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Propulsion of a chiral swimmer in viscoelastic fluids
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Microswimmers often use chirality to generate translational movement from rotation motion, exhibiting
distinct behaviors in complex fluids compared to simple Newtonian fluids. However, the underlying mechanism
remains incompletely understood. In this study, we elucidate the precise mechanisms underlying the distinct
behaviors of microswimmers in Newtonian and non-Newtonian fluids. We show that the enhanced speed of
chiral swimmers is attributed to the Weissenberg effect induced by normal stress differences resulting from
chiral flows. Additionally, we identify swimmer-specific normal stress differences in a viscoelastic fluid and
demonstrate that swimming speed varies depending on whether the swimmer acts as a pusher or a puller.
Moreover, we investigate the hydrodynamic interactions between a pair of chiral squirmers. When the squirmers
are aligned parallel (perpendicular) to their swimming axis, they tend to separate (approach). These findings
deepen our comprehension of the rheological properties of viscoelastic fluids containing microswimmers,

promising advancements in various applications.
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I. INTRODUCTION

The rheological characteristics of complex fluids often
deviate from well-explored Newtonian fluids. A notable ex-
ample of this deviation is the Weissenberg effect, where
viscoelastic fluids climb up a rotating rod due to normal
stress differences [1]. In various biological scenarios, self-
propelled cells often interact with complex fluids, exhibiting
non-Newtonian behavior. Living biological microswimmers
in complex fluids include bacteria forming viscoelastic
biofilms [2,3] and sperm cells navigating viscoelastic mucus
toward the ovum for fertilization [4-6]. Similarly, artifi-
cial chiral microswimmers have been engineered to navigate
solely in complex fluids whereas they fail to propel them-
selves in Newtonian fluids [7-11]. It is well established
that microswimmers behave differently in complex flu-
ids compared to Newtonian fluids [12-15]. For instance,
E. coli cells swim faster and tumble less often in both
polymer solutions [12] and colloidal suspensions [16], com-
pared to Newtonian fluids; sperm cells swim collectively in
polymer solutions, but not in Newtonian fluids [14]. Pre-
vious experimental, theoretical, and simulation studies have
shown that fluid elasticity can affect the swimming speeds
of microswimmers in complex viscoelastic fluids. This is
observed for a wide variety of swimmers, including fila-
ments [17,18], sheets [19-21], undulatory swimmers [22,23],
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helical flagella [24,25], and squirmers [26—32]. Understand-
ing microswimming in complex fluids holds relevance for
biological and medical sciences, as well as various health
applications, such as biofilm control, fertilization, and drug
delivery systems [33,34].

E. coli cells exhibit counterclockwise flagellar rotation and
clockwise body rotation during swimming, resulting in chiral
flow [35], and they swim faster in polymer solutions com-
pared to Newtonian fluids [12]. Theoretical and simulation
works have indicated that the swimming speed of squirmers
is enhanced due to the coupling between chirality and vis-
coelasticity [30,31]. Experimental, theoretical, and simulation
studies have recently shown that microrobots can swim in
viscoelastic fluids by applying this same principle [10,11].
A chiral microrobot, consisting of the counter-rotating head
and tail spheres, could swim in viscoelastic fluids but not
in Newtonian fluids [10,11]. Previous studies highlight the
critical role of the first normal stress difference in boosting
swimming speeds [7-11,30,31]. However, the precise mecha-
nisms underlying the generation of normal stress differences
(NSD) by the swimmers’ chirality and their impact on swim-
ming speed remain unclear. In this study, we expand on
previous works [30-32], investigating the generation of the
first NSD by the swimmer’s chirality, resulting in the Weis-
senberg effect, which is responsible for the swimming speed
enhancement.

