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Abstract 

This article explains a partial shape of the complete theory for time-fractional 

differential equations, which is still under construction. First we define a frac-

tional derivative with the order between O and 1 in suitable Sobolev spaces, and 

show some properties on fractional calculus. Then we establish theories for initial 

value problems and initial boundary value problems. Finally we discuss several 

remarkable properties for time-fractional differential equations. 

The article mainly aims at demonstrating a sketch of the total theory covering 

from fractional calculus to linear or nonlinear time-fractional partial differential 

equations, and so this article is not a survey and refers to other works for more 

details. 
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Part I 

1 Motivation 

Let r(-) denote the gamma function and let O < a < 1. Then, we define the Caputo 

derivative 

d「v(t)= ~ 1t (t -s)-"'竺(s)ds, t > 0 
「(1-0:)。 ds

and the Riemann-Liouville derivative 

1 d rt 
叫） ＝ー ／ （t-s）―%（s)ds, 

f(l-a)dt。 t > 0, 

(1.1) 

(1.2) 

provided that the right-hand sides are defined. The Caputo derivative d『v(t)requires 

v E W1,1(0, T) for example because we first calculate皇(s)in some sense. On the other 
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hand, the Riemann-Liouville derivative Dfv is well-defined for v E W叫0,T), but it is 

presently not clear how much we can relax such regularity of v for defining df v. 

This suggests that we should define the domains for fractional derivatives, that is, 

we should clarify for which functions we are considering a fractional derivative. 

The above simple consideration implies that w1,1(0, T) is a possible domain, but 

L1-structure is not a convenient choice at least the first step towards the theory. It is 

natural to choose domains within L2-framework. Thus is H1(0, T) a good space? The 

answer is NO: if one interprets Df or d『asan a-times derivative, then the space H1(0, T) 

of 1-time differentiable functions is too restrictive but we can intuitively assume that a 

natural choice is like H可O,T).

This is a motivation for our choice of the domain of fractional derivative, and in 

Section 2 we will describe more details. 

Moreover, we show some inconsistency if we do not suitably specify the domains 

of the fractional derivative, For it, it is sufficient to consider a very simple initial value 

problem: 

dfu(t) = f (t), 0 < t < T, u(O) = a. 

Let f Eび(0,T) and a E股 begiven. Needless to say, for a= 1, we have 

u(t) = 1'f(s)ds+a, 0 < t < T. 

゜

(1.3) 

If a = 1 and u satisfies (1.3) with given f E L刊0,T), then u Eが (0,T), so that u(O) 

can be defined in the sense of the trace. In other words, for a = 1, for any f Eび(0,T) 

and a E艮， thereexists a unique u Eザ (0,T) satisfying (1.3). The situation is different 

from the case of O < a < 1. In particular, let O < a < ½ and 

f (t) = t8-½, 0 < t < T, 

where r5 > 0 is a constant. Then f E L刊0,T). Moreover, we can formally apply the 

solution formula (e.g., Kilbas, Srivastava and Trujillo [24], p.141), and obtain 

where we set 

1 
u(t) ＝ a + J (t -s)a-1s8-らds=a+C。ta十8士（1.4)

r(a)。

C。=r (b + ½) 
r (a + 6+ ｝）. 

Moreover u(t) given by (1.4) cannot satisfy (1.3) if O < a < ½ and b > 0 is small 

such that a + b -½ < 0. Indeed limt↓0 u(t) = oo, and so the initial condition does not 
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make any usual sense. Furthermore we formally calculate d『ta+6廿：

dfta+6-} ＝□1 1 -a) [ (t -s)-a羞 (s"'+a-½)ds
a+ 8 -½ rt 

= J (t -s)-asa+6-ids. 
r(l -0:) 。

However, since 0: + 8 —~ < -1, the integral does not exist. This means that formula 

(1.4) does not hold for f Eび(0,T) in general, so that the initial value problem (1.3) 

associated with the Caputo derivative cannot be formulated for arbitrary data f E 

び(0,T). 

The function space L刊0,T) is reasonable and convenient as data space. Hence it is 

natural to formulate the initial value problem and define a feasible fractional derivative 

for f EL刊0,T) in order to establish a unified theory for fractional differential equations. 

Thus we construct the theory where the fractional derivatives should be included in 

び(0,T). This is our main motivation, and we construct a seemingly different fractional 

derivative 8『althoughwe will prove that it is essentially same as the closure operator 

of the Caputo derivative in。び[O,T] (see Theorem 3.4 in Section 3). 

We conclude this section with the justification concerning the Laplace transform. 

Needless to say, the Laplace transform is important not only in the calculus but also for 

study of the abstract evolution equations (see Arendt, Batty, Hieber and Neubrander [2] 

for 0: = 1), so that it is important to consider the fractional derivative consistently with 

the Laplace transform. In particular, the justification of the initial value in defining the 

Laplace transform is indispensable in order to use the Laplace transform 

u(p) := 1 
゜The following formula 

(X) 

e―ptu(t)dt, p > p0 : some constant. 

石(p)= p喩 (p)-p"'-1u(O) 

is quite well-known but we have to justify the sense of u(O) which requires a certain 

smoothness of u at t = 0. Such regularity at t = 0 is not well established for u E L刊0,T). 

Our formulation essentially relies on the property of the generalized fractional 

derivative卯 de什nedlater in some Sobolev space. As for other approach, we can refer 

to Zacher [4 7]. These properties are feasible for the applications such as the clarification 

of the Sobolev regularity of solutions to initial-boundary value problems. 

In this article, we consider only O < 0: < 1, although we can treat 0: > 1 

similarly. 
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2 Function spaces Ha(O, T) as domains of fractional 

derivatives 

For(3 ＞0, we define the Riemann-Liouville fractional integral operator J/3 by 

1 rt 
叫 (t)= Nm 1'(t -s)fl-1u(s)ds, 0 < t < T, u Eび(0,T). 

r((3）。
（ (2.1) 

We write J := J1 and J0u(t) = Iu(t) := u(t) for u E L刊O,T).

We note that Jflび(0,T) c L刊0,T), and we understand that Jfl is an operator 

from L2(0, T) to L2(0, T). In order to define an adequate fractional derivative which is 

denoted by 8f, we should fulfill 

(1) 8f should be well-defined in a subspace of the Sobolev space of order a. 

(2) the norm equivalence between 118『ulland some conventional norm of u such as the 

norm in a Sobolev space. 

For them, 

• We will interpret J°'as the fractional power of an operator 

Ju(t) = 1'u(s)ds with the domain V(J)＝び(0,T). 

゜
• We define 8『asthe inverse to J0. 

These issues are done respectively in Sections 2 and 3. The arguments in Section 

2 and a part of Section 3 are based on Gorenflo, Luchko and Yamamoto [14], Gorenflo 

and Yamamoto [16], Kubica, Ryszewska and Yamamoto [28], Yamamoto [46]. 

Byび(0,T) and H刊0,T) we mean the us叫 L2-spaceand the fractional Sobolev 

space on the interval (0, T) (see e.g., Adams [1], Chapter VII), respectively, and we 

define the norm in H刊0,T) by 

(f  f llullH"(O,T) := (llulli2co,r) + 
T {T lu(t) -u(s)l2 百

o o |t -s|1+2a dtds) ． 

The L2-norm and the scalar product inび aredenoted by II ・ II = II ・ IIL2(0,T) and (・, ・), 

respectively. By ~ we denote a norm equivalence. Since J<> is injective inび(0,T), by 

1-a we denote the algebraic inverse to J<>. 
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In this section, we first define the range space J"'び(0,T) of the operator J"'in 

L2(0, T) and second relate it to the above fractional Sobolev spaces. For defining of the 

fundamental function spaces, we prepare two lemmata. 

Lemma 2.1 

Df J"'u = u for all u Eび(0,T). 

Proof of Lemma 2.1. By the definition of Df, exchanging the orders of the integrals, 

we have 

DfJ%（t) ＝ r(1 1 -a)羞l(t -s戸 J"u(s)ds

1 d I rt 
=r(1 -a)r(a)亙(1t(t-s)-a(1s(s-~)a-lu(~)d~) ds) 

1 d rt I rt 
丁 1-a)r(a)~ 1t (1t(t-s戸 (s-~)"-1ds) u(~)d~ 

l d t d t 

=r(1 -a)r(a)五1'r(a)f(l-a)u(~)dく＝五 1'u(~)d~ = u(t). 

Thus the proof of Lemma 2.1 is compleい ■
Hence we can readily prove 

Lemma 2.2 

Ja ：び（O,T)→び(0,T) is injective: if u Eび(0,T) satisfies J"u = 0 in (0, T), then 

u = 0 in (O,T). 

Indeed, if J°'u = 0, then u = Df J°'u = 0 in (0, T). 

Therefore, the inverse to J" exists and is an operator fromび(0,T) toび(0,T). By 

J-<>, we denote the inverse operator which is understood algebraically. Then we can 

define 

｛
 

Ha(O, T) := J"'び(0,T), 

llvllHa(O,T) := IIJ-°'v||だ (O,T), that is, IIJ°'ullH"'(O,T) := llullL2(o,T)・

(2.2) 

Postponing the concrete characterization of Ha(O, T), we here prove 

Lemma 2.3. 

