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Abstract: System operators (SOs) manage power supply, focusing on risk management.
In small emerging economies, proactive risk management is crucial as major disruptions
require SOs to redirect resources into recovery efforts. Therefore, SOs prioritize risk reduc-
tion, proactively minimizing the possibility of major disruption to ensure the industry’s
long-term advancement. However, SOs frequently focus on residual risk mitigation while
ignoring their exposure to inherent risk. This study investigated the inherent risks associ-
ated with power supply management using the SO’s operations and pertinent third parties.
It used a seasonal multivariate strategy to identify risk factors, create univariate distribu-
tion models, and generate multivariate distributions using the copula method. Joint risk
exposure was calculated using different percentile metrics for each scenario, allowing for a
comparison of exposure levels. The study found that risk variables can sometimes reinforce
or offset each other, impacting exposure behaviour. Exposure levels indicate periods of
increased or decreased exposure to risk variables. Copula-modelled interdependencies
captured larger exposure levels but had lower unit likelihoods, presenting less conservative
exposure forecasts for SO managers. Case 1 exhibited the highest exposure levels in the
early dry season (0.237 and 0.179), while case 2 showed peak exposure levels in the late
wet season (1.009 and 0.948), along with cases 3 (0.977 and 0.908) and 4 (0.950 and 0.879).

Keywords: risk management; inherent risk; power mix; electricity sector; system operator

1. Introduction
System operators (SOs) [1] oversee power supply management, including considera-

tions of risk. Effective risk management enables SOs to make informed decisions on power
supply [2]. In small emerging economies, proactive risk management is a top priority. This
is because major disruption events require SOs to re-direct a significant portion of their
resources into recovery efforts [3]. The short-term redirection of resources delay medium-
and long-term advancement for the power industry. Consequently, SOs in small emerging
economies prioritize risk reduction, thereby proactively minimizing the possibility of a
major disruption.

Renewable energy (RE) technologies have increased the focus of SOs on risk man-
agement. SOs are concerned with the emerging threats from these technologies. For
example, Wang, Rousis, and Strbac’s [4] study on improving power system resilience using
distributed energy resources (DERs) found that interconnectivity with DERs creates new
challenges for restoring power to an area after an outage.

Changes in the natural environment have also increased SOs’ focus on risk manage-
ment [5–8]. In Qui et al.’s [7] work on water reservoirs, the authors showed that the effects
of the warming climate led to greater uncertainty of the hydrological state of water. The
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uncertainties created new challenges for the existing manner in which water resources are
managed for power generation, flood management, and environmental protection.

The discipline of power supply tends to focus on residual risks, but this accounts
for only a subset of risk [9]. In contrast, inherent risk encapsulates the amount of risk
that exists prior to the implementation of routine controls [9,10]. Residual risk controls
are protective, while inherent risk controls are preventative [11]. The distinction between
residual and inherent risks remains largely unaddressed in power supply management.
Consequently, an abundance of methodologies and tools, such as unit commitment (UC)
optimization [1,12], has emerged to target residual risks and influenced a bias of SOs
towards protective controls.

Researchers in other technical fields have highlighted similar shortcomings. In
Bachev’s [13] analysis of risk management in the agri-food industry, the author identi-
fied that a predominant focus on technological tools in technical industries have limited
the scope of risk analyses. Technical industries have largely ignored risk based on man-
agerial decision-making. In practice, managerial decisions that depend on factors like
the regulatory condition, mode of transaction (via markets, public resources. etc.), and
human aspects (resource mismanagement, ignorance) carry highly consequential risks [13].
Understanding inherent risks would help SOs to extend their approaches to preventative
controls [11]. However, the lack of research on inherent risks associated with power supply
management has created a critical gap in this field.

The primary goal of SOs is to ensure the availability of sufficient quantities of supply
to meet demand [14]. However, layered on this fundamental goal (to match power supply
with demand) are sub-objectives to allocate and schedule power supply to achieve the
lowest possible cost, maintain high power quality, and prioritize renewable or clean energy
sources [15]. In addition, power supply sources vary in technology type. This means
that SOs must remain attentive to how the respective constraints of the differing sources
interact with each other [12]. Ultimately, the decisions of SOs to reduce events of unmet
demand and unwanted consequences associated with daily scheduling and allocation
evolved primarily from managing residual risk. Together, inherent and residual risk form
the SO’s complete risk profile; however, based on the literature reviewed, inherent risk has
assumed a secondary status in power supply risk management.