Furthermore, previous theoretical and simulation stud-
ies [27-29,32], using the squirmer model, have shown that
the swimming speed varies with the swimmer type (pusher,
puller, or neutral) in viscoelastic fluids. In contrast, in Newto-
nian fluids at low Reynolds numbers, the swimming speed is
relatively insensitive to the swimmer’s type [36]. The mech-
anisms responsible for the swimmer-type dependence of the
swimming speed in various viscoelastic fluids remain to be
determined. In this study, we elucidate that the first NSD
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is also responsible for the swimmer-type dependence of the
swimming speed.

To understand the influence of the fluid elasticity on the
swimming speed, we conducted direct numerical simulations
of a squirmer in an Oldroyd-B fluid, using the smoothed
profile (SP) method [37,38] to fully resolve the hydrodynamic
coupling between the fluid flow and the squirmer particle.
We have clarified the precise mechanism behind (i) the ac-
celeration in swimming speed due to the swimmer’s chirality
and (ii) variations in swimming speed based on swimmer
type in viscoelastic fluids. To understand the variation in the
swimming speed between Newtonian and viscoelastic fluids,
we calculated the force on a fixed squirmer and analyzed the
normal stress differences around the particle. Additionally, we
investigated how squirmers hydrodynamically interact with
each other in an Oldroyd-B fluid and measured the interaction
forces between chiral squirmers. We found that the squirmers’
chirality influences their hydrodynamic interactions. Specif-
ically, when squirmers are aligned parallel or perpendicular
to their swimming axes, they tend to move away from or
toward each other, respectively. Our findings will not only
advance the applications of drug delivery systems for artificial
microrobots but also provide valuable insights into natural
microswimming in complex fluid environments, such as fer-
tilization of the chiral corkscrew-shaped movement of frog
sperm cells [39].

II. SIMULATION METHODS

A. Squirmer model

We represent microswimmers using the rigid spherical
squirmer model developed by Lighthill [40] and Blake [41]
to represent ciliary propulsion. In the squirmer model, the
propulsion is generated by imposing a modified slip velocity
at the particle’s surface, which takes the general form [42]
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where P, is the derivative of the nth order Legendre poly-
nomial, B, and C, are the coefficients for the nth polar and
azimuthal squirming modes, respectively, with 0 and ¢ the
corresponding unit tangent vectors. Specifically, we consider
the first two polar modes B; and B, along with the second
azimuthal mode C,, the so-called rotlet dipole. This consid-
eration leads to the following expression for the slip velocity
(Fig. 1):
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The first polar mode B; determines the steady swimming
speed in a Newtonian fluid, expressed as Ux = 2/3B;. Fur-
thermore, the ratios @ = By/B; and ¢ = C,/B; represent
the swimmer type and the strength of the flow chirality,

FIG. 1. Schematic representation of the surface slip velocity of
each mode, (a) By; (¢), (d) B,; and (b) C>.

respectively. Swimmers with o < 0 are called pushers (e.g.,
E.coli.), which generate an extensile flow field in the swim-
ming direction. On the other hand, o > 0 denotes pullers
(e.g., Chlamydomonas), which generate a contractile flow
field. Squirmers with o = 0 are termed neutral swimmers,
and swim with a potential flow field. The chiral parameter ¢
generates the flow pattern of a microswimmer with rotating
flagella and a counter-rotating body [30,31,43].

B. Smoothed profile method

We employed the smoothed profile (SP) method [37,38] to
fully resolve the fluid-particle hydrodynamic coupling. This
method has been employed to investigate the dynamics of
colloids and microswimmers in viscoelastic fluids [32,44,45].
In this method, the sharp boundary between the particle and
fluid is replaced with a continuous diffuse interface of thick-
ness &, by introducing a smoothed profile function ¢ € [0, 1],
which is 1 inside the particle and O outside. The mathematical
definition of ¢ can be found in Ref. [37]. Introducing this
¢ field allows us to define field variables for all particle
quantities. The fluid-particle coupling is then accounted for
by enforcing the momentum conservation between fluid and
particle domains. In particular, the total velocity u = us + up,
including the host fluid u; and particle contributions up, is
governed by a modified Navier-Stokes equation