几 (0,T) is a Banach space with the norm II ・ IIHa(O,T)・

Proof of Lemma 2.3. We can readily prove that凡 (0,T) is a normed space. We 

will prove the completeness: let limn,m→00 llun -Um||広 (o,T)= 0. Then the definition 

implies limn,m→oo IIJ-aun -J-％』|い(O,T)= 0. Sinceび(0,T) is complete, we can find 

vo EL刊0,T) such that 

lim ||J-a叫一 vollL2(o,T)= 0. 
n→00 
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The definition of the norm yields 

llun -J°'vollH0(D,T) = IIJ°'(J-°'un -Vo)IIH0(D,T) = IIJ-°'un -vollL2(o,T)・

Therefore limn→oo llun -J□|Ha(D,T) = 0 and J°'vo E Ha(O, T). Thus the proof of 

Lemma 2.3 is complete.■ 

Now we are ready to state the characterization of Ha(O, T). 

Theorem 2.1. 

Let O <a< 1. 

(i) 

叫 0,T)：= { 

{v E即 (0,T); v(O) = O}, ½ < aさ1,

{v EH打0,T); fc。T字 dt<oo}, a=ふ

即 (0,T), 0 <a< ½ 

with the following equivalent norm 

||v||Ha(0,T) ＝ ｛ ||v||距 (O,T)， 0 <a <1, aナふ

（ 
1 

llv||〗れO,T) + Ii。T字 dt)互， a=ふ

(ii) There exist constants 01 > 0 and 02 > 0 such that 

C11 II J°'ullHa(O,T) :S llullL2(0,T) :S C1 II J°'ullHa(O,T) for all U E L2(0, T) (2.3) 

and 

C21IIF"'vllL2(0,T)さ||vllH,,(O,T)さ:C2IIF"'vllL2(0,T) for all v E Ha(O, T). (2.4) 

(iii) J-°'J°'u = u all u Eび(0,T) and J°'J-°'v = v for all v E凡 (0,T). 

The proof can be found in [14], [28]. 

We can prove 

J"'L2(0,T) c H1(0,T), a~ 1. 

However, here we limit the range of a to O < a ~ 1 and we omit further characterization 

of J"'び(0,T). 
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The first equality in (iii) is directly seen by the definition, while the second equality 

in (iii) is verified as follows. For u E Ha(O, T), the definition of Ha(O, T) yields the 

existence of w E L刊0,T) satisfying u = J°'w. Therefore J°'J-°'u = JO'J-°'(J°'w) = 

炉 w.Hence炉 J-°'u= u for u E Ha(O, T)．■ 
Henceforth we write for example (2.4) by 

||J-av||い(O,T)rv llvllHa(O,T), 

when there is no fear of confusion. 

Remark. For H½(O, T), Lions and Magenes [29] use a different notation。碍(0,T) 

(Remark 11.5 (p.68) in [29]). However we here use H½(O,T) 邸 well 邸凡(O,T),0<

a< l. 

We conclude this section with two lernrnata concerning凡 (0,T), which rnay be 

helpful for more understanding. 

We introduce the following sets: 

oW叫O,T)= {u E W1'1(0,T); u(O) = O} 

and a subspace of it 

Wa(O, T) := { u E W1・1(0, T); there exists a constant Cu> 0 such that 

du 
;;(t) I'.S Cutet-l 
dt 

almost all t, u(O) = 0}. 

(2.5) 

(2.6) 

Here Cu > 0 depends on a choice of u. For example, tf3 E Wa(O, T) for(32'. a. We 

remark that 。W1•1(0,T) is a closed set in W叫0,T), while Wa(O, T) is not because of 

the condition on盟(t).

Henceforth by C > 0, C1 > 0, etc., we denote generic constants which are indepen-

dent of functions under consideration but dependent on a, T, while Cu means that it 

depends on a function or a quantity u under consideration. 

It is not always direct to verify whether a given function belongs to Ha(O, T) or not, 

but we can prove that the space Wa(O, T) is a convenient subspace of Ha(O, T). Indeed, 

by means of Theorem 2.1, we can prove verify 

Lemma 2.4. 

(i} Wa(O, T) c Ha(O, T). 
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(ii) D『u= dfu and J°'D仰＝ ufor u E oW1•1(0, T). 

Proof of Lemma 2.4. Part (ii) can be proved directly by the definition of Df, df 

and J°'. Let u E Wa(O, T) be arbitrarily given. It suffices to prove that we can find 

W Eび(0,T) such that u = J°'w. Thus, by means of part (ii), we see that Dfu is a 

candidate of such w. By part (ii), we have 

1 
応＝dfu=J  (t s)-a 

du 

f(l -a) 。 ds
(s)ds. 

From u E Wa(O, T) it follows that I皇(s)I：：：：： Cs"-1,so that 

C C 
叫 (t)I：：：：： J (t -s)-asa-lds ：：：：： r(l -a)r(a) 

r(1 -a)。 r(1-a) 

for O < t < T, which implies that D『uE L00(0, T) C L刊0,T). Setting w = Dfu E 

L2(0, T), in terms of part (ii), we obtain u = J" D仰＝ J"w,which means that for 

u E Wa(O, T), we can find w Eび(0,T) such that u = J"w E凡 (0,T). Thus the proof 

of Lemma 2.4 is complete.■ 

Next, thanks to Lemma 2.4, we can prove some density property, which allows us 

to apply a traditional density argument for functions in Ha(O, T) if necessary. 

We set 

。び[O,T] = {r.p E C1[0, T]; r.p(O) = O}. 

By Lemma 2.4, we can have the algebraic inclusions: 0び[O,T] C Wa(O, T) C Ha(O, T). 

Moreover we prove 

Lemma 2.5. 

H0(D,T) 
。び[O,T] ＝几(0,T). 

-X  
Here and henceforth, z・ denotes the closure of a subset Z c X by the norm in 

X. Lemma 2.5 is useful, because, thanks to the lemma, in order to prove estimates in 

凡 (0,T), it usually suffices to prove them for。び[O,T].

Remark. By Theorem 11.1 (p.55) in [29] and the mollifier, we see that 

。び[0,T]加 (0,T)＝ { m(0,T)， 

凡 (0,T), 

We should distinguish Ha(O, T) from Ha(o, T). 

〇＜ a::;ふ

½<a<l. 
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3 Definition of the fractional derivatives and prop-

erties 

We understand that 1-a is an operator inverse to Ja : L2(0, T)→び(0,T), and by J 

and J-1 we mean J1 and (Jリー1respectively. 

Now we reach 
... 

Definition 3.1. For O <a< 1, we set 

印u:= 1-au, u E Ha(O, T). 

Remark. In this article, we mainly consider 8「forthe case of O < a < 1. For 

a> 1, (/_ N, on the basis of 8f with O <a< 1, we can define as follows: Let a=  m + 1 

with m E N and O <, < 1. Then 

叩＝87( 
dmu 

dtm) 

with 

亨）＝｛uE炉 (0,T); ~ E H1(0, T)}, 

and we can argue the isomorphism and fractional differential equations in the same way, 

and we can consider卯 inthe d叫 spaceof Ha(O, T) by the Gel'fand triple Ha(O, T) c 

び(0,T) C (Ha(O, T))'. However, we omit the details in this article and we can refer to 

Yamamoto [46]. 

By Theorem 2.1, we note that Ha(O, T) = Jaび(0,T). Therefore卯 inHa(O, T) 

is well-defined and 8『uEび(0,T) for u E Ha(O, T). Moreover卯：凡(0,T) ---+ 

び(0,T) is surjective. Indeed let v Eび(0,T) be arbitrarily given. By Theorem 2.1, 

we have <p := Jav E Ha(O, T) and so 8匹 ＝ vby the definition, which means that 

卯：凡(O,T)→び(0,T) is surjective. 

On the other hand, we can prove 

du 
J-1u = ;;, u E H1(0, T). 

dt' 

Indeed, setting v = J-1u, we have v Eび(0,T) by Theorem 2.1 and u = Jv, that is, 

u(t) = Ji。~ v(s)ds. By v EL刊0,T), we see that u is absolutely continuous on [O, Tl, and 

盟(t)= v(t) for almost all t E (0, T), that is,盟（t)= (J-1u)(t) for almost all t E (0, T). 

Replacing a and /3 respectively by 1 -a and 1 in Theorem 2.3 (ii), we obtain 

J-a = J(l-a)-1 = J-1 Jl-a, 
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that is, J-<> =羞（Jl-a)．

Thus, summing up, we can state 

Theorem 3.1. 

Let O < a < 1. Then 8『isan isomorphism between Ha(O, T) andび(0,T). That is, 

卯： Ha(O,T)一び(0,T) is injective and surjective, and 

Moreover 

and 

||8fu||L2(0,T) ～ ||u||Ha(0,T)・

d 
叩U=J-au= -（J1-au) ＝ Dfu, U E凡 (0,T) 

dt 

8『u= Dfu = dfu for u E Ha(O, T) n 0W1,1(0, T). 

