)d(N

j=l 
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1 r00 t r00 N 

= （27r)N JOO (JOOe 9YNく叫＋苫り冗f°l(（＇，YN)dyN)応

1 r00 t r00 N 

= （27r)Nし（1(e'→-eOYN円（入＋苫対）冗fl((',YN)dyN)d<N 
:;い[(J-OOOO(e→YNくN-e'UNい（入＋芦対）ー1d(N)［石fl((',YN)dyN 

since 恥→ (e→YN~N _ eiYNい（入＋区N ぐ）ー1i 
j=l -,,j !)-1 is the odd function. Similarly, V|恥!'!= 0 hold for 

゜non-stationary problems with zero-initial value. 

Moreover we see, for 1 ;:::,:,o ;:::,: 0, 

||（入v，入1/2▽v，炉v）||伝(か):SCllf°Iら(Rり<2C| f||ら（認） 9

lie―1囁 V,,V,A戸▽v，守V)ら（四q（即））こ C|e→tF°||ら（政，Lq（詑）） :S2Clle―-yt FIILp(R,Lq(Rf_))' 

Setting u = v +win (1), and U = V +Win (2) with Ui。=0,respectively, we would like to find 
the solutions w and W of 

｛畑—△w=0
aw-/3恥w= h+/38砂＝： h 

and 

｛入W —△W=0
aW-/3恢 W = H +f38NV=：且

in政N 十 9

on政似．

in Q十9

on Qo. 

Here we have（凡月） ＝ （h,H) when/3 ＝0, and 

||（入1/2,i，▽i）||Lq(R1;1)::;||（入1/2h，▽h）||ら（翌）十f3||（入1/2枷 v，▽枷V)||Lq(R1;1)

::; I|（入1/2h,Vh)||ら（詑）十Cllf||ら（認） 9

lie―-rt(A1/噴，▽月）1|ら(IR,Lq(IR1;1))::; lie―-rt(A戸 H，▽H）||ら(R,Lq(R?）） +C||e―7tF||ら（哀，Lq(R1;1))

when/3 ＞0. 

(5) 

(6) 

In this section we conclude that f = 0 and F = 0 are enough to consider in theorems 2.1 and 

2.2. 

5 Solution formulas from boundary data 

We give the solution of the resolvent problem (1) with f = 0 and入E~e by Fourier multipliers for 
each boundary condition. We apply partial Fourier transform with respect to tangential direction 
x'E股止1so that we use the notations 

咽心）：＝瓦畷＇ぶ）：＝ 1N-1e―ix'•~'V（ぶ，邸）dx',
民N-1
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戸， 1 
~1w(x',xN) = ~ 1™炉—1 e紐'tw((,xN)d(

for functions v, w :認→C.We use A:= N-1 喜 andB :=喜言？with positive real parts. 

By partial Fourier transform, we have the following second order ordinary differential equations; 

The solution is of the form 

{（B2＿咲）0＝ [ in祁＞〇，
⑯ -(38砂＝ h on XN = 0. 

-BXN 

砥＇，岱） ＝ 
a+f3B 
h. 

Let <Pa,(3（以＇， XN)= (a+f3B)-le-Bx凡whichderives the solution formula u(x) = [Fi1%，豆砂](x).

In the next step, we use the Volevich trick a(t, 0) = -ft恥a(~1,YN)dyN for a suitable decaying 
function a. We obtain the solution formula; 

叫）＝ー {JOO亨［（枷％，g（入，(,xN+YN)）凡h](x,yN)dyN 

。+100亨［％，g（入，(,xN+YN)互（枷h)](x,yN)dyN}. 

Since Laplace-transformed non-stationary heat equations (2) with F = 0 on艮arethe resolvent 
problem (1), we have the following formula; 

U(x, t)＝ー幻 {JOO亨 [(8叫，g（入，(,xN+YN)）亨H](x, YN,.¥)dyN 

+］OOFい［％，g（入，＜＇ぶ＋ YN)塁（枷H)](x,yい）dyN}.｝ 
6 Proof of resolvent estimates and maximal regularity estimates 

In the previous section, we obtained the solution formula. We use the following identity; 

N-1 

B2→＋区品，
m=l 

B2 入1/2 N-1 
1 ＝ ＝入1/2_ i品．炉 w>-112_ L詞 il;m)-

m=l 

We consider two cases; one is/3 ＝0, and the other is/3 ＞0. We decompose the solution so that 
the independent variables become the right-hand side of the estimates; 

For the case/3 ＝0, we consider as follows; 

u(x) = -{loo亨 [E-2枷如，o（パ',XN+Y叫（（入—△'）h)] (x,yN)dyN 

。+JOO亨［入1/2B-2c/Ja,o(.¥, ~'，岱＋ YN)互（入1/2枷h)] (x,yN)dyN 
゜N-1 ーこJOOデ［i品B-2%o（入，(,xN+YN)互 (8砂砂）］ （X,YN)dyN}. 
゜
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For the case j3 > 0, we consider as follows; 

00 

u(x) = -{l写l炉 B-2枷如，g（入，ぃ',邸＋YN因（入l/2h)](x,yN)dyN 
゜
［ 

N-1 

一互JOO亨［i知B-2恥い（入，/;',xN+ YN)エ（如h)](x,yN)dyN 
゜

+JOO写［い（入，/;',xN+YN)石（枷h)](x,yN)dyN} ・ 

゜Let品（入，＜＇，邸） beany of symbols; 

