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Introduction

The meniscus plays a critical protective role in the tibio-
femoral joint via shock absorption and load distribution.1,2 
Several recent studies have reported the relationship 
between meniscal pathology and patellofemoral (PF) osteo-
arthritis (OA) (PFOA).3-6 However, the relationship has not 
been adequately validated, and the mechanism by which 
meniscal injury causes PFOA remains unclear.

Synovial inflammation plays an important role in OA 
development.7 Inflammation caused by meniscal pathology 
may also affect the PF joints. Moreover, biomechanical 
changes play an important role in the development of OA.8 
Meniscal pathology can cause compensatory changes in 
gait kinematics, and knee kinematic changes can alter PF 
joint contact pressure.9-12 However, the degree to which 
synovial inflammation or kinematic gait changes mediate 
the relationship between meniscal pathology and PFOA has 
not been examined. Understanding the mediating factors in 

meniscal injuries that lead to PFOA will aid in devising 
strategies for the prevention and treatment of PFOA, includ-
ing rehabilitation.

This study aimed to investigate whether meniscal injury 
leads to the development of PFOA in an experimental model 
and to explore the degree to which synovitis and gait kine-
matics mediate the relationship between meniscal injury 
and PFOA. We hypothesized that meniscal injury would 
induce PFOA development and that synovitis and gait 
kinematics would mediate the relationship between menis-
cal injury and PFOA.
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Objective. To investigate whether meniscal injury leads to the development of patellofemoral (PF) osteoarthritis (PFOA) and 
to explore how synovitis and gait kinematics mediate this relationship. Methods. Fifty-four male Wistar rats (12 weeks old) 
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gait analysis to assess the kinematic changes at 2, 4, and 8 weeks postoperatively. Subsequently, the rats were euthanized, 
and their right knees were harvested for histological analysis. Results: The Osteoarthritis Research Society International 
(OARSI) and modified Mankin (MM) scores in the DMM group were significantly higher than those in the control and sham 
groups at week 2 and significantly higher than those in the control group at week 4. The OARSI and MM scores in the 
sham group were significantly higher than those in the control group at weeks 2 and 4. The association between the DMM 
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Methods

Animal Preparation

This study was approved by the Animal Research Committee 
of Kyoto University (approval number: Med Kyo 20010) 
and was conducted according to the Animal Research: 
Reporting of In Vivo Experiments (ARRIVE) guidelines.13 
Fifty-four male Wistar rats (12 weeks old) were purchased 
from SHIMIZU Laboratory Supplies Co., Ltd. (Kyoto, 
Japan) and placed in plastic cages with paper bedding on a 
12-hour light/dark cycle at a constant temperature. The rats 
were allowed to move freely into their cages and had free 
access to food and water. They were randomly separated 
into 3 groups: control, sham, and destabilized medial menis-
cus (DMM), to confirm that DMM surgery causes PFOA (n 
= 18 in each group). All rats were subjected to gait analysis 
to assess kinematic changes at 2, 4, and 8 weeks postopera-
tively (n = 6 for each time point; weeks 2, 4, and 8). 
Subsequently, the rats were euthanized, and their right 
knees were harvested for histological analysis.

Surgical Procedures

DMM and sham surgeries were performed under anesthesia 
with 1.0 ml/kg pentobarbital sodium (Somnopentyl; 
Kyoritsu Seiyaku Corp., Tokyo, Japan). The right knees of 
the rats were shaved, disinfected, and prepared for aseptic 
surgery using sterile drapes, gloves, scalpels, sutures, nee-
dle holders, forceps, and pruners. DMM surgery was per-
formed on the right knee, as previously described.6,14 The 
right knee joint was exposed following a medial capsular 
incision over the distal patella to the proximal tibial plateau 
and gentle lateral displacement of the knee extensors with-
out patellar ligament transection. Subsequently, the medial 
meniscotibial ligament was transected, and the medial 
meniscus was displaced. After the replacement of the exten-
sor muscles, the medial capsular incision was sutured, and 
the skin was closed. Sham surgery was performed on the 
right knee as an internal control using the same approach 
without transection of the medial meniscotibial ligament. 
The rats in the control group did not receive any interven-
tion and served as naïve controls. If there were surgical fail-
ures, such as anterior cruciate ligament (ACL) cutting, the 
rats were excluded. However, there were no exclusion crite-
ria for this study.