(3.1) 

(3.2) 

(3.3) 

We can calculate叩 concretelyby means of Dfu for u E几 (0,T). Formula 

如＝羞(11-au)in (3.2) can correspond to the classical inversion for finding w solving 

J呻＝ u(e.g., Gorenflo and Vessella [15]) for u E 0w1,1(0, T), but our construction for 

卯 guaranteesthe formula for u E Ha(O, T), which is a wider space than the set of all 

absolutely continuous functions on [O, T]. 

Next we describe the fundamental formula on the Laplace transform of fractio叫

derivatives and some successive derivative. 

Theorem 3.2. 

Let u E凡 (0,T) with arbitrary T > 0. If（而）（p)exists for p > p0: some positive 

constant, then u(p) exists for p > p。and

尻;(p)= p喩 (p) for p > Po• 

Theorem 3.3. 

Let a,(32'. 0. Then 

町(afu)= 8戸(3u for all u E Ha+f3(0, T), 

provided that a +(3こ1.

By an adequate but natural defintion for afu for a 2:: 1, Theorem 3.3 holds without 

the constraint a +(3:S 1. We recall that df(dfu) = df臼 udoes not hold in general even 
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for u E C1 [O, T]. The natural successive derivative formula holds thanks to our choice 

of the domains D（卯）．

We conclude this section with the equivalence of卯 withthe closed extension of 

the Caputo derivative operator df. As for the closed extension and the closure of an 

operator, see e.g., Kato [22] (Chapter III, §5). We recall the classical Caputo derivative 

dfu(t) = 
r(1 -a)。1 Jt(t-s)-a竺

ds 
(s)ds 

and attach the domain D(d『)＝。び[O,T]. We consider df as an operator from D(df) = 

。び[0,T]cび(0,T) toび(0,T). 

By而wedenote the closure of df with D(df) = 0び [O,T]. Then we prove 

Theorem 3.4. 

We have D（西） ＝凡(0,T), and 

而＝叩＝ Df on Ha(O, T). 

This theorem means that our definition of 8『isconsistent with the classical Caputo 

derivative by considering the closure of the operator. 

4 Important functions in Ha(O, T) 

In this section, we introduce the Mittag-Leffier functions, and we consider functions 

which play an important role for fractional differential equations and show that they 

belong to凡 (0,T). 

For a,(3 ＞0, we define 

00 

Ea,13(z)＝区
k=O 

z k 

r(ak+(3）' 
Z E C. (4.1) 

These functions are called the Mittag-Leffler functions. It is known that Ea,r,(z) is an 

entire function in z with a,/3 ＞0. The Mittag-Leffler functions have been studied well 

(e.g., Kilbas, Srivastava and Trujillo [24], Podlubny [36]). Henceforth we recall that 

Wa(O, T) is defined by (2.6). 

Proposition 4.1. 
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Let O < a < 1 and入E艮． ThenEa,l(—入『）ー 1 E Wa(O, T) c Ha(O, T). 

Proposition 4.2. 

Let O < a < 1 and f Eび(0,T). Then 

t 

(B_xf)(t) := 1'(t -s)°'-1 Ea,a(—入(t -s)勺f(s)dsE Ha(O, T) (4.2) 

゜
and we can find a constant C > 0 such that IIB.xf IIHa(O,T):S CIIJIIL2(o,T) for all f E 

び(0,T). 

In the proposition, it is essential for later arguments that the constant C > 0 is 

independent of入＞ 0.

5 Initial value problems for linear time-fractional 

ordinary differential equations 

Now we formulate an initial value problem for a linear fractional ordinary differential 

equation by: 

ー 8『(u(t)-a)= p(t)u(t) + J(t), 0 < t < T, 

u-aE凡 (0,T). 
(5.1) 

We note that if ½ < a < 1, then Ha(O, T) c C[O, T] n { v E H<>(O, T); v(O) = O} by 

Theorem 2.1 (i), and sou -a E Ha(O, T) yields u(O) = a, which can justify the initial 

condtion in the pointwise sense for ½ < a < 1. 

Formulation (5.1) brings the well-posedness uniformly for a E (0, 1) and arbitrary 

fEび(0,T). More precisely, 

Theorem 5.1. 

Let p E L00(0, T) and a E賊 begiven. Then theTe exists a unique solution u to (5.1). 

MoTeoveT joT O < a < 1, we can choose a constant C > 0 such that 

llu -allHa(D,T) ~ C(lal + IIJIIL2(0,T))- (5.2) 

Moreover, since 11 u -a||加 (O,T)さ |u-allHc.(O,T) and 

llu -allH"(O,T) ~ llullH"(O,T) -Ila||即 (O,T)= llu||即 (O,T)-vTlal, 
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using (5.2) and llallH"(O,T) = Ila||い(O,T)＝vfT'lal,we can obtain 

llullH"(D,T)::; C(lal + IIJIIL2(0,r))- (5.3) 

Here and henceforth C > 0 denotes generic constants which are independent of 

initial values and non-homogeneous terms. 

In the pointwise sense, the unique existence of solutions to initial value problems 

for fractional ordinary differential eq叫 ionswith D『andof, has been well studied 

(e.g., [24], [36]), but such pointwise formulations meet difficulty in several cases such as 

f (/_ L00(0, T). 

Proof of Theorem 5.1. 

By Theorem 2.1, we can rewrite (5.1) by 

1-°'(u -a)= p(t)u(t) + J(t), u -a E Ha(O, T), 

which is equivalent to 

u(t) =a+ J°'(pu)(t) + (J°'f)(t) 

1 t 1 t 

=a十戸1'(t-s)°'-1p(s)u(s)ds 十 ~1'(t-s)°'-1f(s)ds, O<t<T. (5.4) 

By Theorem 2.1 and p E L00(0, T), we see that 

IIJ°'(pu) IIHa(O,T)さCllpu||び (O,T):::; CIIPll£00(0,TJllull£2(0,T), 

which means that J°'(pu) : L刊0,T) -----+ Ha(O, T) is bounded and so is a compact oper-

ator fromび(0,T) to itself, because the embedding Ha(O, T) -----+ L2(0, T) is compact. 

Now we assume that u(t) = J°'(pu)(t) for O < t < T, that is, 

u(t) = ~ 1t (t -s)"'-1p(s)u(s)ds, 0 < t < T. 

Then 

lu(t)I :SC 1'(t -s)°'-1lu(s)lds, 0 < t < T. 

゜Applying a general Gronwall inequality (e.g., Chapter 7 in Henry [17] or Appendix of 

this article), we obtain u = 0 in (0, T). 

Consequently the Fredholm alternative yields that there exists a unique solution 

uEび(0,T) satisfying (5.4). Moreover, since u -a= J°'(pu + f) inび(0,T), we have 

that u -a E J°'び(0,T) = Ha(O, T). Thus the proof of the unique existence of u is 

complete. 
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Moreover (5.4) and p E £00(0, T) yield 

t 

lu(t) I：：：：： |al+C 1t(t-s)"'-1lf(s)lds+C 1t(t-s)"'-1lu(s)lds, O<t<T. 

We set 
t 

R(t) = lal + C 1'(t -s)°'-1lf(s)lds. 

゜Applying the general Gronwall inequality, we have 

t 

lu(t) IさCR(t)+ C 1'(t -s)°'-1 R(s)ds (5.5) 

゜
:::; C (lal + 1t (t -s)°'-1lf(s)lds) + C 1t (t -s)°'-1 (lal + 1\s —び―1 IJ(() Id() ds 

for O:::; t:::; T. We take the norms inび(0,T). The Young inequality on the convolution 

yields 

1t (t -S)a-l If (S) Ids ll,21n T¥ ::; lit―a||い(O,T)llf||正(O,T)::; f□|f||だ (O,T)・
0 11£2(0,T) 

Moreover 

1t (1s (s -~)°'-1lf(~)ld~) ds = 1t (lt (s -~)°'-1ds) lf(~)ld~ = 1t ~lf(~)ldふ
and so 

1t (1s(s-o"-llf(()ld()dsllmnr)::; 竺 ||f11£2(0,T) 
戸 (O,T) a い(O,T)

again by the Young inequality. By exchanging the orders of the integrals, we can simi-

larly obtain 

1t (t -s)"'-1 (ls (s -t)"'-1IJ(t)ldt) ds = 1t IJ(t)I (it (t -s)"'-1(s -t)"'-1ds)必

r(a)2 t 
=~ 1'(t -t)2"'-1lf(t)ldt, 

and 

1t(t-s)"'-1 (1s(s-t)"'-1IJ(t)ldt) ds戸 (O,T)::::;~ lilt (t -t)2"'-1lf(t)ldt凶 O,T)

gC||f||び (O,T)・

Consequently (5.5) implies llu||い(O,T)::::; C(lal + II!||い(O,T)).Hence the first equation in 

(5.1) yields 

118『(U-a)||L2(0,T）こ C（||u||L2(0,T)＋||f||L2(0,T))::::; C(lal + II!||£2(0,T)), 
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Thus the proof of (5.2) is completed.■ 

In contrast with (5.1), the following is a conventional formulation for an initial value 

problem for an ordinary fractional differential equation: 

｛
 

d仰＝p(t)u+ J(t), 0 < t < T, 

u(O) = a. 

