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Efficient navigation of cargo-towing microswimmer in non-uniform flow fields
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The vision of deploying miniature vehicles within the human body for intricate tasks holds tremendous
promise across engineering and medical domains. Herein, optimal navigation of a cargo-towing swimmer
under an applied zig-zag flow is studied by employing direct numerical simulations coupled with a deep
reinforcement learning algorithm. Tasks include navigation in flow and shear-gradient directions. We ini-
tially explore combinations of state inputs, finding that optimal navigation necessitates swimmers to perceive
hydrodynamics and alignment, surpassing reliance solely on hydrodynamic signals while considering their
memories. Next, we study combinations of action spaces, allowing dynamic changes in swimming and/or
rotational velocities by tuning B1 and C1 parameters of the squirmer model, respectively. By keeping both
parameters fixed, cargo-towing swimmers demonstrate superior performance in the flow direction compared to
swimmers without load due to tumbling movements influenced by shear flow. In the shear-gradient direction,
swimmers without load outperform cargo-towing swimmers, with performance decreasing as load length in-
creases. Across the combination of allowing B1 and C1 to change, the policies from solely dynamic B1 actions
demonstrate superior navigation. The policies are then used as a showcase against naive cargo-towing and inert
colloidal chains. A t-distributed stochastic neighbor embedding analysis reveals the complex interplay between
perceived hydrodynamic signals and swimmer position. In the flow direction, swimmers align effectively with
regions of maximum velocity, while in the shear-gradient direction, periodic transitions from minimum to
maximum state values occur. Comparing pullers, pushers, and neutral swimmers, cargo-towing swimmers show
a reversal in swimming velocity trends, with pullers outpacing neutral and pusher swimmers, irrespective of load
lengths.
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I. INTRODUCTION

The concept of operating miniature vehicles within the
human body to perform intricate tasks has been a long-
standing dream that engineers today are poised to realize.
In this scenario, robotic surgeons could intricately navigate
the human body, targeting ailments such as arterial plaque
and Alzheimer’s-related protein deposits, while nanoma-
chines could penetrate resilient materials like steel beams
or airplane wings, detecting and repairing cracks to avert
catastrophic failures [1]. This visionary concept holds the
promise of unprecedented precision and safety across engi-
neering and medical domains. Micro-/nanoscale swimmers,
encompassing both natural and artificial entities, represent a
class of objects capable of autonomous mobility by harness-
ing energy from their surroundings [2]. Over recent decades,
these swimmers have emerged as transformative agents for
navigating complex microenvironments, spanning biomedical
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applications such as drug delivery and gene therapy [3,4]
to environmental remediation efforts [5,6]. These targeted
applications require the microswimmers to carry a specific
load, i.e., cargoes, towards the designated sites [7–9]. How-
ever, traditional navigation methods often face formidable
challenges in traversing intricate landscapes filled with ob-
stacles and uncertainties due to the need for extensive prior
knowledge of the environment and prohibitive computational
costs [10–12].

In nature, organisms, ranging from animals to humans, ex-
hibit an inherent ability to navigate unfamiliar terrains. Much
like adults effortlessly maneuvering through urban landscapes
or marine zooplankton evading predators in open seas by
leveraging local cues [13], these biological responses stem
from a unified representation of perceptions that support
memory and guide future actions—a phenomenon often re-
ferred to as a cognitive map [14]. The recent advancements
in machine learning techniques, particularly reinforcement
learning (RL), offer promising avenues to understand and
emulate the adaptability and navigation capabilities observed
in nature. Many studies have adopted these technique to study
the efficient navigation of microswimmers in various types
of environments [15–20], by assuming that the swimmers
have privileged access to laboratory-frame information. Some
further investigations have considered scenarios with par-
tial information or restricted sensory capabilities, assuming
swimmers can only detect signals in their immediate vicinity
[21–24]. Recently, researchers have studied the dynamics of
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FIG. 1. (a) Depiction of a swimmer carrying a load of length dcargo = 2 navigating a zig-zag shear flow. The principal axes of the ith bead
are ûi, v̂i, and ŵi. The initial bead is a squirmer, while the subsequent beads are inert and distinguished by green and blue spheres. The first
bead features an eye positioned at 30 deg from û, enhancing the chain’s ability to detect a visual cue for a light source in n̂e direction. A
springlike potential, governed by Eq. (3), connects the beads back to back. The first bead is equipped with sensors on its surface (depicted as
red cones), covering an area of approximately π/2a2(1 − cos 30◦) ≈ 0.21a2 (a the radius of the swimmer). These sensors enable the swimmer
to perceive surface stresses exerted by the surrounding fluid. The sensor locations are situated at the poles of each principal axis. (b) Schematic
representation of the squirmer model, featuring relevant unit vectors and angles in spherical coordinates r̂, θ̂, and φ̂. Notably, û signifies the
swimming direction. (c, d) Illustrations outlining the contributions of the source dipole (B1 sin θ ), stresslet (B2 sin 2θ ), and rotlet (C1 sin θ ) to
the surface velocity, respectively. (e) Diagram depicting the learning process employed to train a cargo-towing microswimmer for navigation
in a zig-zag shear flow. The input to the policy network comprises surface stresses τ6 and alignment with the light source n̂e · n̂L . The network
outputs an action corresponding to a rotation (N̂rotlet) or an increase in swimming speed (v̂B1 ). The dashed black line illustrates the swimming
trajectory over a learning episode, with black circles indicating the swimmer’s position at discrete simulation time steps. Red circles mark
action steps where a new action aI is adopted and sustained over the subsequent M simulation steps.

microswimmers towing cargo through viscous fluids, reveal-
ing insights into propulsion mechanisms and hydrodynamic
efficiencies [25–28]. However, our understanding of the ef-
ficient navigation of these cargo-carrying microswimmers
remains limited.