Histological Analysis

The knee joint samples were decalcified in 10% ethylenedi-
aminetetraacetic acid for 3-4 weeks and cut halfway along 
the midsagittal plane. Subsequently, the samples were paraf-
fin-embedded and sliced into 6-μm sections at 50-μm inter-
vals. Paraffin-embedded sections were stained with 
hematoxylin and eosin to evaluate the degree of synovitis 

around the patella. Paraffin sections were stained with 
Safranin O/Fast green to determine the severity of articular 
cartilage degeneration. Synovitis was assessed using the 
synovitis scoring system described in Table 1 and a previous 
study.15 Three membrane features (synovial lining cell layer, 
stromal cell density, and inflammatory infiltrate) were 
assessed as follows: 0 (none), 1 (slight), 2 (moderate), and 3 
(strong). The synovitis score was determined by summing 
all the parameters. The parameter values were summarized 
and interpreted as follows: 0-1, no synovitis; 2-4, low-grade 
synovitis; and 5-9, high-grade synovitis. Cartilage degenera-
tion in the patella of the PF joint was assessed using the 
Osteoarthritis Research Society International (OARSI) score 
and modified Mankin (MM) scores.16,17 The OARSI score 
consists of 6 grades and 4 stages on a scale of 0 (intact) to 24 
(severe damage). The MM score comprised 3 features (peri-
cellular matrix staining, spatial arrangement of chondro-
cytes, and interterritorial matrix staining) on a scale of 0 
(intact) to 8 (severe). Cartilage degeneration was evaluated 
in the medial, lateral, and central regions of the patella at the 
PF joint. The average score of the 3 parts was defined as the 
outcome. The maximum score was used for all scoring sys-
tems and samples.

Gait Analysis

Gait analysis was performed to evaluate kinematic changes 
using a 3-dimensional (3D) motion capture apparatus 
(Kinema Tracer System; Kissei Comtec, Nagano, Japan). 
According to a previous study, before walking on the tread-
mill, the rats were anesthetized and equipped with mark-
ers.18 Colored hemispheric markers were attached bilaterally 
to the anterior superior iliac spine, great trochanter (hip), 
lateral knee joint (knee), lateral malleolus (ankle), and lat-
eral fifth metatarsophalangeal joint (MTP) on shaved skin. 
The colors of the adjacent markers were different. 
Subsequently, we calibrated the exact coordinates of a stan-
dard object (height, 100 mm; width, 50 mm; and length, 200 
mm) before each session to ensure data accuracy. Following 
calibration, the rats walked on a treadmill at a speed of 18 
m/min, and hind limb motion was recorded using cameras. 
Ten steps from the trials, during which the animals walked 
through at least 5 consecutive steps, were recorded for each 
rat, and the affiliated software automatically built 3D kine-
matic models based on the tracing markers attached to the 5 
body landmarks. The knee flexion and toe-out angles were 
measured, and foot contact (FC) angles were used as out-
comes. The knee flexion angle was formed by a line con-
necting the markers on “hip” and “knee” and another line 
connecting the markers “knee” and “ankle.” The toe-out 
angle was formed by a line connecting the markers “ankle” 
and “MTP” and the Y-axis line, which is the longitudinal 
direction of the treadmill. Kinematic data were averaged for 
each gait cycle.
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Statistical Analysis

First, the OARSI and MM scores were compared among the 
3 groups to confirm the development of PFOA following 
meniscal surgery. Kruskal-Wallis and post hoc Steel-Dwass 
tests were used to examine the differences between groups. 
Second, we explored whether synovitis or gait kinematics 
mediated the relationship between meniscal surgery (con-
trol, sham, or DMM) and PFOA development (Figure 1). 