As is described in Section 1, even in the case of p三 0,this formulation is not well-defined 

for general f E L刊0,T), and the initial condition u(O) = a may be inconsistent, while 

our formulation is well-posed for all f E L刊O,T).

Moreover we can prove the following proposition, which clarifies the relation between 

the above conventional formulation and (5.1). 

Proposition 5.1. 

We consider two formulations for initial value problems: 

｛
 

dfu = p(t)u + J(t), 0 < t < T, 

u(O) = a 

and 

｛
 

卯(u-a)= p(t)u + J(t), 0 < t < T, 

u -a E Ha(O, T). 

(5.6) 

(5.7) 

Then 

(i) Let p E L00(0, T) and f E L2(0, T). If u E W叫0,T) satisfies (5.6), then u satisfies 

(5.7). 

(ii) Let p E C1[0, T] and f E W叫0,T). Then the unique solution u to (5. 7) is in 

W1,1(0, T) and satisfies (5.6). 

Next we give a solution formula: 

Proposition 5.2. 

Let f Eび(0,T). Then the solution u -a E Ha(O, T) to (5.1) with p(t)三入： constant,

is given by 

t 

u(t) = aE叫—記） ＋ J （t -s)a-1叫(—入(t -s)勺f(s)ds

゜=aEa,1(—入『） ＋ （Bd)(t), 0 < t < T. 
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Here B入 isdefined by (4.2). 

Part II 

6 Initial boundary value problems for linear time-

fractional diffusion equations 

Let n C町 bea bounded domain with the smooth boundary an, x = (x1,…ふ） E間

切＝此，鱈＝釦：乙 for1さj,k~ n, and let (u,v) = (u,v)L叩） bethe scalar product 

in L叩）： （u, v) = fn u(x)v(x)dx. 

We first deal with the following initial boundary value problem for the time-fractional 

diffusion equation whose elliptic part is symmetric: 

、

v

、

卯(u(x,t) -a(x))＝四，k=lむ(a土）知(x,t)) + c(x)u(x, t) + F(x, t), 

x En, o < t < T, 

ulanx(O,T) = 0, 

where we assume 

{ thereeX1stsa constant u。>0such that 

叫＝ akjEび(TT), j,k = 1,...,n, CE C(D), 

(6.1) 

(6.2) 

区];,k=lajk(x)訳k~~。区Jn=1 召， XE 豆ふ，…．，品 E 股，

and 

c(x)::=; 0 for XE S1. 

We define an operator in L叩） by

(6.3) 

(Av)(x)＝ーエむ(a州x)如 (x)), D(A) =が（n)n Ht(n). (6.4) 

Then, under the condition (6.2), the operator A is positive-definite and self-adjoint in 

L叩）． Let0 ＜ふこ入2 さ• • • be the eigenvalues of A, where入kappears in the 

sequence邸 oftenas its multiplicity requires. Let i/Jk, k E N be the eigenfunction of 

A corresponding to the eigenvalue入k・ It is known thatふ→ ooask→oo and 
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the eigenfunctions'Pk can be chosen to be orthonormal, i.e.,（臼叫＝ 1if j = k and 

屈，四） ＝0 if j cf-k. These eigenfunctions｛匹｝kENbuild an orthonormal basis of L囁

Using the standard technique (see e.g., Pazy [35], Tanabe [41]), a fractional power A1 of 

the operator A can be defined for any I E股 andthe inclusion V(A1) c H2叩） holds

true for 1 2: 0. 

By the Fourier method, applying Propositions 4.1 and 4.2, we can prove the unique 

existence of solution (see also Sakamoto and Yamamoto [38]): 

Theorem 6.1 

For FEび（O,T;び(D))and a E HJ(n), there exists a unique solution u to (6.1) 

satisfying 

u E L2(0, T; H2(D) n Hl(D)), u -a E Ha(O, T; L2(D)), (6.5) 

and we can find a constant C > 0 such that 

llullL2(0,T;H2(!1)) + llu -allHa(O,T;L2(!1)) ~ C(llallHJ(n) + IIFll1」2(0,T;L2(!1))) (6.6) 

for all a EH,詞） andFEび(O,T;L叩））．

Moreover, 

u(t) := u(x, t) = f摩(—入記）（a，叫匹＋ I:(B叫!(·,t)叫）（t）孔 (6.7) 
k=l k=l 

where the series is convergent in L2(0, T; H2(D) n HJ(D)) and Ha(O, T; L2(D)) + {a}. 

Next we describe a solution formula by a different way. For the statement, we 

introduce operators from L2(D) to itself. For a function a E L門D),let us define the 

operator 

｛
 

S(t)a:＝区';=1 広1(—入出）（a，やK)'Pk,

K(t)a:= ~';=1 ta-1 Ea,a(—入記）（a ， 'Pk)'Pk, t > 0. 
(6.8) 

Then we can prove 

Theorem 6.2. 

(i} Fort > 0, the operators S(t) : L叩） →び(0)and K(t) : L叩） →び(0)are 

bounded and moreover for any O < 1 < l, there exists a constant C, > 0 such that 

IIA1S(t)all ~ C,t―"''llall, t > o 

and 

IIA1 K(t)all：：：：： C,ta(l-,)-lllall, t > 0. 
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MornoveT A1 S(t)a = S(t)A1a and A1 K(t)a = K(t)A1a foT a E D(A1) and t > 0. 

(ii) FoT a E HJ(D) and FE L2(0, T; L2(D)), the solution u(t) := u(•, t) to (6.1) is given 

by 
t 

u(t) = S(t)a + 1'K(t -s)F(s)ds, 0 < t < T. 

゜
(6.9) 

(iii) For any a E L叩）， wecan extend S(t) : (0, T]→び(s:2)analytically to Re z > 0. 

The solution formula is useful for discussing a perturbed systems of (6.1). Now we 

consider a more general time-fractional diffusion equation with first-order terms, where 

A is defined by (6.4). Note that we do not assume (6.3): c(x)'.SO for XE豆

We consider 

,

v

、

卯(u(x,t) -a(x)) = -Au(x, t)＋区Jn=1も(x)贔u(x,t) + c(x)u(x, t) + F(x, t), 

x E 0, 0 < t < T, 

ulanx(O,T) = 0, 
(6.10) 

where bj E L00 (fl), 1 ::; jさnand CE L00(fl). 

Then we can prove 

Theorem 6.3 

For FEび(O,T;び（fl))and a E HJ (fl), there exists a unique solution u to (6.10) 

satisfying the regularity (6.5). Moreover, the same estimate as (6.6) holds. 

Proof. 

Then according to Fujiwara [11], the ineq叫 ities

{ ||v||H叩）三 C||Av|| for V E H叩）n Hl(9)' （6.11) 

'D(A土)=HJ(n), c-111A½vll::; llv||か（!1)::;CIIA½vll, for VE HJ(n) 

hold true. Now we interpret the functionこ；＝1も(x)炉 (x,t) + c(x)u(x, t) as a non-

homogeneous term in the equation (6.1) and apply Theorem 6.2, so that we can represent 

a solution u(t) := u(・, t) to problem (6.10) in the form 

1t K(t-s) (t u(t) = 1t K(t -s) 苫い(s)+ cu(s)) ds + 1t K(t -s)F(s)ds, t > 0. (6.12) 

First we prove the uniqueness of the solution to (6.12) within the class (6.5). Assume 

F = 0 in (6.12). Then, since u(•, t) E H叩）n H詞 fort>0, by Theorem 6.2 (i), we 

obtain 

IIA½u(t)II ::; C［虞（t-s）（辛心(s)+ cu(s)) ds 
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:::;c fat (t -sい（苫心(s)II+ llcu(s)II) ds 

Therefore (6.11) yields 

llu(t)IIH叩） :SC1t (t -s)託 1llu(s)IIH叩）ds, t > 0. 

゜The generalized Gronwall inequality (see e.g., Lemma 7.1.1 (p.188) in [17]) yields u(t) = 

0, 0 < t < T that completes the proof of the uniqueness of solution. 

Next we will prove the existence of the solution. First an operator Q fromび(O,T;H叩））

to itself is introduced by 

Qu(t) = 1t K(t -s)（図心(s)+cu(s))ds, O<t<T 

We set G(t) = Ji。~ K(t-s)F(s)ds. It is sufficient to prove that the equation u = Qu+G(t) 

has a unique solution inザ(0,T; H,叩））． Indeed,by Theorem 2.1, we can improve the 

regularity of u, and show that u is the solution to (6.10) within the class (6.5). Moreover, 

Theorem 6.1 yields 

IIGll£2(0,T;H2(0)) + IIGIIH吋O,T，だ（9)）三 C||F||E(0,T,L打n))・ (6.13) 

The estimates (6.11) and Theorem 6.2 (i) lead to the inequality 

n 

IIA½Qu(t)II ＝［ぷK(t -s)(〗砂u(s) + cu(s)) ds 

さe/t(t-s)伍1IIA½u(s)llds, 0 < t < T. 