p(% tu. V)u = VPV a4 p@f, + bfa) )
with the incompressible condition V - u = 0, where p is the
fluid mass density, p is the pressure, ¢ is the stress tensor,
@ f, is a body force applied to enforce the particle’s rigidity,
and ¢ f, is the force due to the squirming motion. For the
viscoelastic fluid, we adopt the Oldroyd-B model (o = o +
0},), which is a generalization of the Newtonian fluid, oy =
ns[Vu + (Vu)'], and the upper convected Maxwell (UCM)

fluid, op + A grpz np[Vu + (Vu)T], where 7, and np are the
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viscosities of the Newtonian solvent and the viscoelastic so-
. . L v .
lute, respectively, A is the polymer relaxation time, and o is

the upper-convected derivative, given by o= o0 +u-Vo —
V)T -0 — o - (Vu).

The (spherical) particles follow the Newton-Euler equa-
tions of motion, given by

R, =V, Q,=skew(2)-0, 3)

MV, =F8 4+ F9, I,-9=N"4+N9, (6)
where R; and V; are the position and velocity of particle i,
respectively, and Q; and €; the orientation matrix and angular
velocity. The hydrodynamic forces and torques are denoted
as F! and N¥, respectively, while F}* and N}* represent the
force and torque due to the squirming motion. The function
skew(£2;) is used to create the skew-symmetric matrix of the
angular velocity 2;, which is defined as

0 -Q, Q
skew(R) = | €, 0 -, 1. @)
-Q, Q 0

Further details can be found in Ref. [32].

III. SWIMMING SPEED OF A SINGLE SQUIRMER

A. Chirality dependence

We performed simulations for a single neutral squirmer,
radius a = 5A and interface width & = 2A, inside a cu-
bic simulation box of length L = 128A (A represents the
grid spacing), with periodic boundary conditions in all di-
rections. The host fluids have a mass density and zero-shear
viscosity of p =mny = 1. The particle Reynolds number,
Weissenberg number, and the viscosity ratio are Re =
pUna/ny = 0.005, Wi=2AB;/a=0.2, and B =ns/ng=
ns/(ns + np) = 0.5, respectively. It is observed that the swim-
ming velocity in viscoelastic fluids increases with the chiral
parameter ¢ [see Fig. 2(a)]. This speedup aligns with reports
for Gisekus fluid [30] and Oldroyd-B fluids [31], demonstrat-
ing good agreement with the numerical results in Oldroyd-B
fluids [31]. This previous study has also reported an analytical
solution for the swimming speed in Oldroyd-B fluids, with
a quartic increase in the degree of chirality (U (¢)/U(0) ~
¢*) [31], which is in quantitative agreement with simulation
results, at least for small ¢. In contrast, the velocity remains
constant in Newtonian fluids, regardless of ¢, since the C,
term is decoupled from the translational motion for a spherical
particle. Previously, we found that, due to the squirmer’s chi-
rality, the enhancement occurs for all swimmer types (pusher,
puller, or neutral) in Oldroyd-B fluids [32].

In order to unveil the mechanism behind this swimming
speed enhancement, we shift our focus to the force contribu-
tions parallel to the swimming axis on a fixed squirmer. As
shown in Fig. 2(b), the total force increases with the chiral
parameter ¢, similar to the swimming speed. Furthermore,
the force contributions arising from the Newtonian stress o
and squirming motion both decrease with the chiral parameter
¢. In contrast, the contribution due to the Maxwell stress
0}, increases with the chiral parameter ¢. Therefore, we can
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FIG. 2. (a) Nondimensional swimming speed of a single neutral
squirmer under a periodic boundary condition as a function of the
chiral parameter ¢ in a Newtonian fluid (red) and an Oldroyd-B fluid
(blue). The symbols represent simulation results. The dotted line and
triangle symbols are the analytical solution and numerical results
obtained by Housiadas et al. [31] in an Oldroyd-B fluid, respectively.
(b) Force difference from the force at { = 0 on a fixed squirmer in
an Oldroyd-B fluid, as a function of the chiral parameter { with the
force being parallel to the swimming axis.

conclude that the Maxwell contribution is the primary mech-
anism responsible for the swimming speed enhancement.