Initially, the median (Mdn) and interquartile range of the 
OARSI, MM, and synovitis scores, as well as the means and 
standard deviations of the knee flexion and toe-out angles, 
were calculated to characterize the overall or individual 
groups. The Kruskal-Wallis test or 1-way analysis of vari-
ance was used to compare the characteristics of the 3 
groups. Subsequently, multiple regression analysis was per-
formed to confirm the contribution of meniscal surgery to 
PFOA scores (OARSI and MM scores). In the analysis, the 
variable representing meniscal surgery was converted into a 
dummy variable because of its categorical data, and the 
control group was treated as the reference group. After 
establishing a significant relationship (total effect) between 
surgery and PFOA scores, a mediation analysis was per-
formed to determine whether synovitis or gait kinematics 
mediated the association between surgery and PFOA devel-
opment. The mediation effect was estimated separately for 
synovitis score, knee flexion angle, and toe-out angle. 
Regression coefficients (β), 95% confidence intervals (CIs), 
and P values for the total, direct, and indirect effects were 
calculated. In addition, the proportion mediated (PM) was 
calculated by dividing the indirect effect (β) by the total 
effect (β). Bootstrapping analyses with 5,000 replications 
were used to estimate the correct 95% CI of the indirect 
effect. In addition, the Sobel test was used to calculate the 
significance (P value) of indirect effects. Statistically sig-
nificant indirect effects were defined as statistically signifi-
cant mediating effects. A P value < 0.05 or 95% CIs that 
did not include 0 indicated a statistically significant associ-
ation. Statistical analyses were performed using JMP® ver-
sion 17 (SAS Institute Inc., Cary, NC, USA) and IBM SPSS 
Statistics® version 29 (IBM Corp., Armonk, NY, USA). 
Finally, post hoc power analyses were performed using 
G*Power version 3.1.9.7,19,20 and power analyses for OA 
scores comparisons were performed using Bonferroni 
method with α = 0.025.

Table 1.  Synovitis Scoring System.

Feature Score

Enlargement of the synovial lining cell layer  
 T he lining cells form a layer 0
 T he lining cells form 2 to 3 layers 1
 �T he lining cells form 4 to 5 layers. Few 

multinucleated cells might occur
2

 T he lining cells form more than 5 layers
 �T he lining might be ulcerated and multinucleated 

cells might occur

3

Density of the resident cells  
 T he synovial stroma shows normal cellularity 0
 T he cellularity is slightly increased 1
 T he cellularity is moderately increased. 
  Multinucleated cells might occur

2

 T he cellularity is greatly increased
 � Multinucleated giant cells, pannus formation, and 

rheumatoid granulomas might occur

3

Inflammation infiltrate
  No inflammatory infiltrate 0
 � Few mostly perivascular situated lymphocytes or 

plasma cells
1

 � Numerous lymphocytes or plasma cells, 
sometimes forming follicle-like aggregates

2

 � Dense band-like inflammatory infiltrate or 
numerous large follicle-like aggregates

3

Figure 1.  Conceptual path diagram of the association between meniscal surgery (control, sham, or DMM) and PFOA development 
mediated by synovitis or gait kinematics. DMM = destabilized medial meniscus; PFOA = patellofemoral osteoarthritis.
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Results

Histological Analysis of the PF Joint

Articular cartilage damage to the patella was observed as 
fissure and matrix staining depletion at all experimental 
periods in the DMM and sham groups. However, the carti-
lage damage was more severe in the DMM group than in the 
sham group (Figure 2A). The OARSI and MM scores are 
shown in Figure 2B. The OARSI and MM scores in the 
DMM group (Mdn: 2.67 and 3, respectively) were signifi-
cantly higher than those in the control (Mdn: 0 and 0, 
respectively) and sham (Mdn: 1 and 1.17, respectively) 
groups at week 2 (P = 0.006 and 0.008, and P = 0.018 and 
0.027, respectively). Moreover, the OARSI and MM scores 
in the DMM group (Mdn: 2.33 and 1.83, respectively) were 
significantly higher than those in the control group (Mdn: 0 
and 0, respectively) at week 4 (P = 0.01 and 0.008, respec-
tively). Furthermore, the OARSI and MM scores in the 
sham group at weeks 2 and 4 (Mdn: 1.17 and 0.67, respec-
tively) were significantly higher than those in the control 
group (P = 0.025 and 0.026, P = 0.025 and 0.024, 

respectively). At week 8, the OARSI and MM scores did 
not differ significantly between the control (Mdn: 0.33 and 
0.17, respectively), sham (Mdn: 0.17 and 0.67, respec-
tively), and DMM groups (Mdn: 0.44 and 1.67, 
respectively).

In the post hoc analysis, power between the control 
and DMM groups was 1 (d = 9.94) at 2 weeks, 0.997 (d 
= 3.074) at 4 weeks, and 0.172 (d = 0.646) at 8 weeks for 
the OARSI score, and 1 (d = 5.66) at 2 weeks, 0.994 (d = 
2.88) at 4 weeks, and 0.667 (d = 1.53) at 8 weeks for the 
MM score. Between the sham and DMM groups, power 
was 0.985 (d = 2.652) at 2 weeks, 0.678 (d = 1.55) at 4 
weeks, and 0.251 (d = 0.821) at 8 weeks for the OARSI 
score, and 0.968 (d = 2.454) at 2 weeks, 0.777 (d = 
1.744) at 4 weeks, and 0.187 (d = 0.683) at 8 weeks for 
the MM score.