゜Applying (6.14), we obtain the following chain of the inequalities: 

IIA½Q2u(t)II = IIA辺(Qu(t))IISC  j¥t -s）圧1|国(Qu(s))lids 

s c2 [(t -s)抒 1(［(s -C)ia o iu(＜）||d< ds 

=C2 [（［(t -s)ia-l(s -<）ia-lds) ||A%（＜）]|d( 

(er（知））
2 

=「（a) ［ （t -C)a-1||A噂）lldt

Repeating the last estimation m-times, we obtain the inequality 

IIA½Qmu(t)II s ~（炉））m ／t(
r (1 ½ma) 。

t-s)野—1IIA½u(s)llds,

(6.14) 
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which is valid for O < t < T, m EN. Now we choose m EN such that悶a-1 > 0 and 

set Cm= 
(cr（枠））m

r（日）・
Then 

IIQmu(t)||い（!1)さCm1t ~~(t -s)'?"'-1llu(s)IIH叩）ds

゜
O<t<t 

t 

:S: Tぴ—1Cm 1'llu(s)IIH叩）ds.

゜Hence, setting四＝ T号a-lcm,we reach the estimate 

IIQmu(t)||〗叩）さ p;,. (1t llu(s)||が (n)ds)2 :::; p;,.T21T llu(s)||}叩）ds,
0 I JO 

which implies the inequality 

1T IIQmu(t)||}叩）dtさ p;,.T21Tllu(s)||》叩）ds.
0 JO 

By the邸 ymptoticbehavior of the gamma function, it is e邸 yto verify that 

lim Pm= T―1 lim 
(T含er（い）m

m→oor  (l =0. 
m--+oo5ma)  

(6.15) 

Hence ITPml < 1 for large m E N. Now we set Qu = Qu + G. It follows from 

(6.15) thatかisa contraction fromび(O,T;げ（D))to itself. Hence the mappingか
has a unique fixed point u. E L刊O,T;H叩））， thatis, i;Jm叫＝叫． Thenか口＝

Q(Qmu*) = Qu., that is, i;Jm(Qu』=0広， whichmeans that the point Qu. is also 

a fixed point of the mappingか． Bythe uniqueness of the fixed point ofか， we

finally see the eq叫 ity叫＝侶＝ Qu*+ G. Thus the equation u = Qu + G has a 

unique solution inび(0,T; HJ(O)) and llu||だ (O,T;H叩）） SCIIGIIL2(o,T叩 (fl))・ Therefore 

置n=1い＋cul さ CIIFIIL2(0,T;L叩）） andso (6.6) in Theorem 6.1 yields the 
L2(0,T;L叩））

estimate 

Q応：砂u+cu
J = 1 )い（0，T,H叩））nH可0,T,L叩））

= ll1t K(t -s)（虹四（s)+ cu(s)) ds 

゜ j=l I 11£2(0,T;H叩））n即 (O,T;L叩））
n 

：：：：：011L砂 U＋⑳ ：：：：： CI|F||い(O,T;L叩）） 9

j=l 11£2(0,T;L叩））

which proves Theorem 6.3.■ 
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7 Properties of solutions 

In this section, we discuss some important properties for time-fractional diffusion equa— 

tions. Some properties are similar to the case a = 1: the parabolic equations, and others 

are remarkably distinct. In Subsections 7.1 and 7.2, we describe two distinct properties, 

which may provide mathematical accounts for the diffusion phenomena indicating some 

anomalies, compared with the classical diffusion. In Section 10-4, we will again mention 

such properties from the phenomenalismical viewpoints. Moreover in this section, we 

will discuss the properties related to comparison and the positivity of the solutions, 

which are similar to the case a=  1. 

7.1. Backward problem in time 

Let the elliptic operator A be defined by (6.4) and let condition (6.2) be assumed. 

Moreover we assume that bi, c E C囮）， j= 1,…,n. 

We consider a backward problem in time: 

,

v

、

卯u(x,t) = -Au(x, t), x E !:1, 0 < t < T, 

叫o= 0, 

u(・, T) = b 

(7.1) 

with b E炉 (n)n HJ(n). 

In the case a=  1, the backward problem (7.1) is not well-posed, and in particular, 

the mapping b→u(・, 0) is not continuous from H叫D)to L叩） forany m E N. 

However, the case O < a < 1 is drastically different. That is, we can prove 

Theorem 7.1 (Floridia, Li and Yamamoto [6]) 

For each b E が (D)n HJ(n), there exists a unique solution u E C([O, T]; L2(D)) n 

C((O, T]; H2(D) n HJ(n)) to (7.1) such that 8『uE C((O, T]; L行n)).Moreover we can 

choose constants C1, C2 > 0 depending on T such that 

Cillu(•, 0) 11£2(!1) ::; llu(•, T) IIH2(!1)さC2llu(•, 0) 11£2(!1) ・ (7.2) 

The theorem implies that the time-fractional diffusion equation improves the reg-

ularity of the initial value by exactly 2 as the Sobolev space order, which means that 

the time-fractional diffusion equation with O < a < 1, has a much weaker smoothing 

property than a = l. 

To the best knowledge of the authors, Sakamoto and Yamamoto [38] is the first 

work for the well-posedness of the backward problem in time with extra unnecessary 
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assumption that c ::; 0 in n. As for backward problems for time-fractional equations 

with symmetric A, we can refer to many works: Liu and Yamamoto [30], Tuan, Huynh, 

Ngoc, and Zhou [42]. 

By the same proof, we can obtain 

Corollary 7.1. 

In Theorem 7.1, for each distinct T1, T2 > 0, there exist contants C3 = C3(T1, T2) > 0 

and C4 = C4(T1, T2) > 0 such that 

C3 llu(・, T2) IIH2(n) ::; llu(・, T1) IIH2(0)さC4llu(・,T2)IIH2(0)・

The backward problem is important also for case 1 < a < 2 and see Floridia and 

Yamamoto [8]. 

7.2. Asymptotic behavior of solution for large t 

We consider an initial boundary value problem (6.1) with F = 0 where we assume (6.2) 

and (6.3): 

c(x)さ0, x ED. 

It is well-known that we can find a constant C5 > 0 such that 

llu(•, t) 11 さ:C5e―ふtllu(•,O)II if a= l. 

The asymptotic behavior of solution u(・, t) in the case O < 0: < 1 is remarkably different: 

Theorem 7.2. 

There exists a constant C6 > 0 such that 

llu（・，t)11 さ C6t―"'llu(•, o)II (7.3) 

for each solution u to (6.1). 

This means a much slower decay of solutions as t→oo for the case O < a < 1. 

The proof can be found in Sakamaoto and Yamamoto [38], which relies directly 

on the representation formula (6.7) and an estimate of the Mittag-Leffier function 

E叫—入記）． Moreover the decay rate戸 isthe best possible in a sense (e.g., The-

orem 4.3 in [38]). 

We note that the same decay was proved in the case where the coefficients of A 

depend on (x, t) E Ox (0, oo) (Chapter 5 of Kubica, Ryszewska and Yamamoto [28]) 

and in the case of Av(x) =—ど;,k=l む (ajk(x)叩(x)) ーと;=1 も (x)が(x) -c(x)v(x) 
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with c::; 0 inn (Golgeleyen and Yamamoto [13]). 

7.3. Comparison principle for a linear time-fractional diffusion equation 

In what follows, let A be defined by (6.4), and let (6.2) be satisfied, and bj, c E 

L00(0), 1 ::; jさn.We emphasize that (6.3) is not assumed. By u(F, a), we denote the 

solution to the problem (6.10) with the initial data a and the source function F. Then 

Theorem 7.3. 

Let a E HJ(O) and F E L刊nx (0, T)) satisfy F(x, t) ~ 0 for (x, t) E n x (0, T) and 

a(x) ~ 0 for x En. Then 

u(F, a)(x, t) ~ 0 for (x, t) En x (0, T). 

Corollary 7.2. 

Let a1, a2 E HJ(D) and Fi, F2 E L2(D x (0, T)) satisfy a1(x)~ a2(x) for x E D and 

F1(x, t) ~ F2(x, t) for (x, t) ED x (0, T). Then 

u(F1，釘）（x,t) ~ u(F2, a2)(x, t) for (x, t) E D x (0, T). 

As for more details, see surveys Luchko and Yamamoto [31, 32, 33]. 

7.4. Strict positivity of a solution 

In Subsection 7.3, we show the non-negativity of solution if an initial value and a non-

homogeneous term are non-negative in the domains under consideration. Here we discuss 

the strict positivity of the solution. 