While this study focused on SOs, it recognized that much of an SO’s operation relies
on third parties. SOs procure power that is generated by various external suppliers. This
is a critical transaction that has introduced a highly interconnected power input–output
relationship between SOs and third-party suppliers [10]. This means that SOs also must
be attentive to the inherent risks faced by third-party suppliers in addition to the SO’s
inherent risks. SOs should decide whether the combined inherent risks of their operation
and that of relevant third parties are material to warrant mitigating actions. To do so, SOs
require reliable information and effective tools to identify threats and evaluate the levels of
exposure which offer insights on preventative control.

This study aimed to fill the identified gap by developing a methodology based on a
novel conceptual framework to investigate inherent risks associated with power supply
management based on the operations of the SO and relevant third parties. The conceptual
framework was developed to offer a methodological approach for SOs to identify, quantify,
and approximate the inherent-type risks via processes of qualitative and quantitative
synthesis. Two primary objectives were defined, namely to (i) identify inherent risk factors
and variables to appropriately represent power supply-related exposures and to (ii) evaluate
the SO’s level of exposure from these risk factors. Additionally, the conceptual framework
offers a universal methodology, which can be adjusted to different jurisdictions, and has
been examined in this paper through a case study of Belize.
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To achieve objective (i), inherent risk factors were qualitatively synthesized based on
SO and relevant third-party operations. To achieve objective (ii), a multivariate analysis
was undertaken to measure the exposure level of power supply management in Belize.
Variables were selected to represent risk factors. Descriptive statistics were calculated
to highlight variability and distribution frequency. Univariate distribution models were
developed for each risk factor. Lastly, the copula method was adopted to build multivariate
risk distributions per season for four scenarios. A joint exposure level was calculated
at varying percentiles for each scenario, allowing for a comparison of exposure under
both conditions.

The remainder of this research paper is organized into a literature review with the
background of the study problem, the related literature and this study’s conceptual frame-
work, the methodology, the results and discussion, and lastly, the conclusion outlining the
study’s limitations and practical implications.

2. Literature Review
2.1. Background of the Case Study

Research in power supply risk management often focuses on residual risks, neglecting
inherent risks. This results in methodologies focusing on protective controls and largely
ignoring preventative controls. This study used the case of Belize, a country that exhibits a
scarcity in the published literature, to assess the problem.

At the centre of power supply management is the power mix system, which comprises
the collection of sources used to generate electricity [16]. Figure 1 maps Belize’s power mix
system by technology type and estimated average percentage supply contribution to the
power grid. Peak demand was roughly 107 MW, while the total installed capacity was at
172.8 MW [17].
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average percentage supply to the power grid, calculated based on the data provided for the analysis
of this study, as outlined in Section 3.2. Adopted from [18].

Belize’s SO oversees the management of all supply sources, with the principal ones
being hydroelectricity and co-generated biomass (30% and 13% aggregated average per
annum, respectively). Hydroelectricity and co-generated biomass supplies are centralized,
privately owned facilities located in the west and north of the country. Belize’s revised
nationally determined contributions (NDCs) aim to increase the RE share of electricity sup-
ply to 85% by 2030 [18]. Currently, local supply from these renewables was supplemented
by Mexican electricity imports with purchases on an hourly basis [19]. Electricity supply
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imports account for a relatively large portion of Belize’s average annual supply (45%), as it
presents a competitive least-cost option with respect to local supply options. Lastly, thermal
sources are integrated in the central and southern region of the country, accounting for
11%, on average, of total electricity supply. In early 2024, consumer demand for electricity
exceeded power supply capability, so the SO in Belize performed a series of rotating outages
from one area to the next to reduce demand on the power grid. Rotating outages were
used to purposively balance power demand with supply to avoid system overload, which
would lead to an uncontrollable outage. Rotating outages were also implemented in early
2011. Essentially, rotating outages could signal unexpected shifts in the managed levels of
residual risks and necessitate a deeper evaluation of the inherent risks to warrant a useful
tool, as proposed in this study.