In this paper, our objective is to showcase the feasibility
of designing an intelligent cargo-towing microswimmer by
coupling direct numerical simulations [29], to fully incor-
porate hydrodynamic interactions, with deep Q learning, a
subscheme of RL. We first examine the performance of a
cargo-towing microswimmer tasked with navigating a zig-
zag shear flow while carrying a load of up to three inert
colloidal particles. The cargo-towing microswimmers are as-
sumed to be able to freely rotate around their body axes, as
well as possess the ability to change rotational and transla-
tional velocities. The combination of actions that shows the
best performance is then used to demonstrate the navigation
in the shear-gradient and flow direction against both naive
cargo-towing microswimmers and normal colloidal chains of
the same length. Subsequently, we analyze the optimal poli-
cies for each navigation task using a nonlinear dimension
reduction technique. Lastly, we investigate the influence of
learning across different swimming modes—pusher, puller,
and neutral—under various load lengths.

II. SIMULATION METHODS

We study a load-carrying swimmer navigating a Newto-
nian fluid under an applied zig-zag shear flow. The dynamics
of the particles and the host fluid can be determined by
simultaneously solving the Newton-Euler equations and a
modified Navier-Stokes equation, using the smoothed profile
(SP) method [29].

The cargo-towing swimmer is represented as a flexible
bead-spring model consisting of N beads. The principle axes
of the ith bead are ûi, v̂i, and ŵi, illustrated in Fig. 1(a). The
interaction between beads is modeled by a potential contain-
ing a steric repulsion interaction ULJ and a bonding interaction
UB (for neighboring beads on the same chain):

U =
∑
i< j

ULJ(ri j ) +
∑
〈i, j〉

UB(ri j ) (1)

where
∑

〈i, j〉 denotes a sum over bonds. The steric repulsion
is given by a truncated Lennard-Jones potential with power
36–18:

ULJ(ri j ) =

⎧⎪⎨
⎪⎩

4β

[(
σ
ri j

)36
−

(
σ
ri j

)18
]

+ β, ri j < 2
1
6 σ

0, ri j > 2
1
6 σ

(2)
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where ri j = Ri − R j , ri j = |ri j |, β characterizes the strength
of the interactions, and σ is the diameter of the beads. The
beads are connected and aligned back to back by a bonding
potential of the form

UB(ri j ) = 1

2
kcR2

0 ln

[
1 −

(
ri j

R0

)2
]

+ 1

2
kc,u

(
θ2

i + θ2
j

) + 1

2
kc,vθ

2
v (3)

where cos(θi ) = ûi · r̂i j , cos(θ j ) = û j · r̂i j , cos(θv ) = v̂i · v̂ j

[Fig. 1(a)]. The constants kc = 30β/σ 2, kc,u = kc,v = 50β.
The forces and torques on each beads due to the potential in
Eq. (3) can be derived following [30]. The first bead is concep-
tualized as a microswimmer, with the subsequent load/cargo
beads assumed to be inert, Fig. 1(a). The microswimmers are
characterized using the self-propelled spherical “squirmer”
model [31,32]. This model, originally devised to study the
motion of a ciliated particle propelled by synchronized cil-
iary beating, represents the microswimmers as rigid spherical
particles with a slip velocity at their surface. This slip velocity
is determined by an infinite expansion of polar and azimuthal
modes:

us(θ, φ) =
∞∑

n=1

2

n(n + 1)
BnP′

n(cos θ ) sin θ θ̂

+
∞∑

n=1

CnP′
n(cos θ ) sin(θ )φ̂ (4)

where r̂, θ̂, and φ̂ are the unit vectors in the radial, polar, and
azimuthal directions at a given point (θ, φ) on the surface of
the particle, with θ the polar angle and φ the azimuthal angle,
as shown in Fig. 1(b). Usually, the expansion is considered
up to the second order in Bn, and the azimuthal components
are neglected. In this paper, we explicitly consider the az-
imuthal component to the first order; thus, the slip velocity at
a given point on the surface of the spherical swimmer can be
evaluated as

us(θ, φ) =B1
(

sin θ + α

2
sin 2θ

)
θ̂+C1 sin θ φ̂. (5)

The coefficient B1 represents the amplitude of the primary
squirming mode and is directly related to the steady-state
swimming velocity of the squirmer, denoted as U = 2

3 B1.
The parameter α = B2/B1 determines the swimmer’s clas-
sification: a negative α designates a pusher, exemplified by
E. coli; an α of zero characterizes a neutral swimmer, typified
by Paramecium; and a positive α identifies a puller, such as
C. Reinhardtii. The source dipole term decays proportion-
ally to 1/r3, whereas the stresslet term B2 decays as 1/r2

[33]. With the inclusion of the azimuthal component C1, the
squirmer gains the ability to rotate around a body-fixed axis
(û, v̂, or ŵ) autonomously [24], deviating from an earlier in-
vestigation that required an external torque [23]. This primary
azimuthal mode C1, termed the rotlet, is analogous to the B1

mode responsible for self-propulsion. This mode exhibits a
decay rate of r−2 [34]. The particle dynamics are governed by
the Newton-Euler equations. For a spherical particle of radius
a, with center-of-mass position Ri, velocity V i, orientation
matrix Qi, angular velocity �i, with skew symmetric angular

velocity skew(�i ), and inertia tensor Ip(= 2/5Mpa2I) and
mass Mp(= 4

3πa3ρp) we have

Ṙi = V i,

Q̇i = skew(�i ) · Qi,

MpV̇ i = FH
i + FC

i ,

Ip · �̇i = NH
i + NC

i . (6)

The forces on the particles, as expressed in Eq. (6), comprise
the hydrodynamic force FH and the particle-particle forces
FC , given by the potential in Eq. (2). Torques are similarly
decomposed into hydrodynamic NH and particle-particle NC ,
arising from the bonding potential in Eq. (2). The conservation
of momentum guides the determination of the hydrodynamic
forces and torques, ensuring a coherent coupling between the
host fluid and the swimming particles. Simultaneously, the
evolution of the host fluid within the SP method involves solv-
ing a modified Navier-Stokes equation for the total velocity
u = u f + up, incorporating contributions from both host fluid
u f and particle up components. The sharp particle interface is
replaced by an interface of finite thickness ξ , using a smooth
and continuous particle phase field φ. This phase field, taking
values of 1 within the particle domain, zero in the host fluid,
and smoothly interpolating between these values within the
interface, allows for the definition of necessary particle fields
(e.g., up). In this context, both fluid and particle domains are
identified using the same phase field ρ f = ρp = ρ being set
for this paper. The Navier-Stokes equation is expressed as