We consider an initial boundary value problem (6.1), where c = 0 in O and F = 0 

in O x (0, T), and we assume condition (6.2), but not (6.3). Then 

Theorem 7.4 ([31]) 

Let an initial value a E L叩） satisfya :::, 0 and a芸0in 0. We assume that u satisfies 

the first equation in (6.1), and belongs to C((O, T]; C(IT)) as well as (6.5). Then 

u(x, t) > 0 for x E O and O < t：：：：： T・

The proof is based on a weak Harnack inquality below stated, and for the statement 

we introduce notations. Let B(x0, r) := {x E町； Ix-xol < r} with x0 E O C町 and

r > 0, and 

Q_(xo, t。,r):= B(x0, 8r) x (t。,t。＋い），
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（ 叫 Xo,t。,r):= B(x0, <5r) x (t。+（2 -b)T戸， t。＋2Trこ）
with 15 E (0, 1), t。>0and r > 0, T > 0, and by IQ-(xo, t。,r)I, we denote the measure 

in町 x股．

Then we state the weak Harnack inequality for time-fractional diffusion eq叫 ion

(Zacher [48]). 

Theorem 7.5 

We assume that u satisfies the first equation in (6.1), and C((O, T]; C(D)) as well as 

(6.5). Let O < <5 < l and r > l be fixed. For any t。>0,0 < p < ~ and r > 0 
2+na-2a 

satisfying t。+2T五 <Tand B(x0, 2r) C 0, we have 

(l f 位(x,t)IPdxdt) ~::::: C inf u. 
|Q_（Xo, t。,~ k_(xo,to,r)) 砂 o,to,r)

Here the constant C > 0 depends on ajk, b, T, a, n,p, r. 

Part III 

8 Time local existence of solutions to initial bound-

ary value problems for semilinear time-fractional 

diffusion equations 

The arguments are based on Luchko and Yamamoto [32], [33]. Let n = 1, 2, 3 and 

Q c町 bea bounded domain with the smooth boundary叩

We introduce some notations and results needed for further discussions. We define 

an elliptic operator A as follows: 

ー Av(x)：＝一区］;k=lむ(ajk(x)如 (x))-c(x)v(x), x En, 

割A)={v Eが（切； OvAV= 0 onぬ｝．

Here we assume 

叩＝叩 Eび（TI), j, k = l,…,n, 

there exists a constant μ。 >0such that 

江，k=la州x)ばk;::,:μ。区Jn=1翌， XE配1,…，品 E恥

c(x) < 0 for all x E豆

(8.1) 

(8.2) 
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and we set 

い（x)＝〉切k(X)叫x)如 (x), XE叩，

J,k=l 

where v(x) =（乃(x),…,％（x)) is the unit outward normal vector to ao at x E 80. We 

can similarly consider more general A and other boundary conditions such as the Robin 

boundary condition. 

Without fear of confusion, we use the same notations as in Section 6 in spite of 

the different boundary condition for A. Thus let the eigenvalues of A be numbered 

according to their multiplicities: 0 <入1さふ s・ ・ ・. Note thatふ→ ooask→ CX). 

Let'Pk be an eigenvector corresponding to the eigenvalueふ suchthat Acpk =入匹kand 

(cpj, cpり＝ 0if jヂkand（外も） ＝1. Then the system｛匹｝kENof the eigenvectors 

forms an orthonormal basis in L叩）． Bythe assumption c(x) < 0 for x E TI in (8.2), 

we can verify that入k> 0 for all k E N. For any'Y 2:: 0, we can define the fractional 

powers A1 of the operator A by the following relation (see, e.g., [35]): 

00 

A乃＝苔Z(v，四）互 'D(Aり：＝｛vEL叩），言や(v，亨く CX)}

and 

||v||P(AT) :＝ （言や(v，匹）2)と

We also mention the important inclusion V(A1) CH叫切． Wecan similarly introduce 

the operators S(t) and K(t) to (6.8). 

We mainly consider an initial boundary value problem for a semilinear time-fractional 

diffusion equation: 

｛
 

卯(u(x,t) -a(x)) = -Au(x, t) + f(x, u(x, t)，▽u(x, t)), x En, 0 < t < T, 

OvAU = 0 on 80 X (0, T). 

(8.3) 

We can understand that f (・, u(•, t) ,• u(•, t)) is a function in n, and is determined by 

u(•, t) =: u(t). Then we can define 

F(u(t)) = f(・, u(•, t) ,• u(•, t)), 

which means that F(u(t)) is a mapping from t E [O, T] to a spatial function. Then we 

can rewrite (8.3) as 

｛
 

8f(u(t) -a)= -Au(t) + F(u(t)), 0 < t < T, 

u(t) E D(A), 0 < t < T. 
(8.4) 
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Now we introduce conditions posed on the semilinear term F in (8.4). We choose and 

fix a constant I satisfying 
3 

4 
-< 1 < 1. 

We assume that we can find a constant p > 0 such that there exists a constant仰＝

心 (p)> 0 satisfying 

(i) llf(v)II S CF, II!(町)-f(v2)II S CFllv1 -v2I|つ(A'!)

if llvllv(A'I),||町 ||V(A'I),||v2llv(A'I)SP 

(ii) there exists a constant E: E (0, ¾) such that 

IIJ(V) IIH20国）さ Cp(p) if llvllv(A'I) Sp. 

(8.5) 

Henceforth by C > 0, Ci。,C1> 0, etc., we denote generic constants, which are inde-

pendent of the functions u, v, etc. under consideration, and we write CF, C(p) in the 

case we need to specify a dependence on related quantities. We note that condition (i) 

is necessary for the argument on the fixed point in the space C([O, T]; D(Aり）， while

condition (ii) guarantees more regularity of u. 

Before we state the main results of this section, let us discuss two examples of the 

source functions, which satisfy the condition (8.5). 

Example 1. For f E Cパ恥）， bysetting F(u) := f(u(x, t)) for (x, t) E D x (0, T), we 

define F : D(A1)→び(D),¾ <'Yく 1.Then F satisfies (8.5). 

Example 2. We set 

n 

f(x,v(x)，▽v(x))：＝ども(x)v(x)如 (x), XE  0, 
j=l 

where bj Eび（IT),1：：：：： j：：：：： n. Then (8.5) is satisfied. In particular, a semilinear term 

of this type is contained in the time-fractional Burgers equation如＝吃u-u如．

Now we are ready to state the local unique existence of a solution to the initial-

boundary value problem (8.4). 

Theorem 8.1. 

(i} Let a semilineaT teTm F satisfy the condition (i} in (8.5} with p > 0 and llallv(A"f):S p. 

Then them exists a constant T = T(p) > 0 such that theTe exists a unique solution 

u E C([O,T];'D(A1)) to 

t 

u(t) = S(t)a + 1'K(t -s)F(u(s))ds, 0 < t < T. 

゜
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(ii) Let a semilinear term F satisfy the conditions (i) and (ii) in (8.5) with p > 0 and 

Ila||わ(A-r):S:p. Then there exists a constant T = T(p) > 0 such that the initial boundary 

value problem (8.4) possesses a unique solution u = ua(x, t) satisfying the inclusions 

Ua EL刊0,T; H2(D)) n C([O, T]; D(A1)), ua -a E Ha(O, T; L2(D)). (8.6) 

Moreover, there exists a constant C(p) > 0, such that 

||叫-%||L2(0,T;H叩））:::;GIia -bllv(A,), (8.7) 

provided that llallvcA,), llbllv(A,)：：：： p. 

The results and the proof are similar to the partial diザerentialequation of parabolic 

type which correspond to the case a= 1 (see, e.g., Henry [17], Pazy [35], Yagi [44]). 

Proof. 

For the operators S(t) and K(t) defined similarly to (6.8), we can prove the same 

properties as Theorem 6.2. 

For a fixed IE (¾, 1) in the condition (8.5) and a fixed initial value a E V(A1), we 

define an operator L : L2(0, T; L2(0)）→ L2(0, T; L2(0)) by 

(Lu)(t) := S(t)a + 1t K(t -s)F(u(s))ds, 0 < t < T. 

゜For the constant p > 0, we set 

Then we prove 

Lemma 8.1. 

V := { v E C([O, T];'D(A1)); llu -S(-)allcuo,TJ;'D（A-Y)) ~ p}. (8.8) 

Let H E C([O, T]；び(r2)).Then 

1t K(t -s)H(s)ds E C([O, T]; D(Aり）．

゜
Proof. Let O < 77 < t ::; T. We have the representation 

Jtが K(t-s)H(s)ds -1''1 A7K(17-s)H(s)ds 

=［がK(s)H(t-s)ds-］：がK(s)H(n-s)ds 
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t ＝［がK(s)H(t-s)ds+［がK(s)(H(t-s) -H(ry -s))ds 

=:11 + 12. 

For the first integral, by Theorem 6.2 (i) and'Y < 1, we have the relations 

t 

||IlIIさC1's°'(l-,)-l ~~ IIH(t -s)llds 

gC||H|| 

as rJ↑t. 

n 
o:,;s:,;t 

ta(l-1) _ T/a(l-1) 
C([O,T];V(A-r))---+ 0 

a(l -,y) 

Next, we obtain the following norm estimates 

n 

III2II = 111が K(s)(H(t-s) -H(ry -s))ds 

゜n 
:SC l''sc1—,)a-l o<::1;/"~r IIH(t -s) -H(ry -s)llds. 