2.2. Residual Versus Inherent Risk Contextualized for the Operations of an SO

The SO’s primary goal is to ensure adequate quantities of electricity supply to meet
demand. SOs purchase power from a number of suppliers on an hourly basis and schedule
an allocated quantity per supplier each hour [15]. To achieve their goal, SOs set operational
objectives, summarized as follows:

1. The most widely discussed is to schedule and allocate at the lowest possible cost and
maintain the affordability of power for consumers. The energy industry uses the term
‘merit order’ [12] to describe the sequence by which power supply is allocated and
scheduled on an economic basis like lowest cost.

2. Scheduling and allocating to achieve high power quality [3]. High power quality
means the combined supply remains steady and within prescribed voltage, frequency,
and waveform standards [20]. By maintaining high power quality, SOs also ascertain
compatibility with the electrical devices of consumers. Poor power quality can cause
devices to malfunction.

3. The most novel is to prioritize renewable and clean energy sources. SOs incorporate
climate goals to reduce sources, like fossil fuels and coal, which contribute to green-
house gasses (GHGs) or other major pollutants. Notably, variable renewable energy
(VRE) is prioritized in the merit order, having zero marginal cost [21].

Supply sources have varying constraints, and SOs must manage a mix of technologies
simultaneously. For example, solar power supply is subject to weather disruption [22].
Assuming no or limited storage, cloudy periods reduce the amount of electricity solar
facilities can supply. Similarly, hydropower is constrained by weather conditions, though
on a longer timescale. During periods of low rainfall or drought, power supply can
significantly decrease [6]. In turn, during periods of heavy rainfall, SOs can be required to
maximize hydropower output to avoid reservoir spillage. Thermal facilities are flexible in
that they can be turned on and off when required [22]. However, if the heat rate of thermal
power plants decreases below its optimal operating range, the cost to generate electricity
increases below a specified output [23]. SOs remain attentive to how constraints of the
various sources interact. For example, power generated from biomass can experience large
fluctuations due to natural inconsistencies in its feedstock—the organic material used as
fuel. SOs can utilize a flexible alternative source, like thermal or large hydro, in conjunction
with biomass supply to counter the effect of fluctuations on the power grid.

SOs seek to reduce chances of unmet demand and unwanted consequences on af-
fordability, quality, and the environment. However, the daily scheduling and allocation of
power supply is a form of residual risk management that ignores inherent risks. As shown
in the biomass example immediately above, SOs can respond to threats (like fluctuations)
using in-place measures (such as supplementary flexible generation) in an established
process (day-to-day scheduling and allocation). Simply put, each hour, the SO engages in a
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repetitive, ongoing process of identifying, assessing, and controlling the threats to power
supply. Unit commitment (UC) optimization techniques [12,24,25] have been developed
to address the day-to-day residual risks of supply management. These deterministic tech-
niques model a system of various suppliers, the technical and economic constraints, and
define either a single or multiple objectives to solve for an optimal solution. Such a solution,
or model output, is an optimized scheduled allocation of power supply for each supplier.

SOs often focus on residual risk because corresponding measures can readily be
established in daily routine. For example, SOs can regularly adjust the spinning reserve
(the amount of extra power supply held to respond quickly when another supplier fails
unexpectedly) [1]. In modern power systems, SOs rely on predictive models to determine
possible shortfalls from VRE, like solar power supply, to proactively adjust spinning
reserves [1,12]. This is yet another control response around the residual risk of VRE supply
shortfalls, with no obvious consideration to inherent risk.

This study recognizes the importance of residual risk management. The SO’s responses
during the scheduling and allocation process represent a robust residual risk management
mechanism. In this light, because residual risk management has the benefit of routine
controls, residual risk is less likely to create severe problems. However, residual risk
accounts for only a subset of risk [26,27].