ρ(∂t + u · ∇ )u = ∇ · σ + ρ(φ f p + φ f sq + φ f shear ). (7)

The second term on the right-hand side of the equation con-
sists of three force contributions: φ f p, the constraint force
ensuring momentum conservation; φ f sq, the force arising
from the squirming motion; and φ f shear (x, t ), an external
force sustaining a zig-zag velocity profile:

vx(y) =
⎧⎨
⎩

γ̇ (−y − Ly/2), −Ly/2 < y � −Ly/4
γ̇ y, −Ly/4 < y � Ly/4
γ̇ (−y + Ly/2), Ly/4 < y � Ly/2

(8)

where γ̇ is the shear rate, y represents the distance in
the velocity-gradient direction, and Ly is the height of the
simulation box with dimensions (Lx, Ly, Lz ). Further details
regarding this methodology, including its implementation,
accuracy, and applications, can be found in previous works
[29,35].

The cargo-towing ability of the swimmer navigating the
imposed flow relies fundamentally on the learned policies,
establishing a crucial mapping between sensory signals and
corresponding responses. Tuned meticulously through a RL
framework [36], these network/policy hyperparameters en-
sure the acquisition of optimal behaviors. Specifically, these
policies empower the swimmer to select precise actions
that yield optimal long-term rewards. Employing a deep Q-
learning strategy, combined with prioritized experience replay
and n-step learning [37–39], enables the acquisition of navi-
gation strategies for a given task. In the RL framework, two
main actors interact: the agent (swimmer) and the environ-
ment. The agent processes information from the environment
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to determine its current state, leading to an action. After each
action, the environment provides feedback in the form of a
reward and the revelation of a new state.

During training, the swimmer’s goal is maximize expected
rewards over predefined episodes. These episodes are further
discretized into Ns action segments, each consisting of M
simulation steps of length t [see Fig. 1(e)]. The total du-
ration of an episode (Tepisode = NsT ), where T = Mt ,
marks the duration of an action segment. At the beginning
of action segment I , corresponding to simulation time step
i = IM and time TI = (IM ) · t ≡ ti=IM , the swimmer per-
ceives the current state sI , choosing an action aI dictated by a
policy function π . This chosen action will be carried over the
next M simulation steps (one action segment). At the end of
the action segment, the swimmer advances sI to a new state
s′

I = sI+1, with a corresponding reward rI that depends on
the initial and final states. For the purposes of the learning,
the states of the system at the intermediate simulation time
steps tIM < t < t(I+1)M are irrelevant; only the initial and final
states are needed. The tuple of this set of experiences (action-
reward) can be written as (sI , aI , s′

I , rI ).
The training regimen compiles rewards at the end of each

episode, by summing up the individual rewards for each
action step r = ∑Ns/M

I=0 rI . The expected cumulative reward
after an action at time step TI can be evaluated from the
action-value function (Q function) Qπ (sI , aI ) = rI + γ rI+1 +
γ 2rI+2 + . . .. Here γ ∈ [0, 1) is the discount factor, and π

is the policy function mapping between states and action.
The optimal policy π∗ that maximizes the long-term re-
ward should fulfill the Bellman equation Qπ� (st , at ) = rt+1 +
γ maxa Qπ� (st+1, a) [36]. This Q function is represented by
a neural network, which is trained with a Bellman-informed
loss function (i.e., the loss is zero if the Bellman equation is
satisfied). To maximize long-term rewards, the agent selects
actions using an ε-greedy scheme, balancing exploration and
exploitation. Actions are determined by maximizing the cur-
rent value function, aI = argmaxaQπ (sI , a), with probability
1 − ε, otherwise chosen randomly with probability ε, result-
ing in an ε-greedy selection scheme. Initially set to 1, ε

exponentially decays (decay rate k) to 0.015 to encourage
exploration in early training. As the policy approaches opti-
mality, actions align with the trained policy. The final ε value
is set to a small nonzero positive number to foster adaptability.

During each episode, the swimmer’s positions and ori-
entations are randomly initialized, and the agents execute a
total of 2 × 103 action steps. At each action step, the state
sI , action aI , next state s′

I , and corresponding reward rI are
stored in a “replay memory,” with a maximum size of NPmax .
Subsequently, a batch of these stored experiences (size Nb) is
drawn during each action step and input into the optimizer to
adjust the hyperparameters of the Q function neural network.
The update rule is expressed as

Q(sI , aI ) ← Q(sI , aI ) + αl [rI + γ max
a

Q(sI+1, a)

− Q(sI , aI )] (9)

where αl represents the learning rate. Details of this update
rule can be found in [37]. The loss function utilized for the Q

network training is defined as

LI (sI , aI ; θI ) = [YI − Q(sI , aI ; θI )]2. (10)

Here, θ represents the Q function network parameters, and
YI = rI + γ maxa Q(sI+1, a; θ−

I ) is the target reward at learn-
ing step I . We note that the the target reward YI is evaluated
using another neural network called the target network, whose
parameters θ−

I are adjusted to mirror those of the predicting Q
network (θI ) every C steps and are kept constant in between
intervals. To enhance learning stability, the target accumu-
lated reward estimation Y employs the target network (with
parameters θ−) instead of the Q network (with parameters θ),
improving the prediction of the expected accumulated reward.
Notably, both networks (predicting and target) are identical;
the difference lies only in the network parameters. Finally, the
gradient with respect to the weights θ is given by

∇θI L(θI ) = [YI − Q(θI )]∇θt Q(θI ). (11)