° 勺゚n<t<T

For HE  C([O, T]; L2(D)), the function 

1sti-,y)a-l1 _ max __ IIH(t -s) -H(TJ -s)II 
0<nStST 

is an integrable function with respect to s E (0, ry) and 

lirns(l--y)c,-l, !11f1X __ IIH(t -s) -H(ry -s)II = 0 
n行。<n<t<T

for almost alls E (0, 71). Hence, the Lebesgue convergence theorem implies the relation 

limritt III2II = 0, which implies 

Jtが K(t-s)H(s)ds E C([O, T]; L叩）），

゜that is, 

1t K(t -s)H(s)ds E C([O, T]; D(Aり）．

゜Thus the proof of Lemma 8.1 is completed.■ 
Now we proceed to the proof of Theorem 8.1. In view of Theorem 6.2 (i), the 

inclusion a E D(Aりimplies

S(t)a E C([O, T]; V(Aり）． (8.9) 
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Indeed, 

IIA1(S(t)a -S(s)a)ll2 = IIS(t)(A1a) -S(s)(A1a)ll2 

00 

=区 |E叫—入n□ -Ea,l （一心翌）門（A1a, ら)|2.
n=l 

Applying the Lebesgue convergence theorem and the estimate (see, e.g., Theorem 1.6 

(p. 35) in [36]) 

IEa,1(—入nt°')I ~ 

we can verify the inclusion (8.9). 

C 
f 

1十入n炉
or all n E N and t > 0 

Because of the condition (8.5) and V(A1) c H1(0) for v E C([O, T]; V(A1)), we 

obtain F(v) E C([O, T]; L刈0)).Now, applying Lemma 8.1, in view of (8.9), we reach 

the inclusion 

Lv E C([O, T]; V(A1)) for v E C([O, T]; V(Aり）． (8.10) 

For the further proof, we need the following properties that are valid for a sufficiently 

small T > 0: 

(i) LV c V, V being the set defined by (8.8). 

(ii) There exists a constant a E (0, 1) such that for any u1墨2EV, the norm estimate 

IILu1 -Lu2llc([O,T];D(A-Y)) :Sa||附-匹||C([O,T]，D(A-Y))

holds true. 

Proof of (i). Let u EV. Then, the inclusion (8.10) implicates Lu E C([O, T]; D(Aり）．

Now we consider the expression 

が (Lu(t)-S(t)a) = 1が K(t-s)F(u(s))ds, 0 < t < T. (8.11) 

゜For any u EV, using the norm estimates 

llallv(A吋 =||A'all：：：：： P, llu -S(-)allc([D,T];V(A-r))：：：：： P, 

we obtain 

llu(t)llv(A"'）さ p+ IIA1S(t)all = p + IIS(t)A1allさp+Gip=: Cw  (8.12) 

The first condition from (8.5) implies that 

IIF(u(t))IIさCp(C2p) for all u EV  and O < t < T. (8.13) 
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Applying (8.13), by means of Theorem 6.2 (i), we obtain the norm estimates 

IILu(t) -S(t)aliv(A,.,) 

= lilt A1 K(t -s)F(u(s))ds 

゜
：：：：：C 1'(t -s)(l-,)a-lcF(C2p加：：：：： g ：：：：： C3 

t(l-1)a _ T(l-,)a 

。 (l-1)a (1 -1)a. 

The constant C3 > 0 depends on p > 0 but is independent on T > 0. Therefore, 

choosing T > 0 sufficiently small, we complete the proof of the property (i)．■ 
Proof of (ii). 

Estimate (8.12) yields that II附 (t)llv(A'Y)：：：：： C2pand 11四 (t)llv(A'Y)：：：：： C2pfor any附，匹 E

V. The condition (8.5) leads then to the norm estimate 

IIF(u1(s)) -F（匹（s))I|::::; Gp(C2p) llu1 (s)一四(s)llv(A,), 0 < s < T. 

Hence, we have the following chain of estimates: 

IIL妬 (t)-L匹 (t)llv（心） ＝ ［がK(t-s)(F（附（s))-F（四（s)))ds

゜t 

幻 (C2p)1'(t -s)"'(l-1)-1||（附一四）（s)llv(A,)ds

゜気ふT"'(l-1)sup II附 (s)一四(s)llv(A,)・

O<s<T 

In the last ineq叫 ity,the constant C4 > 0 is independent of T, and thus we can choose 

a sufficiently small constant T > 0 satisfying the inequality 

p := C4Ta(l-1) < 1. 

The proof of the property (ii) is completed.■ 
Due to the properties (i) and (ii), the contraction theorem can be applied to the 

equation u = Lu. As a result, this equation has a unique solution u E V for O < t < T. 

This solution u E C([O, T]; V(Aり） satisfiesthe estimate (8.12) and the equation 

u(t) = S(t)a + 1'K(t -s)F(u(s))ds, 0 < t < T. (8.14) 

゜This proves part (i) of Theorem 8.1. 

Next, for the solution u of the equation u = Lu, we prove the inclusions (8.6). 
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In the condition (8.5), we can choose a sufficiently small c > 0 such that O < c < ½
By the equation (8.14), we obtain 

Au(t) = A1→S(t)A'a + 1 正 K(t-s)が F(u(s))ds, 0 < t < T. 

゜Furthermore, by the second condition in (8.5), the inequality (8.12) yields the estimate 

IIA° F(u(s)）||さ店(C2p).Thus, we obtain the chain of the inequalities 

IIAu(t)II :::'.: Ct―a(l-,) IIA'all + C 1'(t -s)"'s-1心 (C2p)ds

゜:::'.:Ct―a(l-,)IIA'all + Cp(C2p), 0 < t < T. 

For O < a < 1, the inequality -a(l -1) > -1 and t-a(l-,) E L1(0, T) hold true. 

Application of the generalized Gronwall inequality yields 

IIAu(t)II ~ (cra(l-,)IIA'all＋（石(C2p))

t 

+C 1'(t -s)°'0-1(s―a(l-,) IIA'all＋仰(C2p))ds

゜こCt―a(l-,)IIA'all+ Cp(C2p) + (IIA'all＋（フp(C2p))t°'(c-(l-,)l, 0 < t < T. 

Therefore, noting that -a(l -1) < a(E -(1 -1)) -1)), we have the norm estimate 

IIA。u(t)II:::; Cs(l + T叫(ca(l-,)+ 1), 0 < t < T, 

where C5 > 0 depends on IIA1all and the constants CF, C2, p, a, and E. For ½ < 1:::; 1, 

we can directly verify that -2a(l -1) > -1, so that Ji。~ 11Au(t)ll2dt < oo, that is, the 

inclusion 

uEび(0,T；が（0)) (8.15) 

holds true. 

It remains to prove that u -a E Ha(O, T;び（0)).The inequality (8.13) implies the 

inclusion F(u) Eび(O,T;L叩））．

Then we apply (6.6) and obtain the inclusion 

lt K(t -s)F(u(s))ds E Ha(O, T; L叩））．

゜Here we note that we have the same estimate as (6.6) for A with the zero Neumann 

boundary condition 8,仇 u= 0. Applying (6.6) to the equation (8.14), we reach the 

inclusion u -a E Ha(O, T; L2(0)), which completes the proof of (8.6) from the theorem. 
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Finally, we have to prove the estimate (8.7). By the construction of the solutions 

ua, ub as the fixed points of the equation u = Lu, we have 

llua||戸 (O,T;H叩）） :SC(p), llub||L2(0,T叩 (fl)）:SC(p). (8.16) 

On the other hand, 

叫t)-ub(t) = S(t)a -S(t)b + 1t K(t -s)(F(ua(s)) -F(ub(s)))ds, 0 < t < T. 

゜In view of (8.16), we can use the condition (8.5) and apply the generalized Gronwall 

inequality. Further details of the derivations are similar to the ones employed in the 

proof of Theorem 1 from [32], [33], and we omit them here. Thus, the proof of Theorem 

8.1 is completed．■ 

9 Comparison principle and blow-up for semilinear 

time-fractional diffusion equations 

In this section, we邸 sumethat the spatial dimension n is 1, 2, 3. We fix 1 > 0 such that 

¾<,<l. 

9.1 C omparison principle 

We consider an initial boundary value problem (8.4) with A defined by (8.1). For 

simplicity, we assume (8.2), although we can relax the conditions. In what follows, we 

suppose that the semilinear terms f(x, u(x, t)) depend only on the spatial variable x 

and a function u, but not on▽u(x, t). Moreover, we introduce a class of semilinear 

terms F via smooth functions from the space C1(TT x [-p, pl). That is, for a function 

f E C1(TT x [-p, pl), in terms of D(A1) C C(TT) by ¾< ry < 1 and n = l, 2, 3, we can 

define a mapping F : { v E D(A1) : llv llv(A-r)さp}-----+ L2(n) by 

F(v) := f(x, v(x)), x En, 0 < t < T. (9.1) 

For a fixed constant M > 0, we set 

巧M:= {f Eび(TTx [-p, pl); llfllc嘩 x[-p,p])::;M}. (9.2) 

Now we are ready to formulate a comparison principle for initial boundary value 

problems (8.4) for a semilinear time-fractional diffusion equation. 
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Theorem 9.1 (Luchko and Yamamoto [33]). 