To expand upon the previous works [30-32] and clarify
how the Maxwell stress contributes to the total force, we con-
sidered the role of the normal stress differences (NSD), which
have been previously reported to enhance the swimming
speed [11,30,31]. It is worth noting that the main distinction
between Newtonian and Oldroyd-B fluids lies in the presence
of the first NSD. The force per unit area on a squirmer, in
spherical coordinates, is given by the first NSD

(a'f . n)r =0y — P = O0p — Op¢ + const. (8)

By considering only the rotlet dipole (C;, term) in Eq. (2) and
taking into account rotational symmetry in the ¢ direction,
8¢(—p + 0'¢¢) =0.

As shown in Fig. 3, this first NSD o,, — 044, generated
by the squirmer’s chirality, adopts a ring-shaped distribution
near the north/south poles. In turn, this results in a net force
directed toward the center of the squirmer. When B; = 0, the
NSD field is symmetric between the upper and lower hemi-
spheres. Thus, the NSD works toward reducing/enhancing the
swimming speed in the upper/lower hemispheres, however,
given the symmetry, these two contributions balance each
other and result in a net zero total force. However, when
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FIG. 3. Velocity and first normal stress difference (NSD) o,, —
o4¢ fields around a squirmer particle. (a) and (c) correspond to a
squirmer with B; = 0, while (b) and (d) correspond to B; > 0. In
(c) and (d), the quiver plot shows the velocity field, and the density
map represents the NSD field. The dashed lines represent the position
ofr=a—-§&/2.

B # 0, the asymmetry of the velocity field between the upper
and lower hemispheres, generated by the asymmetry of the B,
term [as described in Eq. (2)], leads to a top-bottom asymme-
try in the normal stress differences. In particular, the absolute
value of the NSD on the lower hemisphere is greater than
that on the upper hemisphere. The NSD thus works toward
reducing/enhancing the swimming speed in the upper/lower
hemispheres, with the force on the lower hemisphere being
greater, which leads to the swimming speed enhancement in
viscoelastic fluids.

In previous work [31], the forces acting on a freely swim-
ming squirmer were calculated in force- and torque-free
conditions, but the detailed mechanism behind the swimming
speed enhancement of a chiral squirmer in Oldroyd-B fluids
was not elucidated. Building on this, we elucidate the detailed
mechanism behind the swimming speed enhancement of a
chiral squirmer in Oldroyd-B fluids. Specifically, we compute
the force acting on a fixed squirmer, for which the force
and torque are balanced by the external force required to
fix it, and examine the normal stress differences around it.
Figure 3 illustrates the Weissenberg effect resulting from the
counter-rotating flows in the upper and lower hemispheres.
When B; > 0, the top-bottom asymmetric Weissenberg effect
generates a greater force on the lower hemisphere compared
to the upper hemisphere, thereby accelerating the squirmer in
Oldroyd-B fluids.

B. Swimmer type dependence

Next, we conducted simulations for a single nonchiral
squirmer (¢ = 0), with a = 8A and & = 2A within a fully
periodic cubic simulation box of length L = 128A. The par-
ticle Reynolds number, Weissenberg number, and viscosity
ratio are Re = 0.005, Wi = 0.1, and 8 = 0.5, respectively.
The swimming speeds for a squirmer as a function of the
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FIG. 4. (a) Nondimensional swimming speed of a single
squirmer under a periodic boundary condition as a function of the
swimming type « in both a Newtonian fluid (red) and an Oldroyd-B
fluid (blue). (b) Force difference from the force at « = 0 on a fixed
squirmer in an Oldroyd-B fluid as a function of the swimmer type o,
with the force being parallel to the swimming axis.