In this paper, the cargo-towing swimmer is endowed with
the capability to execute two distinct categories of actions:
rotations and variation in the translational and/or rotational
velocities [related to B1 and C1 in Eq. (5) respectively].
Rotations, originating in the azimuthal C1 component of
the surface velocity, occur about one of the principal body
axes, with the rotational velocity proportional to �C1 = C1/a.
Consequently, there exist seven total actions associated with
rotation: six potential rotational actions [see Fig. 1(a)], for
rotations around {±u,±v,±w} with respect to body frames,
in addition to the passive action of “no rotation” (C1 = 0). At
the onset of each episode, the initial values are set as B0

1 =
0.1 and C0

1 = 0.6. At each action time step I , the swimmer
possesses the ability to accelerate/decelerate its translational
velocity (BI

1 = BI−1
1 ± B1) and/or rotational velocity (CI

1 =
CI−1

1 ± C1), where B1 = 0.02, C1 = 0.1, and BI
1 and CI

1
are constrained within 0.02 � BI

1 � 0.2 and 0.1 � CI
1 � 1.0

respectively. The former constraint ensures that the swimmer
maintains a minimum velocity above the lower limit, allowing
it to continue moving with respect to the background fluid,
while the latter ensures the existence of finite rotational veloc-
ity. The reward per action time step is defined by rμ

I = Rμ
I+1 −

Rμ
I , where μ is the desired swimming direction, i.e., along the

flow direction x or in the shear-gradient direction y. Note that
we do not consider the reward in the vorticity direction due
to its decoupling from the shear flow [23,24]. The definition
of the reward outlined above can also be regarded as a simple
approximation for a swimmer that is able to detect gradients
in a given scalar field (e.g., gradient in nutrient concentration),
with the reward expressed as r∇C

I = C(RI+1) − C(RI ). The
active swimmer is presumed capable of detecting the surface
stress τi(0 � i < Nτ ), with Nτ representing the total number
of sensors strategically positioned at antipodal points along
the intersection of its three principal body axes [as depicted in
Fig. 1(a)]. The three-dimensional (3D) signals from each sen-
sor contribute to the state representation alongside the visual
signal n̂e · n̂L.

For the simulation parameters, we adopt as characteristic
units the grid spacing , viscosity η, and density of the
host fluid ρ f . These units establish the time and mass units
as ρ f 

2/η and ρ f 
3 respectively. The bead radius a and
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interface thickness ξ are set to 5 and 2, respectively. Our
simulation employs a box dimension of 32 × 64 × 32

with full periodic boundary conditions across all dimensions.
The applied shear rate is denoted as γ̇ = 0.04η/(ρ f 

2),
corresponding to a Reynolds number Re ≈ 1. We explore
scenarios where the number of load particles carried by the
swimmer dcargo falls within the set {1, 2, 3}. For most of the
cases presented here, and unless stated otherwise, the swim-
mer is set to be neutral with α = 0.

Regarding the learning parameters, we use as discount rate
γ = 0.99, learning rate αl = 0.000 25, batch size Nb = 128,
and maximum size of the replay memory NPmax = 106. The
parameters of the target network are updated with those of the
Q network every C = 100 action steps, and the greedy decay
rate for ε is set as k = 0.981. Each Q network comprises an
input layer with a number of neurons corresponding to the
number of three-dimensional surface stress signals obtained
from the sensors, i.e., 18, in addition to the visual signal
n̂e · n̂L, three hidden layers with 100 neurons each, and an
output layer with neurons matching the size of the action
space. A learning episode spans Ns = 2 × 103 action steps,
with an action interval of M = 10 simulation time steps. The
policy network is trained over 1000 episodes. It should be
noted that the choice of action time step duration is purely
due to computational limitations. Higher frequency updates
would lead to latency issues with our current computational
resources. By setting M = 1, one can expect qualitatively sim-
ilar trained policies from the training protocol. At steady state,
by setting M = 10, B1 = 0.1, and C1 = 0.6 the swimmer is
able to translate 2/3B1Mt ≈ 0.0095 times of its diameter
and rotate approximately C1/aMt ≈ 0.09 rad due to the C1

mode. The shear rate strength is calibrated to ensure that the
swimmers move slowly compared with the background fluid
speed. Concurrently, this setup permits the examination of re-
gions with varying shear gradients throughout the simulation
time steps. Additionally, the selection of learning hyperparam-
eters is designed to expedite the convergence to the optimal
policy, as elaborated in our prior study [23].

III. RESULTS AND DISCUSSIONS

We consider a microswimmer both with and without cargo,
that is trained to perform several swimming tasks. Given the
imposed zig-zag flow and the periodic boundary conditions,
the chain can swim up, enter the negative flow velocity region,
ux

f − , or descend toward the positive flow region, ux
f + . Initially,

we explore the navigation performance across various com-
binations of state inputs, i.e., surface stresses and alignment
with the light source, along with the corresponding memories.
Subsequently, we analyze different combinations of actions,
allowing for dynamic adjustments in swimming and rota-
tional velocities through the tuning of B1 and C1 parameters,
respectively. The set of actions demonstrating the best per-
formance will be showcased against naive cargo-towing and
inert colloid chains, where all beads are inert. Finally, we
compare the navigation performance across different types of
swimmers. First, three types of input signals are perceived by
the swimmer: the current time step surface stresses and align-
ment with the light source {τ I

i , (n̂e · n̂L )I}, the current and the

previous time step surface stresses {τ I
i , τ

I−1
i }, and the current

and the previous time steps of both surface stresses and align-
ment with the light source {τ I

i , τ
I−1
i , (n̂e · n̂L )I , (n̂e · n̂L )I−1}.