Unlike residual risk, inherent risk reflects the level of risk prior to implementing
routine controls [27]. Inherent risk influences effective control measures for SOs to achieve
its primary goal. The SO’s fundamental goal is ensuring sufficient quantities of supply to
meet electricity demand. SOs devise controls, like scheduling and allocation and spinning
reserves, to minimize the possibility of not achieving this goal. Therefore, SOs are simply
left with residual risk to manage day-to-day.

Together, inherent and residual risk form the SO’s complete risk profile. Yet, based
on the availability of the literature, inherent risk is treated as secondary in power supply
risk management. SOs might assert that evidencing stable, quality, and affordable supply
equates to low inherent risk. However, disruption occurs, and power outages are recorded
in advanced systems when residual risk is managed effectively. Consequently, in the
current study, the focus was on developing a tool to strengthen the management of inherent
risk, which appeared to receive much less focus than residual risk in power supply systems
in developing economies.

Another support for additional studies on inherent risk is that residual risk controls
are protective, while inherent risk controls are preventative [27], and the two sets of controls
can serve complementary roles. For example, hydropower is the largest and most mature
source of renewable electricity [6]. SOs harness power by managing the flow of water that
passes through hydroelectric turbines from a river. During seasons with low precipitation,
SOs can regulate the flow of water such that a stable stream is maintained upstream and
downstream of the powerhouse. This response presents a temporary protective control to
safeguard against dangerously low stream levels.

In contrast, the warming climate increases extreme weather events [28]. Higher
frequencies of droughts, dry spells, and high temperatures affect the basic hydrology of
rivers [6]. If the amount of water in the stream is significantly reduced due to the impact
of the warming climate, simply regulating flow will not be sufficiently effective. Instead,
SOs can decide on preventative controls that could better serve power supply. For instance,
existing hydropower infrastructure can largely be utilized for pumped storage services
to capture surplus electricity from VRE [1,29]. This response serves two controls. First,
hydropower’s main role is converted from power supply to power storage. This means that
while warming climate impacts on hydrology will persist, its ability to influence supply
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will significantly lessen. Second, SOs reduce the amount of power supply surplus from
VRE that would have otherwise been wasted.

SOs need to decide if the inherent risks are substantial enough to warrant their at-
tention. SOs can properly address the uniqueness of inherent risks by implementing
preventative controls. Therefore, a tool or methodology, as formulated in this study, to
identify threats and evaluate the levels of exposure can be valuable to SOs. Research [2,30]
has also demonstrated instances where inherent risk controls require more time and re-
sources to implement than residual risk controls, thereby emphasizing a need for a tool
that can identify varying levels of risks for SOs to more appropriately direct the efficient
use of resources.

Interestingly, SOs procure power supply and become reliant on third parties. Es-
sentially, the generation of power is outsourced. Therefore, SOs must understand the
inherent risks of third parties. For example, through a physical interconnection between
the power grids of two or more countries, electricity can be procured from foreign power
suppliers [31]. If a foreign power market lacks sufficient controls to manage spikes [32] in
electricity prices, a price spike can create unwanted consequences on affordability locally.

As such, it is important for SOs to have a methodology that facilitates evaluating
the inherent risks of SOs and their third parties to gain a comprehensive understanding
of potentially adverse situations. This current research developed a tool to investigate
inherent risks associated with power supply management based on the operations of the SO
and relevant third parties. A conceptual framework was devised to develop an appropriate
method, as presented in the next section.

2.3. Conceptual Framework

Figure 2 provides a depiction of the conceptual framework applied in this study. The
SO was the main actor of the framework. The study conceived that risk which threatens
the SO from achieving their objectives is categorized into two types, namely inherent
and residual. Risk types were distinguished based on the absence/presence of protective
controls. While inherent and residual risk form the complete risk profile of the SO, this
work focused on the assessment of inherent risk. Hence, risk in the absence of protective
controls represented the study’s independent variable, and the exposure level represented
the study’s dependent variable.

The goal and objectives of the SO represented control variables that remained constant.
However, policy and regulation could influence the weighting of the importance placed
on each objective layer. For example, recently, the Government of Belize committed to
an increased share of 85% RE in electricity supply by 2030 in the nationally determined
contributions (NDCs) [33]. While Belize’s SO prioritized affordability (layer 1) and quality
(layer 2) ahead of environmental friendliness (layer 3), this hierarchy is prone to changes in
the future to meet the NDC goal. For the purpose of simplicity, the methodology was not
concerned with the weighting of each objective. Rather, risks that could possibly prevent
the SO from achieving all objectives were equally considered.