品（入，＜＇，邸） ：＝ 

B-2枷如，o（入，ぐ心） or, 

炉 B-2c/Ja,o（入，l;',xN) or, 

i品B-2c/Ja,o（入，（＇，邸） or,

入1;2B-28吟 a,/3（入，ぐ，XN) or, 

心 B-28Nc/Ja,/3（入，/;',XN) or, 

c/Ja,/3（入，/;',xN)-

We are able to prove that all of the symbols are bounded in the sense that 

s_up{(|入|＋ |入 1/2|&|＋ |＆||&|）|Su + （|入|112+ Itel) I枷Sul+1a誌 1}
（ぼ）E江 xt；；— 1
£,£'=1,...,N-1 

< CxNl 

for any O < E: < 1r /2 and O < 71 < min { 7r / 4, E:} because of the estimates 

(7) 

Lemma 6.1 ([11, Lemma 6.3]). Let O < E: < 1r/2, 0 < 71 < rnin{1r/4,s/2} and m = 0, I, 2,3. 

Then for any（入，t,xN)E ~e XI;ぷ―1x (0, oo), letting A :=《豆ご万， B := v0:+A2 and 

A :＝喜， wehave 

cA ≪; Re Aさ|Al≪;A, (a) 

c(|入|1/2+A)≪;ReB≪; IBI ≪;|入|i/2+ A, (b) 

c(a+(3（|入|1/2+A)）こ |a+(3Bl≪;a+(3（|入|1/2+A)，（c) 

18閃e-Bx刈≪;C(|入|1/2+A)me―C(|入|1/2+A)xN≪::: C(|入|1/2+A)―l+mxNl (d) 

with positive constants c and C, which are independent of入,t,XN・

The inequality (7) corresponds to the estimates入u,入1/2紐麟直，入1/28Nu,f)巫vuand 8知
respectively. 

We also see that the new symbol Su, multiplied入，＆ and枷， areholomorphic in（疇＇） E均・
Therefore we are able to use theorem 3.4. 
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Theorem 6.2. Let O < i:: < 1r/2 and 1 < q < oo. Then for-any入EI:0, h E 
匹（認） if(3＝0,

E! ｛四（詑） if(3＞O,
pr-oblem (1) with f = 0 admits a solution u E w;れ認） withthe resolvent estimate; 

||（入u，入1/2向，▽％)||ら（認）く {G||（入h，入1／2▽h，炉h）||ら（詑） if (3 ＝ 0, 
C||（入1/2h，▽h）||ら（翌） if(3＞ O 

for-some constant C = CN,q,s,a,/3• 

This theorem and the estimates in section 4 derive the existence part of theorem 2.1. The 

uniqueness is proved by a duality argument. For anyゆEC0（酔）， takeVE wJ（記） byq + 

｛油—凶＝ゆ
av-(38NV = 0 

Let u be a solution of (1). We see 

in JR.f_, 

on闘．

J叫 dx= 1N u（入v―△v)dx
詑＝｛R：伽—△u)vdx+ （喝u-Uい）閲 (integrationby parts) 

=0. 

By fundamental lemma of calculus of variations, this shows u = 0, which implies the solution is 
umque. 

For the non-stationary problem, we have, by theorem 3.4 again, 

Theorem 6.3. Let 1 < p, qく ooand,o 2'. 0. Then for any 

HE{四,0,70（股，伝（記））叫0,70(R,Wt（記）） if /3 ＝ 0, 
1/2 
Hp,0,70（股，Lq（認））nLp,o,70(JR, Wf（認）） if/3＞o, 

problem (2) with F = 0 and time interval賊 admitsa unique solution U such that 

U E Wi,0,70（恥ら（認））nLp,o,70 (JR, W,加認））

with the maximal Lp-Lq regularity; 

lie→囁U,1U,A戸▽u，▽初）1|ら（叫q（呼））

三{G|e―嘔H,A;／2▽H，炉H）||ら(R,Lq(Rt)）
Clle―7t(A 1/2 rH，▽H) I I Lp (R,Lq（呼））

for any 1 ~,o with some constant C = CN,p,q,70,a,/3・

if fJ = 0 

if fJ > 0. 
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Appendix A Proof of Theorem 4.1; estimate for the whole space 

Proof. Let A = V2三亙，B:= v'>,.丁A2.We have u = F-1Bサ f.Functions入B-2,入1/2AB-2,
A 2B-2 correspond to the symbols of left-hand sides, which are holomorphic and bounded by 

Lemma 6.1. Therefore we can use Theorem 3.3. This proves the first estimate. For the non-
stationary problem, the solution is U = £,―1F-1B-2F£F = e礼下―1(T,C)→(t,x)B-2凡，の）→（Tl)(e吼 F).

The symbol（疇） →入B-2is holomorphic and bounded. Therefore we have lie→濱U||ら(!R,Lq（詑）） < 
GIie吋 F|ら（恥ら（か）） by[16, Proposition 4.2.1] and [18, Proposition 4.3.10]. The others are same. 

ロ
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