The velocities of the swimmer tasked with navigating in the
flow and shear-gradient directions using the aforementioned
signals are shown in Fig. 2 with solid-circle, dashed, and
solid-triangular lines respectively. Across all examined cases,
it becomes evident that providing {τ I

i , n̂e · n̂L} results in the
best performance, followed by providing a combination of
surface stresses and light alignment (with their respective
memories); only providing surface stresses (and their mem-
ory) yields the worst performance. This indicates that the
combination of hydrodynamics and the alignment to the light
source is essential for efficient navigation. It is noted that
although the input including the memories of both surface
stresses and light alignment achieves the same level of per-
formance as the input without memories, the convergence
toward optimal behavior is slower for the former. This is due
to the increased complexity of the input/action space, which
requires more time to reach optimality [36].

Subsequently, we investigate various action combinations,
employing both fixed values of B1 and C1, as well allowing
for dynamic variations in their magnitudes. Figures 2(a) and
2(e) show the results obtained for a swimmer with a static
B1 = 0.1, which is able to rotate with a rotational velocity
proportional to C1 = 0.6. Additionally, the velocity of a swim-
mer without a load, which is comparable to the case studied in
[24], is depicted in red. The value of B1 is selected to ensure
that the swimmer moves slowly compared to the fluid speed,
while still allowing it to explore regions with different shear
gradients within the time step of an episode [23]. Conversely,
C1 is chosen based on its demonstrated optimal performance
for a swimmer without cargo. Specifically, C1 = 0.6 en-
ables the swimmer to actively rotate roughly six times faster
than the rotation induced by the shear flow [24]. For naviga-
tion in the flow direction [Fig. 2(a)], the x component of the
velocity, ux

p, shows that the swimmer without the load exhibits
inferior performance compared to the load-carrying swimmer.
This discrepancy arises from the nonspherical shape of the
swimmer with cargo, which has a propensity for tumbling
under shear flow, thereby promoting reorientation and realign-
ment in the flow direction [40,41]. Conversely, navigation in
the shear-gradient direction heavily relies on the swimming
velocity, as evidenced by the decline in the y component of the
swimmer’s velocity, uy

p, with an increase in the length of load
(Appendix A). It is noteworthy that the swimming velocity of
a spherical swimmer is U = 2/3B1 = 0.06, comparable to the
speed of a swimmer without any load indicated by the red line.

Now we consider the case where the parameter B1 dy-
namically adjusts at each action time step I , following the
expression BI

1 = BI−1
1 ± B1, subject to the constraint 0.02 �

BI
1 � 0.2, while CI

1 remains static at 0.6, while still allow-
ing the axis of rotation to be switched. In Fig. 2(b), the ux

p
component of the load-carrying swimmer (dcargo � 1) ex-
hibits an optimal value comparable to the velocity of the
shear flow at its peak, i.e., ux

f = γ̇ Ly/4 = 0.64 [Eq. (8)],
surpassing that of the loadless swimmer, thereby underscor-
ing the cargo-towing swimmer’s superior reorientation and
alignment with the flow. Across all load lengths examined in

033305-5



SANKAEWTONG, MOLINA, AND YAMAMOTO PHYSICAL REVIEW RESEARCH 6, 033305 (2024)

FIG. 2. The velocities of a trained cargo-towing swimmer, with the load length of dcargo ∈ {1, 2, 3} observed over a navigation course
comprising a total of TI = 104 action time steps. Here we consider three sets of input signals: {τ I

i , (n̂e · n̂L )I}, {τ I
i , τ

I−1
i }, and {τ I

i , τ
I−1
i , (n̂e ·

n̂L )I , (n̂e · n̂L )I−1}. (a)–(d) The x component of the velocity of a swimmer trained to navigate in the flow direction. (e)–(h) The y component
of the velocity of a swimmer trained to navigate in the shear-gradient direction. Each column showcases navigation outcomes using constant
C1 = 0.6 and B1 = 0.1; constant C1 = 0.6 and dynamic BI

1 = BI−1
1 + B1, where BI

1 represents B1 at action time step I constrained between
0.02 � B1 � 0.2; constant B1 = 0.1 and dynamic CI

1 = CI−1
1 + C1, where CI

1 denotes C1 at action time step I capped between 0.1 � C1 �
1.0; and both dynamic CI

1 = CI−1
1 + C1 and BI

1 = BI−1
1 + B1, respectively. Note that the velocities of a swimmer without any load (no load)

are also plotted for each case for comparison.

this paper, the ux
p component demonstrates that the swimmer

adeptly aligns with the maximum flow region irrespective of
its length. Conversely, for navigation in the shear-gradient
direction [Fig. 2(f)], the loadless swimmer demonstrates the
highest velocity equal to 2/3B1 = 0.133 when B1 = 0.2, its
upper limit. As previously noted, the velocity during shear-
gradient navigation is heavily contingent upon the swimming
velocity of the cargo-towing swimmer, as evident in Fig. 2(e),
where uy

p decreases with an increasing in the length of
the load. The augmented navigation speed in this scenario
directly results from the heightened maximum swimming ve-
locity, compared to the static B1 = 0.1 condition depicted in
Fig. 2(e).

Next, we investigate the scenario where the parameter C1

dynamically adjusts according to the expression CI
1 = CI−1

1 ±
C1, constrained within 0.1 � CI

1 � 1.0, while BI
1 remains

fixed at 0.1. In Fig. 2(c), when navigating in the flow direction,
both the swimmer with and without load optimally align at the
position of the maximum background shear flow γ̇ Ly/4. Prior
studies have highlighted the challenge in achieving this task
with a spherical swimmer due to limitations in adequately ex-
ploring the action/state space with full 3D rotations [23,24], a
challenge which we successfully overcome. In Fig. 2(g), when
navigating in the shear-gradient direction, the performance of
the swimmer with the load surpasses that of the static case
depicted in Fig. 2(e). However, compared to the dynamic B1

cases, this performance is inferior due to differences in the
maximum swimming velocities.