Activities represented moderating variables that could influence the relationship
between the inherent risk (independent variable) and exposure level (dependent variable).
Based on the reviewed literature, the activities of third parties relevant to the inherent
risk of the SO were also identified as moderating variables. Relevant third-party activities
included power generation or the re-selling of power through retail markets to the SO.
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This study used qualitative and quantitative synthesis to establish the relationship
between inherent risk and the exposure level. In qualitative synthesis, inherent risk factors
were identified. Appropriate variables were selected as indicators that can predict changes
in exposure for the SO. In quantitative synthesis, the study selected statistical techniques fit
to measure the level of exposure. Synthesizing relied on lessons acquired from the literature
and an understanding of the activities of the SO and third parties.

Statistical findings were internally validated based on model validation. Their ex-
tended conceptual and practical implications were externally validated by comparing find-
ings with information available on the practical setting from case-specific documentation,
including power purchase agreements (PPAs) [34–37] and SO annual reports [17,38–41].
As prior discussed, the main outcomes of the study supplied implications on preventative
control measures.

3. Materials and Methods
Exposure level, this study’s dependent variable, is a measure of how vulnerable

the SO’s system is to the inherent risk factors. As with traditional risk analyses, the
exposure level thus contends with the probability and potential severity of the risk event
occurring. Prior risk analyses on management in energy-related sectors provided theoretical
support [7,8,12]. One key insight highlighted the exposure level as a time-dependent
variable. Consequently, this study reviewed and established a study design that used
probability-based methods to examine seasonal scenarios for the risk factors that influenced
the exposure level.

The following sections outline (i) the raw data collected that were used to develop the
variables representing inherent risk factors, (ii) the qualitative and quantitative synthesis
process used to identify, quantify, and represent the inherent risks appropriate for the
real-world conditions of Belize’s SO, and (iii) the statistical techniques, primarily various
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forms of probability distribution modelling, applied to assess the relationship between the
inherent risk factors and degree of exposure.

3.1. Data

The study utilized five time-series datasets from 1 January 2018 to 31 December 2022,
each presented in hourly time steps, as detailed in Table 1.

Table 1. This table contains the list and descriptions of datasets that were collected and utilized in the
analysis of this study.

Data Unit Description

DFi kWh Forecasted grid energy supply for an hourly
interval, i

DAi kWh Actual grid energy supply for an hourly interval, i

SPi kWh Electricity supply by a power plant, P, for an hourly
interval, i

FPi USD/kWh Imported electricity day-ahead forward price of
Xul-ha interconnection node for an hourly interval, i

SPi USD/kWh Imported electricity day-of spot price of Xul-ha
interconnection node for an hourly interval, i

The study collected forecasted (DFi) and actual (DAi) aggregate grid supply for 43,824
hourly intervals of the sample period, as well as hourly electricity supplied by hydroelectric
and biomass co-generation facilities (SPi). Secondary data on the maximum rated capacities
of these facilities were also collected. The study also collected the price for purchasing
electricity imports from the day-ahead forward market (FPi) and the spot market (SPi) for
real-time purchase. The forward and spot pricing of power imports accounted for unit
cost variability of the system’s power supply, as local power supply was regulated by
annualized fixed-cost pricing.

Datasets were shared by Belize Electricity Limited (the utility) after receiving a com-
prehensive description of the quantitative assessment for this research (data not publicly
available). The collected data were analyzed for gaps and irregularities; however, no gaps
or abnormalities were found.

3.2. Study Design
3.2.1. Objective 1—Qualitative Synthesis of Inherent Risk Factors

A total of four risk factors were considered in relation to its effect on the vulnerability
of the power supply. A variable was assigned and defined for each risk factor, as per
Table 2.

A factor (prediction error, ‘PE’) was included to account for the quantity and pricing
uncertainties that occur as a result of the manager’s capacity to predict exactly what the total
supply requirements will be hour-by-hour. Understanding the importance of forecasting
accuracy [42,43], this study used the difference between the predicted and actual total grid
power supply requirement to calculate this risk.