swimmer type « are shown in Fig. 4(a). In a Newtonian
fluid, the swimming speed is independent of the swimming
type, with a week Re dependence, which can be approxi-
mated by U/Ux =~ 1 — 0.15aRe [36]. This is consistent with
our observed results. In contrast, in an Oldroyd-B fluid, the
swimming speed of a squirmer decreases with o, with pushers
(e < 0) swimming faster than pullers (o« > 0). This observa-
tion closely resembles the perturbation expansion in terms of
Wi for the UCM fluid (an Oldroyd-B fluid with n; = 0), which
is expressed as U/Ux = 1 — 0.2a¢Wi [29]. Remarkably, this
trend holds despite the difference in the fluids (i.e., constitu-
tive relations).

We again analyzed the force contributions parallel to the
swimming axis on a fixed squirmer. As shown in Fig. 4(b),
the force decreases with «, as does the swimming speed.
We find that pushers swim faster than pullers due to the
decrease in the Maxwell contribution with the o parameter.
To clarify this decrease in the Maxwell contribution to the
force with o, we investigated the NSD around a pusher with
a = —1 and a puller with « = 1. As illustrated in Fig. 5,
for a pusher, the NSD due to uniaxial elongation at 6 = 7
works toward reducing the swimming speed, while the NSD
due to the shear flow at 8 >~ 37 /4 can enhance the swimming
speed. On the other hand, for a puller, both the NSD due to
biaxial elongation at # = 0 and the NSD due to the shear
flow at 0 ~ 7 /4 work toward reducing the swimming speed.
Therefore, the swimming speed dependence on the swimming
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FIG. 5. Velocity field and first normal stress difference o,, — oy
for (a) a pusher with « = —1 and (b) a puller with ¢ = 1. The quiver
plot shows the velocity field and the density map represents the NSD
field. The dashed lines represent the position of r = a — £/2.

type « is associated with the direction of the force generated
by the shear flow in an Oldroyd-B fluid, while it is related
to the force generated by the elongational flow in a Giesekus
fluid [27].

IV. HYDRODYNAMIC INTERACTIONS

In addition to examining hydrodynamic squirmer in-
teractions in Newtonian fluids [46,47], we investigate the
hydrodynamic interactions between two fixed squirmers with

—— Oldroyd-B ]|

—0.5 ! .

d/(2a)

parallel orientations in Oldroyd-B fluids. The separation
distance between the two squirmers is d, both parallel and
perpendicular to the swimming axis. Our simulations involved
two neutral squirmers with a radius a = 5A and an interface
width £ = 2A. These were placed inside a cubic simulation
box with a length L = 128A, using periodic boundary con-
ditions in all three directions. The host fluids have a mass
density and zero-shear viscosity of p = g = 1. B; was cho-
sen to satisfy the condition that Re = pUya/ng = 0.005. The
Weissenberg number and the viscosity ratio were set to Wi =
0.2 and B = 0.5, respectively.

The resulting velocity fields are illustrated in Figs. 6(a) and
6(b). The distances between the squirmers are d/(2a) = 1.5 in
both the parallel [Fig. 6(a)] and perpendicular [Fig. 6(b)] di-
rections relative to their swimming axes. In Fig. 6(a), squirmer
2 reduces the flow velocity behind squirmer 1. In Fig. 6(b),
a divergent flow is observed between the squirmers. This
flow characteristic is similar to the behavior seen between
pushers in Newtonian fluids [47] because the chiral squirmer
produces pusherlike flow patterns in Oldroyd-B fluids [32],
due to the Weissenberg effect induced by squirmer’s chirality,
as discussed in Sec. IIT A.