Lastly, we consider the scenario where both parameters
B1 and C1 are dynamically adjusted at each action time step.
When swimming in the flow direction, enabling dynamic
changes for both parameters results in suboptimal perfor-
mance compared to enabling changes for only one parameter.
This is evidenced by the decrease in ux

p depicted in Fig. 2(d)
compared to Figs. 2(b) and 2(c). This decline may stem
from the expanded action space. As discussed above, the task
of swimming in the flow direction is more sensitive to the
sampling/exploration of the action/state space, necessitating
a longer training period using the same network structure to
achieve equivalent performance [42], as obtained in the other
two cases, i.e., with dynamical change in either B1 or C1,
discussed above. Conversely, the expanded action space does
not significantly impact training for swimming in the shear-
gradient direction. The performance of the trained swimmer
remains comparable to that achieved with the dynamic B1

parameter, underscoring the high dependency of this task on
swimming velocity.

Next, we will demonstrate the navigation capabilities in
both flow and shear-gradient directions, employing the poli-
cies obtained for the cargo-towing swimmer with load length
dcargo = 2. In this scenario, only the B1 parameter is allowed
to change at each action time step, as this action set exhibited
the best performance compared to the other sets considered.
In Fig. 3, the x component of the velocity for three types
of the three-bead chains, i.e., normal-three-bead chain (red),
naive cargo-towing swimmer with dcargo = 2 (blue), and smart
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FIG. 3. The velocities and the trajectories of a trained (green)/naive (blue) cargo-towing swimmer, with the load length dcargo = 2, and an
inert chain (red) comprised of three beads. Trajectories are shown for the tasks of swimming in the flow (a), (b) and shear-gradient (c), (d)
directions over TI = 104 action time steps. Here C1 = 0.6 and BI

1 = BI−1
1 + B1 (0.02 � B1 � 0.2).

cargo-towing swimmer with dcargo = 2 (green), along with
their trajectories along the shear plane, for the tasks of nav-
igating in the flow and shear-gradient directions, are shown.
In the context of swimming in the flow direction [Figs. 3(a)
and 3(b)], all chains are initially placed near the top of the
simulation box, where the background flow velocity is zero.
Note that the choice of the initial location of the swimmer
is arbitrary and does not affect the navigation performance
in either direction for the trained agent (Appendix B). The
trajectories depicted in Fig. 3(a) clearly demonstrate that
the smart cargo-towing swimmer effectively navigates toward
the maximum flow region while maintaining alignment with
the flow. In contrast, the naive cargo-towing swimmer and
the normal chain become ensnared between the positive and
negative vorticity regimes. The x component velocity plot
presented in Fig. 3(b) underscores the distinction in navigation
performance. The velocity of the smart cargo-towing swim-
mer attains the maximum velocity of the background shear
flow, γ̇ Ly/4, while the naive cargo-towing swimmer and the
normal chain exhibit periodic rotation, indicative of being
trapped between regions with opposite vorticities. Notably,
the velocity magnitude of the naive cargo-towing swimmer

surpasses that of the normal chain due solely to its activ-
ity. For the task of navigation in the shear-gradient direction
[Figs. 3(c) and 3(d)], all chains are initially positioned in a
region where the background flow velocity is close to zero and
positive, i.e., at Ly = 60 with an initial orientation of 45◦ with
respect to the flow direction, the same as the initial setup for
the navigation task in the flow direction. The trajectories de-
picted in Fig. 3(c) illustrate the optimal navigation of the smart
cargo-carrying swimmer through the shear gradient, while
the naive cargo-towing swimmer and the normal chain are
drawn in the flow direction and experience periodic rotations
influenced by the background shear flow. The y component
velocities plotted in Fig. 3(d) confirm that the smart cargo-
towing swimmer has reached its maximum swimming speed
(Appendix A), while the naive cargo-towing swimmer and the
normal chain exhibit periodic rotations.

To characterize the learned policies, we examine their
representations to better understand the successful execu-
tion of the navigation tasks. Our focus lies in unraveling
the intricate mapping between high-dimensional input sig-
nals and their corresponding actions given by the neural
network. In pursuit of this understanding, we adopt a
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FIG. 4. The 2D-projection representations of the output last hidden layer, i.e., state values using t-SNE for the policies governing the task of
(a) navigation in the flow direction and (b) navigation in the shear-gradient direction for a cargo-towing swimmer with C1 = 0.6 and dynamic
BI

1 = BI−1
1 + B1. The cargo length is dcargo = 2 and the swimmer performs the navigation over a course of TI = 104 action time steps. Each

data point within the visualization corresponds to a 2D representation of perceived hydrodynamic signals at a specific state, color coded based
on the state value VI (s) = maxV Qπ∗ (sI , aI ) predicted by the learned policies.

nonlinear dimensional reduction technique developed for the
visualization of high-dimensional data called t-distributed
stochastic neighbor embedding (t-SNE) [43]. This technique
maps high-dimensional data to a lower-dimensional space,
typically two-dimensional (2D) or 3D, while preserving the
relative distances between data points. We consider the same
navigation tasks as shown in Fig. 3 and extract the acquired
representations from the final hidden layer, i.e., the output of
the neural network, onto a 2D plane as shown in Fig. 4. Each
point is color coded based on its state value, defined by

V (s) = max
a

Qπ∗ (s, a) (12)

where VI (s) is the expected maximum total reward that a
swimmer can achieve at action time step I , upon perceiving
the state sI and following the optimal policy π∗. Thus, a higher
(lower) value of VI (s) indicates that starting navigation from
this state s will result in more (less) efficient navigation.