The warming climate presented a significant risk to water availability for hydropower
production and crop availability for co-generated biomass. This analysis used the inverse
of renewable energy plant availability, focusing on the variability of supply output. This
approach holistically captures ex ante ecological conditions, enacted management protocols
for renewable energy facilities, and the scheduling and allocation decisions by the SO
manager, unlike previous studies that primarily focused on purely ecological or commodity
variables [5,7].



Energies 2025, 18, 49 9 of 35

Table 2. This table contains the definition of the variables that was used to assess each supply
management risk factor and their generalized inferences as applied by this study.

Risk Factor Variable Definition Inference on Vulnerability

Prediction Error PE

∣∣∣DFi−DAi
DAi

∣∣∣ Normalized [0,1],

The absolute value of the fractional
difference between the forecasted and
actual total grid supply, normalized

between 0 and 1 using the maximum and
minimum values observed in the

unallocated dataset from 2018 to 2022

The higher the PE, the greater
the perceived quantity and
price risk due to the supply
manager’s forecasting error

Plant Unavailability
Factor PU

1 −
[

∑ Si
Total RE Capacity

]
Normalized [0,1],

The fractional proportion of the aggregate
supply not available from all RE plants per

aggregate rated capacity of all RE plants,
normalized between 0 and 1 using the

maximum and minimum values observed
in the unallocated dataset from 2018 to 2022

The higher the PU, the greater
the perceived quantity risk
due to the lack of supply

availability by local hydro and
biomass co-gen facilities

Peaking PK

DAi Normalized [0,1],
The actual grid demand requirement,
normalized between 0 and 1 using the

maximum and minimum values observed
in the unallocated dataset from 2018 to 2022

The higher the PK, the greater
the perceived price and

quantity risk due to the high
demand requirement

Forward Premiums FP

∣∣∣ SPi−FPi
FPi

∣∣∣ Normalized [0,1],

The absolute value of the fractional
difference between the spot and forward
price of electricity imports, normalized

between 0 and 1 using the maximum and
minimum values observed in the

unallocated dataset from 2018 to 2022

The higher the FP, the greater
the perceived price risk due to

larger price differences
between the day-ahead and

real-time purchasing price of
imported power

Thirdly, the study looked at risk of total power demand possibly exceeding the ca-
pacity limits of power supply (peaking, ‘PK’). Extreme demand conditions tend to reflect
concerns of a quantity shortage of supply, as well as potential price spikes or fluctuations in
price [44,45] as less efficient or costly generation is operated to meet the supply requirement
and the congestion of the physical infrastructure increases [46]. To measure PK, the study
relied on the difference between the actual total grid power supply and peak supply.

Finally, a factor (FP) was incorporated to reflect a major concern of an SO manager,
which is that the cost of sourcing power may exceed their ability to recoup costs. Economic
risk is extensively addressed by scholars that specialize on trading in liberalized power
markets [47–49]. To measure the potential severity of this risk, the study relied on the
difference between the spot and forward price of electricity imports to reflect the most
significant cost uncertainty tied to power supply.

Risk factors were addressed using four seasonal categories, namely early dry
(December–February), late dry (March–May), early wet (June–August), and late wet
(September–November) seasons. The seasonal allocation served to take into consider-
ation the different characteristics of inflow and discharge associated with hydropower, as
carried out by past authors who focused on power–water–ecology interdependencies, like
those of [7]. In this study, the seasonal allocation was also applicable for differentiating
between in-crop and out-of-crop periods for the biomass sources.
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3.2.2. Object 2—Quantitative Assessment of Exposure Level

Figure 3 provides a depiction of the quantitative assessment synthesized to measure
the exposure level.

Energies 2025, 18, x FOR PEER REVIEW 10 of 35 
 

 

[7]. In this study, the seasonal allocation was also applicable for differentiating between 
in-crop and out-of-crop periods for the biomass sources. 

3.2.2. Object 2—Quantitative Assessment of Exposure Level 

Figure 3 provides a depiction of the quantitative assessment synthesized to measure 
the exposure level. 