Furthermore, we calculate the interaction force of fixed
parallel-oriented squirmers for various distances d parallel
[Fig. 6(c)] and perpendicular [Fig. 6(d)] to their swimming
axes. To understand their tendency to either separate or
approach, we calculate the hydrodynamic interaction force
F = (F; —F;,)/2. The force is normalized by the Stokes
drag force acting on a sphere moving with the Newtonian

d/(2a)

|
=3
W

FIG. 6. (a), (b) Velocity fields around two fixed neutral squirmers with ¢ = 3 in the steady state for a Weissenberg number Wi = 0.2
and a viscosity ratio B = 0.5. The distance between the two squirmers is d/(2a) = 1.5 in the directions (a) parallel and (b) perpendicular to
the swimming axis. The colormaps depict the absolute values of the fluid velocity, normalized by the Newtonian swimming speed Uy. (c),
(d) Hydrodynamic interaction forces between two squirmers fixed at a distance r in the directions (c) parallel and (d) perpendicular to the
swimming axis in the steady state. The forces are scaled by the Stokes force at the Newtonian swimming speed F;, = 6w naUy. The dotted and
solid lines represent the force in Newtonian and Oldroyd-B fluids, respectively.
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swimming velocity Uy, i.e., F; = 6anaUyx. As shown in
Fig. 6(c), the interaction force between chiral squirmers is
positive, meaning they experience a repulsive force. The
Weissenberg effect, generated by the chirality of squirmer
1, pushes against squirmer 2, leading to this repulsive force
between the squirmers. As a result, squirmer 1 swims faster
than squirmer 2 along their swimming axes, causing their
separation in Oldroyd-B fluids. The force increases with ¢
in Oldroyd-B fluids, while it remains constant, regardless of
¢, in Newtonian fluids. As illustrated in Fig. 6(d), the inter-
action force between chiral squirmers is negative, indicating
an attractive force. Due to the Weissenberg effect caused by
the chirality of both squirmers, fluid escapes easily from the
gap between them, creating a divergent flow. This results in
an attractive force that leads to their mutual approach. The
force decreases with ¢ in Oldroyd-B fluids, while it remains
constant, regardless of ¢, in Newtonian fluids. Depending
on whether squirmers are fixed parallel or perpendicular to
the swimming axis, the interaction forces typically lead to
either separation or approach, respectively, driven by the
Weissenberg effect resulting from the squirmer’s chirality.

V. CONCLUSION

In conclusion, we investigated the dependence of the
swimming speed of a rigid spherical squirmer in Oldroyd-B
fluids, on the chiral parameter ¢, and the swimming strength
a. We used the smoothed profile (SP) method to fully re-
solve the hydrodynamic coupling between the swimmer and
the surrounding fluid. To elucidate the mechanism behind
the swimming speed, we conducted a detailed analysis of the
forces on a fixed squirmer. We have investigated the precise
mechanism behind (i) speedup due to the swimmer’s chirality
and (ii) variations in swimming speed based on swimmer type

in viscoelastic fluids. The first primary mechanism responsi-
ble for the speedup due to the squirmer’s chirality is the first
NSD, leading to the Weissenberg effect. When B; > 0, the
top-bottom asymmetric Weissenberg effect generates a larger
force on the lower hemisphere than on the upper hemisphere,
thus accelerating the squirmer in Oldroyd-B fluids. Further-
more, when considering variations in swimming speed based
on swimmer type, the first NSD generates forces that acceler-
ate pushers and decelerate pullers. This explains why pushers
swim faster than pullers in Oldroyd-B fluids. Additionally, we
investigate the hydrodynamic interactions of chiral squirmers
in Oldroyd-B fluids. The interaction forces between a pair
of squirmers aligned in a parallel or perpendicular direction
to their swimming axes tend to make them separate or ap-
proach each other, respectively, owing to the Weissenberg
effect caused by the squirmers’ chirality. We anticipate that
these distinct hydrodynamic interactions in Oldroyd-B fluids,
influenced by the Weissenberg effect, significantly impact the
collective behavior of squirmer suspensions in viscoelastic
fluids. Our work facilitates the understanding of swimming
and flow phenomena in viscoelastic fluids, such as bacteria
in biofilms and sperm cells in mucus. Additionally, it should
contribute to the design of micromachines for drug delivery
systems.
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