For Ji, h E F M  and a1, a2 E V(Aり， weassume that there exist solutions u(fk, a砂，
k = 1, 2 to the initial boundary value problem (8.4) with the semilinear terms fk, k = 1, 2 

and the initial values ak, k = 1, 2, respectively, which satisfy (8. 6) and 

lu(fk, a砂(x,t)I :Sp, x E 0, 0 < t < T, k = 1, 2. 

If J1(・, ・) 2: h(・, ・) on Ox (-p,p) and a1(・) 2: a2(・) in 0, then 

u(fi, a1)(x, t) 2: u(h,位）（x,t) in O x (0, T). 

9.2 Blow-up 

The comparison principle provides upper and lower estimates for the solution to (8.4). 

Upper estimates can be used to guarantee the global existence in time of solutions to 

(8.4), which means that we can choose arbitrary T > 0 in Theorem 8.1, and as for 

examples for such estimates, we can refer to [33]. We recall that we assume c(x) < 0, 

XE百in(8.2), and so all the eigenvalues入k,k EN of A are positive. 

Same as the semilinear parabolic equations, of course we cannot always prove the 

global existence of solution. As such an issue, we here consider the blow-up. The study 

of this topic has just started and we state only one result by Huang, Liu and Yamamoto 

[19], which treats more general cases. 

In (8.4), we consider f which does not depend on x, that is, F(v) := f(v(x)), x En. 

We assume 

f E 01[0, oo), f 2 0 in [O, oo), f is convex, (9.3) 

and 

a E D(A), a 2 0, 羊0 inn. (9.4) 

Then, similarly to Theorem 8.1, for each a E V(A), we can find九＞ 0such that 

there exists a unique solution 

u E C([O, T,』;V(A)) satisfying u -a E Ha(O, T,ふL2(D)), (9.5) 

and Theorem 9.1 yields 

u(x, t)~ 0, x E n, 0 < t < Ta, 
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Now we are mainly concerned with the non-existence of global solution in time to (8.4) 

within the class (9.5). 

In addition to (9.3) and (9.4), we further assume that 

there exist constants c0 > 0 and p > 1 

such that f(()~ co~P for all ~ ~ 1. (9.6) 

We set 

Ta := sup{t > O; llu(・, t)||い(fl)<(X)｝ (9.7) 

and we call Ta > 0 the blow-up time if九く 00. If冗く oo,then by the definition we 

see that 

limsup llu(・, t)||い(!1)=(X)． 
t↑Ta 

We recall thatふ＞ 0is the minimum eigenvalue of A. It is known that the 

corresponding eigenfunction does not change the sign. Hence we caJ1 choose <p1 (x) 

satisfying 

A凸＝入1cpl，凸＞ 0inn, 1 叫 x)dx=l.
Q 

(9.8) 

Now we are ready to state our main result. 

Theorem 9.2 ([19]) 

For initial value a(x) satifying (9.4) and the constants c0 > 0 and p > l defined in (9.6), 

we further assume 

a。:=1a(x)叫 x)dx>（塁）ナ・
Then九く ooand 

Ta :S冗：＝ ｛（p -l)f(2 -0:)(co吋―1_い｝―と・

Theorem 9.2 generalizes the result for the case a = 1 (i.e., the classical parabolic 

equation) which is found for example in Theorem 17.1 (p.104) in Quittner and Souplet 

[37]. In the case of a = 1, concerning the non-existence of global solutions in time, 

there have been enormous works since Fujita [10], and we can refer to a comprehensive 

monograph by Quittner and Souplet [37]. See also Fujishima and Ishige [9], Ishige and 

Yagisita [20]. 

There are very rapidly increasing interests on nonlinear time-fractional differential 

equations, and so here we refer to only a few works: Borikhanov, Ruzhansky and Torebek 

[4], Floridia, Liu and Yamamoto [7], Ghergu, Miyamoto and Suzuki [12], Hnaien, Kellil, 
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and Lassoued [18], Kian and Yamamoto [23], Kirane, Laskri and Tatar [25], Kojima 

[27], Suzuki [39, 40], Vergara and Zacher [43], Zhang and Sun [49]. 

The proof of Theorem 9.2 is based on the comparison of solutions to initial value 

problems for time-fractional ordinary differential equations. Such a method can date 

back to Kaplan [21] for a=  1, and see also Payne [34]. 

10 Concluding remarks 

1. Here we sketch a theory for the forward problem for time-fractio叫 diffusionequa— 

tion whose order a in time is between O and 1. The case a E (1, 2) is quite important 

from the physical viewpoint, and here we omit that case. There are many works on the 

numerical analysis for time-fractional differential equations, but in this article we do not 

discuss them. 

2. We should have many topics to be clarified. For example, the non-homogeneous 

boundary value problems should be studied and we refer only to Yamamoto [45] and 

the references therein. 

3. Here we do not touch inverse problems for time-fractional differential equations, but 

explain mainly the forward problem, that is, only the initial boundary value problems. 

For the forward problem, mostly the properties are similar to the c邸 eof a = 1. How-

ever, many results on inverse problems for the c邸 eO < a < 1 are drastically different 

from a = 1. Researches on inverse problems are very rapidly developing and it is diffi-

cult to provide updated references and here we refer only to three surveys [26] as of the 

year 2019. 

4. We do not explain the physical backgrounds for the time-fractional diffusion equa— 

tions. The time-fractional diffusion equation is a model equation for diffusion in het-

erogeneous media such as soil. Real field data often indicate longstanding stay of the 

diffusive substance near a source and lower averaging effects of the density in x and 

t, and data are deviated from simulation results by means of the classical diffusion 

equation with a = 1, in other words, the classical diffusion equations may not be an 

adequate model equation, and so one should consider several alternative models. The 

time-fractional diffusion equation is one possible model. 

Here, in view of the fundamental solutions, we compare the character of the time-

fractional diffusion equation with diffusion process on a fractal. We can understand that 

the fractal is NOT heterogeneous media and we can expect that the diffusion model 
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on a fractal is quite different from the character of the time-fractional diffusion. For 

comparison, we consider the behavior near t = 0 of the fundamental solutions G(x, y, t), 

which can be interpreted as the particle density at (x, t) if G(x, y, 0) = 8(y -x): the 

Dirac delta function, which describes that the particles concentrate at one point at the 

initial time t = 0. 

• For the classical diffusion equation in艮叫

atu(x, t)＝△u(x, t), x E町， t> 0, 

we have 

G(x, y, t) ~ Cit―号 exp(— C叶xt- y|2) 

for small t > 0. Here C1 > 0 and C2 > 0 are constants. Since G(x, y, t) has 

no singularity for t > 0, we can understand that with the fundamnetal solution, 

particles concentrating on the point y at t = 0 immediately diffuses, which means 

no long stay of particles near a source. 

• For diffusion on the Sierpinski gasket, we have 

G(x,y,t) ~ Cパ expい(|x-ty|dw)dw-1) 

for small t > 0 (Barlow and Perkins [3]), where C3 > 0 and C4 > 0 are constants, 
包•and ds and dw are positive constants, and especially ds = ~ is called the spectral 
log5 

dimensions of the Sierpinsky gasket. The fundamental solution is characterized 

with different parameters ds, dw but the character is still similar to the case of the 

classical diffusion. 

• For如 ＝ △u, we have 

2 2:。

G(x,y,t) ～ C5|x -y|―攣t―~expい (|x -ty|；；)） 
for small t > 0 (Eidelman and Kochubei [5]). Here the costants C5 > 0 and C6 >〇

are given by only n. In the case a = 1, this coincides with the fundamental solution 

for the classical diffusion equation. However for O < a < 1, the fundamental 
n(l-a) 

solution contains a factor Ix -y|—~ which is singular in x -y. By this singular 

factor, the fundamental solution can explain that the particles stay longer near a 

source point. 

These examples demonstrates that the time-fractional diffusion keeps a quite dif-

ferent character even from a diffusion in a fractal. 
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11 Appendix 

Lemma 11. 1 (generalized Gronwall inequality) 

Let C。>0be a constant and O <a< l. Moreover let r E £1(0, T), ~ 0 in (0, T). We 

assume that u E £1(0, T) satisfies 

0 :S u(t):S r(t) + C。1t(t -s)°'-1u(s)ds, 0 :St :ST. 

゜Then 

u(t) :S r(t) + C1祈2t1'(t -s)°-1r(s)ds, 0 :St :ST. (11.1) 

゜Here the constants C1 > 0 andら＞ 0are dependent on a, C,。,butindependent of 

T > 0. We note that if C,。>0is independent ofT > 0, then {11.1) holds fort> 0 with 

C1, C2 > 0 which are independent oft> 0. 
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