Characteristics

Table 2 presents the characteristics of the study variables 
according to group. The average body weights in rats (12 

Figure 2.  Histological images of Safranin O/Fast green stained specimens and osteoarthritis scores. (A) Representative histological 
images of patellar articular cartilage are shown. Articular cartilage damage was observed as fissure and matrix staining depletion at 
all experimental periods in the DMM and sham groups. However, the cartilage damage was more severe in the DMM group than in 
the sham group. Magnification: ×100, Scale bar: 100 μm. (B) Osteoarthritis Research Society International (OARSI) and modified 
Mankin (MM) scores are shown. The OARSI and MM scores in the DMM group were significantly higher than those in the control 
and sham groups at week 2 and were significantly higher than those in the control group at week 4. The OARSI and MM scores were 
significantly higher in the sham group than in the control group at weeks 2 and 4. At week 8, there were no significant differences 
in OARSI or MM scores among the 3 groups. The thick lines in the graphs represent Mdn values. P values were calculated using the 
Steel-Dwass test.



Nakahata et al.	 5

weeks old) of the control, sham, and DMM groups were 
265.11 ± 14.25, 258.89 ± 9.89, and 258.28 ± 9.92 g, 
respectively. The Mdn OARSI and MM scores were 0 and 0 
points in the control group, 0.83 and 0.67 points in the sham 
group, and 2.17 and 2.5 points in the DMM group, respec-
tively. The plots and Mdns of the synovitis scores for each 
group are shown in Figure 3A. The synovitis score in the 
DMM group was much higher than in the other groups, 
whereas the score in the sham group was slightly higher 
than in the control group. The scores in the DMM and sham 
groups were higher during the early postoperative period. 
The plots and means of knee flexion and toe-out angles at 
FC for each group are shown in Figure 3B and C. The knee 
flexion angles were greater in the DMM and sham groups 
than in the control group. In the DMM and sham groups, 
knee flexion angles were greater at week 2 than at weeks 4 
and 8. At week 8, the knee flexion angle in the DMM group 
was greater than in the control and sham groups. The differ-
ences in the toe-out angles between groups or periods were 
not significant.

Total Effect of Meniscal Surgery on PFOA 
Development

The total effects of meniscal surgery on PFOA scores are 
presented in Table 3. The total effects β (95% CIs) of the 
sham and DMM on the OARSI score were 0.70 (0.13-1.28) 
and 1.86 (1.29-2.44), respectively. The total effects β (95% 
CIs) of the sham and DMM on the MM score were 0.87 
(0.31-1.43) and 2.20 (1.64-2.76), respectively. Significant 
associations were found between all examined variables. 
The power in the post hoc analysis was 0.999 (R2 = 0.459) 
for the OARSI score and 0.999 (R2 = 0.553) for the MM 
score.

Mediation Analysis

The results of the mediation analyses are presented in  
Table 3. The mediation analysis showed that the association 
between the DMM group and the OARSI score was signifi-
cantly mediated by the synovitis score and knee flexion 

Table 2.  Characteristics of Each Group.

Overall (n = 54) Control (n = 18) Sham (n = 18) DMM (n = 18) P value

Body weight (average, SD) 260.76 g (11.74) 265.11 g (14.25) 258.89 g (9.89) 258.28 g (9.92) 0.155
OARSI score (median, IQR) 0.67 (0.00–2.00) 0.00 (0.00–0.33) 0.83 (0.25–1.50) 2.17 (1.17–2.67) < 0.001
MM score (median, IQR) 0.67 (0.00–1.75) 0.00 (0.00–0.00) 0.67 (0.58–1.42) 2.50 (1.25–3.42) < 0.001
Synovitis score (median, IQR) 0.50 (0.00–2.00) 0.00 (0.00–0.00) 0.50 (0.00–1.00) 4.50 (2.00-6.00) < 0.001
Knee flexion angle (average, SD) 75.78° (7.40) 72.39° (5.24) 77.24° (8.05) 77.73° (7.73) 0.054
Toe-out angle (average, SD) 19.60° (5.69) 18.34° (4.16) 20.85° (5.62) 19.61° (6.99) 0.425

IQR = interquartile range; SD = standard deviation.