It is imperative to emphasize that the spatial arrange-
ment of these plotted points holds no significance. Instead,
our focus rests solely upon the close juxtaposition of rep-
resentations corresponding to perceptually akin states and
the utilization of color codes, indicative of the expected
maximum total reward associated with each state. For
the task of navigation in the flow direction, Fig. 4(a),
when the swimmer swims in the region of negative
flow velocity ux

f − with the swimming direction towards
the negative flow direction, the state value reaches its min-
imum [Fig. 4(a2)]. On the other hand, when the swimmer
swims in the region of positive flow velocity ux

f + with the
aligned swimming direction, the state value peaks [Fig. 4(a4)].
For the swimmer that swims in the ux

f + region with an
orientation pointing away from the region [Fig. 4(a1)], the
state value is lower compared to the swimmer that swims
in the ux

f − region with a swimming direction towards the

ux
f + region [Fig. 4(a5)]. For the task of navigation in the

shear-gradient direction, Fig. 4(b), the state value shows the
periodicity, i.e., when the swimmer swims in the vicinity of
the zero velocity region, ux

f 0 , and the swimming direction
aligns with the background shear streamline, the state value
reach its maximum. In contrast, when the swimmer enters
the nonzero velocity region, the state value will be lower and
reach its minimum when the swimmer arrives at the high-
est velocity region, regardless of the flow direction. Notably,
swimmer reorientation by shear necessitates a perpendicular
swimming direction, facilitating alignment with subsequent
shear streamlines, resulting in a shift from minimum to max-
imum state value, as indicated by the dotted green arrow in
Fig. 4(b).

In addition to examining the neutral swimmer (α = 0)
as discussed throughout this paper, we extend our analysis
to include other swimmer types characterized by squirming
parameters α = −2 (pusher) and α = 2 (puller). In Fig. 5,
the x and y components of the velocity of the load-carrying
swimmer with length dcargo ∈ {1, 2, 3}, along with that of a
swimmer with no load, tasked with swimming in the flow
and shear-gradient directions are shown, respectively. The
rotational velocity of the swimmer remains fixed and propor-
tional to C1 = 0.6, while the swimming velocity dynamically
adjusts, as set by B1 within the range of 0.02 � B1 � 0.2. In
the context of navigation in the flow direction, regardless of
swimmer type, the swimmer without load exhibits the lowest
swimming velocity [Fig. 5(a)]. However, with the addition
of cargo, the x component of the swimmer velocity reveals
an effective alignment with regions of maximum velocity,
irrespective of swimmer type. Particularly intriguing is the
observation across load lengths, where swimmers with a load
length of dcargo = 2 demonstrate the swiftest convergence
to the maximum flow regime. Conversely, in navigating the
shear-gradient direction, for the loadless swimmer [Fig. 5(e)],
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FIG. 5. The velocities of a trained cargo-towing swimmer, with the cargo length dcargo ∈ {1, 2, 3} along with the swimmer with no load
(a), (e) observed over a navigation course comprising a total of TI = 104 action time steps. (a)–(d) The x component of the velocity of a
cargo-towing microswimmer trained to navigate in the flow direction. (e)–(h) The y component of the velocity of a microswimmer carries the
load trained to navigate in the shear-gradient direction. The rotation of the swimmer is fixed with C1 = 0.6 while the translation velocity is
dynamically changed with respect to BI

1 = BI−1
1 + B1 constrained between 0.02 � B1 � 0.2.

pushers exhibit the highest swimming velocity, followed
by neutral swimmers and pullers, consistent with previous
findings utilizing fixed translational and rotational velocities
[23]. However, with the addition of cargo, a notable reversal
in swimming velocity trends is observed. Pullers now outpace
neutral swimmers and pushers [Fig. 5(f)], a pattern consis-
tently observed across varying load lengths [Figs. 5(g) and
5(h)]. This phenomenon can be attributed to the differential
decay in flow velocity ahead of the puller-type swimmer car-
rying a load, which occurs at a faster rate compared to that of
the cargo-towing pusher [44]. This differential decay plays a
crucial role in reversing the swimming velocities of both types
of cargo-towing swimmers, particularly influencing tasks re-
quiring navigation in the shear-gradient direction.

IV. CONCLUSIONS

In conclusion, we have conducted direct numerical sim-
ulations, using the smoothed profile method, coupled with
a deep reinforcement learning algorithm to study the opti-
mal navigation of a load-carrying swimmer, where the load
is represented by inert spherical particles, under an applied
zig-zag shear flow. We consider loads of up to three colloids
(dcargo ∈ {1, 2, 3}). This flow was selected for its simplified
and deterministic characteristics, making it well suited for
elucidating fundamental mechanisms and validating theoret-
ical models. Nonetheless, we acknowledge the importance of
evaluating more complex and realistic flows, such as Kol-
mogorov flows, which could be considered in future work.
The swimmer is designated to perform the tasks of navigation
in flow and shear-gradient directions. The task of navigation
in the shear-vorticity direction is not considered as it has

been found to be decoupled from the shear flow. A neutral
swimmer is initially considered with and without load. Several
combinations of state inputs were examined, and we found
that the optimal navigation requires the swimmer be able to
perceive hydrodynamic forces and alignment to a light source
that is perpendicular to the flow direction. This resulted in
better performance compared to a swimmer that relies solely
on hydrodynamic signals.

Next, combinations of actions were considered, such that
the swimmer can dynamically adapt its translational and/or
rotational velocities, by tuning the B1 and C1 parameters,
respectively. In the case where both B1 and C1 are constant,
the loadless swimmer showed the worse performance for the
task of navigation in the flow direction, compared to the
cargo-towing swimmer. This is due to the tumbling move-
ments of the nonspherical swimmer, the swimmer with the
load, under the influence of the shear flow. On the other hand,
for the task of navigating in the shear-gradient direction, the
loadless swimmer outperforms the load-carrying swimmer,
whose performance decreases upon increasing the load, show-
ing the strong dependence on the swimming velocity. When
the parameter B1 is allowed to dynamically change and C1 is
fixed, the load-carrying swimmer exhibits optimal navigation
in the flow direction, as the swimmer can align with the stream
at the point of maximum velocity, and thus outperform the
loadless swimmer, regardless of the load length. For navi-
gation in the shear-gradient direction, the swimmer without
load shows the best performance, as it swims with the high-
est swimming velocity, as given by the upper bound of the
capped B1. The navigation performance drops as the length
of the load increases due to the decrease in the swimming
velocity. On the other hand, when C1 is dynamically changed,
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while B1 is fixed, both types of swimmers, with or without
load, show optimal swimming in the flow direction, with the
loadless swimmer slightly outperforming the load-carrying
swimmer. For the loadless swimmer in particular, this task
has been found to be difficult to achieve [23], and by al-
lowing the rotational velocity to change over time, we have
successfully overcome this challenge. For navigating in the
shear-gradient direction, the cargo-towing swimmer outper-
forms the load-carrying swimmer in the case of static B1 and
C1, but is inferior compared to the case where B1 is dynami-
cally changed due to the differences in maximum swimming
velocities. Once both B1 and C1 are allowed to change, the
performance for the navigation in the flow direction is worse
compared to the case where either of the parameters can be
varied, due to the increase in the complexity in action space,
while the navigation in the shear-gradient direction shows the
optimal behavior.