Figure 3.  Plot diagram of the synovitis score, knee flexion angle, and toe-out angle by group. (A) Synovitis scores are shown. The 
synovitis score in the DMM group was much higher than in the other groups, whereas the score in the sham group was slightly higher 
than in the control group. The scores in the DMM and sham groups were higher during the early postoperative period. Thick lines 
represent median values. (B) Knee flexion angles at foot contact (FC) are shown. The angles in the DMM and sham groups were 
greater than in the control group. At week 8, the angle in the DMM group was greater than in the control and sham groups. The 
thick lines represent the mean values. (C) Toe-out angles at FC are shown. There were no marked differences between the groups or 
periods. The thick lines represent the mean values. W2 = week 2; W4 = week 4; W8 = week 8.
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angle at FC (indirect effects: β = 1.07 and 0.19, PM = 58% 
and 10%, respectively). Similarly, the association between 
the sham group and OARSI score was also significantly 
mediated by the synovitis score and knee flexion angle 
(indirect effects: β = 0.17 and 0.17, PM = 24% and 24%, 
respectively). The association between the DMM group and 
MM score was significantly mediated by the synovitis score 
(indirect effect: β = 0.85, PM = 39%).

Discussion

This is the first study to show that synovitis and knee flex-
ion angle at the FC mediate the association between DMM 
and PFOA development and to validate that DMM surgery 
induces articular cartilage damage in the patella.

The relationship between inflammation and PFOA has 
been previously reported. Hart et al.21 showed that synovitis 
in patients after ACL reconstruction was associated with the 
worsening of PF bone marrow lesions. In experimental 
models of patellar tendon shortening and monosodium 
iodoacetate (MIA) injections, synovitis has been shown to 
occur with the development of PFOA.22,23 Conversely, 
Egloff et al.24 reported that acute inflammation may not be 
an independent factor in OA development because inflam-
matory stimuli (intra-articular injection of carrageenan) 
alone did not cause PFOA in rabbits. In the present study, 
synovitis and knee gait kinematics significantly mediated 
the development of PFOA in the DMM and sham groups. 
These findings suggest that synovitis may be a key factor in 
the development of PFOA, even if the initial triggers differ. 
Inflammation may not be a factor in OA development alone 
but may work synergistically with biomechanical factors. 
Moreover, the PM in the synovitis score was 58% (full 
mediation), and the knee flexion angle was 10% (partial 
mediation) in terms of the association between DMM and 
the OARSI score. This suggests that synovitis may contrib-
ute more compared with biomechanical changes to the 
association between DMM and PFOA. As a biomechanical 
factor, the knee flexion angle significantly mediated PFOA 
in the DMM and sham groups. These results are similar to 
those of a previous study, in which a decreased knee exten-
sion angle was associated with PFOA in patients with ACL 
injuries.25 The toe-out gait has been reported to increase PF 
contact pressure in humans;11 however, it did not have a 
significant mediation effect in the present study. The rea-
sons for the lack of a mediation effect in this study could be 
that rats, which are quadrupedal, performed compensatory 
movements differently than humans, and that the gait analy-
sis was performed on a treadmill.

In addition, this study confirmed that DMM surgery 
induces articular cartilage damage in the patella. This find-
ing strengthens the relationship between meniscal pathol-
ogy and PFOA in previous studies.3-6 In addition, it has been 
suggested that DMM surgery can be used as a PFOA model. 