The policy from the action space allowing only changes in
B1 is used to compare the performance for the navigation tasks
against a naive cargo-towing swimmer, with a load length
of dcargo = 2, and a chain of three inert colloidal beads. The
trained swimmer demonstrates superior navigation abilities
compared to the naive cargo-towing swimmer and the inner
colloid chain, which experience periodic rotations driven by
the background shear flow. The obtained policies are then
analyzed using the t-SNE technique which offer insight into
the complex interplay between the perceived multidimen-
sional hydrodynamic signals and their representations upon
the swimmer’s position and orientation within the shear plane.
In the flow direction, the state value is at its minimum when
the swimmer moves in the region of negative flow velocity
with the swimming direction towards the negative flow. Con-
versely, it peaks when the swimmer swims in the region of
positive flow velocity with an aligned swimming direction.
Notably, the state value is lower when the swimmer swims
in the positive flow velocity region with the orientation head-
ing away from it, compared to swimming in the negative
flow velocity region towards the positive flow velocity region.
In the shear-gradient direction, the state value exhibits peri-
odicity. It reaches its maximum when the swimmer swims
near the zero velocity region with the swimming direction
aligned with the background shear streamline. Conversely,
it decreases as the swimmer enters the nonzero velocity re-
gion, reaching its minimum when the swimmer arrives at the
highest velocity region, regardless of flow direction. Shear-
induced swimmer reorientation necessitates a perpendicular
swimming direction, facilitating alignment with subsequent
shear streamlines, resulting in a transition from minimum to
maximum state value. Finally, we examined the performance
of the navigation across the types of swimmer by compar-
ing pullers, pushers, and neutral swimmers. In the context
of navigating along the flow direction, our findings indicate
that swimmers without any load demonstrate inferior per-
formance compared to a load-carrying swimmer, irrespective
of swimmer type. In navigating the shear-gradient direction,
the loadless swimmer exhibits varying swimming velocities,
depending on the swimmer type, with pushers achieving the
highest velocities, followed by neutral swimmers and pullers.
These results align with prior studies that employed fixed
translational and rotational velocities [23]. However, for the

FIG. 6. The normalized swimming velocity of a neutral swimmer
with and without the load. The load length is in the range of dcargo ∈
{1, 2, 3}. The swimming velocity is normalized relative to the steady-
state swimming velocity of 2/3B1.

cargo-towing swimmer, a notable reversal in swimming veloc-
ity trends is observed. Pullers now outpace neutral and pusher
swimmers, a pattern consistently observed across varying load
lengths.
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APPENDIX A: DEPENDENCY OF THE SWIMMING
VELOCITY ON THE LENGTH OF THE CARGO

In the main text, we discussed the performance of navi-
gation of tasks of a neutral type swimmer traversing in the
direction of shear gradients, noting a discernible decrease in
performance concomitant with increasing load lengths. The
efficacy of navigation in this specific direction is markedly
contingent upon the swimmer’s velocity. This dependency is
visually elucidated in Fig. 6, wherein the swimming velocities
of a natural swimmer with and without the load are shown. As
a free swimmer (no load), the swimmer attains the steady-
state velocity 2/3B1, as depicted. When the cargo is loaded
to the swimmer, a noticeable reduction in swimming speed
ensues. Moreover, as the length of the cargo is incrementally
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FIG. 7. The velocities and the trajectories of a trained (green and light-green)/naive (blue and light-blue) cargo-towing swimmer, with the
load length dcargo = 2, and a normal chain (red and light-red) comprised of three inert beads, starting from different initial positions, observed
over a navigation course for the task of swimming in the flow (a), (b) and shear-gradient (c), (d) directions comprising a total of TI = 104

action time steps. Here the constant C1 = 0.6 and dynamic BI
1 = BI−1

1 + B1 constrained between 0.02 � B1 � 0.2 are considered.

augmented, a commensurate decrease in swimming speed is
observed. Notably, it is apparent that the swimmer bearing a
load with a length of dcargo = 3 manifests the most sluggish
swimming velocity among the assessed scenarios.

APPENDIX B: DEPENDENCY OF THE PARTICLE
INITIALIZATION

In Fig. 3 of the main text, we discuss the navigation perfor-
mance of different types of cargo-towing swimmers with the
cargo length dcargo = 2: trained, naive, and normal swimmers
wherein only the B1 parameter can change at each action
time step in both flow and shear-gradient direction. The initial
position of the swimmer is set where the background flow
velocity is near zero and positive. Here, we compare this with
cases where the swimmers’ initial positions are located in
regions where the background flow is negative. The results
are shown in Fig. 7.

For the task of navigating in the flow direction, the trained
(smart) swimmer can navigate towards and swim efficiently
along the maximum flow regimes. Although there are devia-
tions from the maximum regime due to imperfect alignment
with the flow, the smart swimmer can realign its direction
when deviations occur. In contrast, the naive and normal
swimmers are dragged towards the negative flow direction
with periodic rotation, indicating they are trapped amidst vor-
ticities.

For the task of navigating in the shear-gradient di-
rection, the smart swimmer starting in the negative flow
region achieves the same performance as the smart swim-
mer starting from the zero flow region. Similar to the flow
direction task, the naive and normal swimmers are dragged
in the negative flow direction, as they lack the ability to
align their swimming direction towards the shear-gradient
direction.
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