Several animal models of PFOA have been established, 
including models of ACL transection,26-28 noninvasive ACL 
rupture,29 patellar tendon shortening,23 intra-articular injec-
tions of MIA,22 and weakening of the quadriceps muscle by 
surgical denervation or intramuscular drug injection.24 Tsai 
et al.26 reported histological changes in rats after ACL tran-
section, which resulted in subchondral bone marrow edema 
at 16 weeks and matrix degeneration with an irregular carti-
lage surface at 32 weeks. Fleischer et al.29 used a model of 
noninvasive ACL rupture in rats and observed histopatho-
logical changes in the superficial zone of the cartilage with 
an early OA phenotype, including fibrillation, fissures, and 
increased cellularity at 2 weeks. Bei et al.23 used a rat model 
of patellar tendon shortening to observe cartilage fibrils, 
chondrocyte swelling, horizontal clefts, and denudation 
after 10 weeks. Takahashi et  al.22 used a model of intra-
articular injection of 1 mg MIA and observed histopatho-
logical changes with early OA resulting from cartilage 
fibrillation and fissuring at 4 weeks and with terminal OA 
resulting from erosion and denudation at 8 and 12 weeks. 
Thus, the PFOA model with MIA injection is useful for 
studying terminal PFOA. However, this model does not fol-
low the typical OA process because OA is caused by chemi-
cally induced chondrocyte death.30 In the present study, the 
DMM model showed early PFOA development that was 
histologically similar to that observed in ACL transection 
and rupture models. However, according to a previous 
study, meniscal surgery may increase contact pressure in 
the PF joint,31 whereas ACL failure decreases contact pres-
sure in the PF joint.32 Therefore, the pathogenic mecha-
nisms and appropriate therapeutic interventions may differ 
among PFOA models. Moreover, sham surgery, which 
involves a minor incision of the skin and capsule on the 
medial patellar tendon, resulted in mild PFOA, although 
similar sham surgeries in a previous study did not result in 
PFOA development.26 In the sham group in the present 
study, mild synovitis was induced in the early postoperative 
period, and we believe that this was one of the factors lead-
ing to PFOA. As the sham group in the previous report was 
observed at 16 and 32 weeks postoperatively, inflammation 
and cartilage damage may have already resolved. In addi-
tion, the decreased stability and mobility of the PF joint 
associated with sham surgery may have contributed to 
PFOA.

This study strengthened the relationship between menis-
cal injury and PFOA. PFOA development should be pre-
vented because it affects clinical symptoms, such as 
crepitation, anterior knee pain, and difficulties during stair 
ambulation.33-35 The findings of this study suggest that early 
improvement in synovial inflammation and knee extension 
during gait is important for preventing the development of 
PFOA after meniscal injury. Synovitis promotes cartilage 
degradation by producing pro-inflammatory mediators.36 
Therefore, mechanical loading of the PF joint should be 
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carefully managed, especially during the inflammatory 
phase. In addition, restoration of knee extensor muscle 
strength, prevention of knee flexion contracture, and brac-
ing or taping may be beneficial for improving knee exten-
sion during gait. However, it is important to note that rapid 
overloading of the PF joint during exercise may disrupt car-
tilage tissue homeostasis.37 The load on the PF joint is 2 to 
6 times greater when climbing steps, 5 to 10 times greater 
when descending stairs, and 5 times greater when squatting 
at 60° than when walking.38 In addition, the load on the PF 
joint increased rapidly with closed kinetic chain exercises 
(e.g., squat and leg press) from 45° to 100° of knee flexion 
and open kinetic chain exercises (e.g., leg extension) from 
20° to 0° of knee flexion.39 Exercise and activities of daily 
living should be performed progressively according to the 
symptoms and findings of PF joint loading.

This study had several limitations. First, the sample size 
might not have been adequate because an a priori power 
analysis was not performed in this study. Most path models 
for mediation analysis involving the MM score did not dif-
fer significantly; however, the larger sample size may have 
affected the statistical results. Second, evaluating inflam-
mation in the synovial fluid and cartilage may further clar-
ify the influence of these processes on the development of 
PFOA. Third, other significant mediating variables may 
exist in addition to those identified in this study. Tibial rota-
tion and anteroposterior positioning affect the contact area 
and pressure on the PF joint.9,40 In addition, patients with 
PFOA exhibit decreased quadriceps and hip abductor mus-
cle strength.41 Thus, these variables may have mediating 
effects. Fourth, patellar abnormalities, including patellar 
alta, patellar baja, and trochlear dysplasia, may have been 
present in the experimental rats. If abnormalities had been 
present, the results might have been affected.42,43 Finally, an 
experimental rat model was used in this study. Our findings 
may not translate directly to humans because differences in 
anatomy and gait style between rats and humans may affect 
the extent of cartilage degeneration.

In conclusion, we showed that DMM surgery in rats 
induced articular cartilage damage in the PF joints. Our 
findings suggest that DMM can be used as a PFOA model. 
In addition, we showed significant mediating effects of 
synovitis and knee flexion angle at the FC on the associa-
tion between meniscal surgery and the development of 
PFOA. This study may contribute to our understanding of 
the mechanisms of PFOA pathogenesis and provide insights 
into clinical thinking, although further detailed studies are 
needed.
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