 

Figure 3. This figure depicts the steps of the quantitative assessment synthesized in this study to 
measure the exposure level of Belize’s SO. 

Time-series datasets were collected and pre-processed per season for each variable. 
Data were categorized into four seasons, which were early dry (December–February), late 
dry (March–May), early wet (June–August), and late wet (September–November). De-
scriptive statistics were calculated to highlight the variability and distribution frequency 
of the datasets for each variable per season. 

Parametric estimation was used to fit theoretical distributions. This process used the 
datasets of variables outlined in Table 2 to approximate the parameters of a pre-defined 
probability distribution function. This study used probability distribution functions as the 
primary mathematical expressions to describe the probability of the inherent risk factor 
taking on a specific set of variable values. Based on the continuity of the data type ex-
plored in this study, distribution functions which have been applied to model a wide 
range of risk phenomena involving continuous variables were selected to provide pre-
defined functions for parameter fitting (Appendix A, Table A1). Each variable was mod-
elled per season, relying on the optimal marginal distributions to draw data-driven con-
clusions on individual variables. Parameter estimations were validated by statistical boot-
strapping. The bootstrapping procedure generated 10,000 iterative re-samples of the orig-
inal variable dataset and compared the bootstrapped samples and empirical data using 
an RSS score (residual sum of squares). The marginal distribution of each variable was 
selected based on the lowest RSS score, as detailed in the subsequent section. 

Variables were analyzed using univariate (each variable described individually 
within its own probability space) and joint distribution (statistical description of two or 
more risk variables within a single probability space) sampling to compute the relative 
exposure based on percentiles. A total of 10,000 random re-samples were generated from 
each variableʹs optimal marginal distributions. Theoretical Gaussian and t-copulas were 

Figure 3. This figure depicts the steps of the quantitative assessment synthesized in this study to
measure the exposure level of Belize’s SO.

Time-series datasets were collected and pre-processed per season for each variable.
Data were categorized into four seasons, which were early dry (December–February),
late dry (March–May), early wet (June–August), and late wet (September–November).
Descriptive statistics were calculated to highlight the variability and distribution frequency
of the datasets for each variable per season.

Parametric estimation was used to fit theoretical distributions. This process used the
datasets of variables outlined in Table 2 to approximate the parameters of a pre-defined
probability distribution function. This study used probability distribution functions as the
primary mathematical expressions to describe the probability of the inherent risk factor
taking on a specific set of variable values. Based on the continuity of the data type explored
in this study, distribution functions which have been applied to model a wide range of
risk phenomena involving continuous variables were selected to provide pre-defined
functions for parameter fitting (Appendix A, Table A1). Each variable was modelled per
season, relying on the optimal marginal distributions to draw data-driven conclusions on
individual variables. Parameter estimations were validated by statistical bootstrapping.
The bootstrapping procedure generated 10,000 iterative re-samples of the original variable
dataset and compared the bootstrapped samples and empirical data using an RSS score
(residual sum of squares). The marginal distribution of each variable was selected based on
the lowest RSS score, as detailed in the subsequent section.

Variables were analyzed using univariate (each variable described individually within
its own probability space) and joint distribution (statistical description of two or more risk
variables within a single probability space) sampling to compute the relative exposure
based on percentiles. A total of 10,000 random re-samples were generated from each
variable’s optimal marginal distributions. Theoretical Gaussian and t-copulas were used to
define a correlation structure for multivariate distributions. Joint distributions were fitted
and assessed per season. The copula that best modelled the multivariate distribution was
determined using log-likelihood as a fitness measure.
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Random samples (10,000) were generated from the copula and re-transformed. The
normalized risk index was calculated at varying percentiles of the re-transformed data,
thereby incorporating correlation structures between variables. For comparison, percentiles
were similarly computed for samples from the marginal distributions. Equal weightings
were assumed for each variable in the ‘n’-dimension distribution. Findings on the exposure
level were compared for each season.

3.3. Description of Statistical Analyses Applied in This Study
3.3.1. Summary Statistics and Marginal Distribution

A few commonly utilized descriptive statistics were generated for the seasonal datasets,
including the mean, minimum, maximum, skew and standard deviation. Prior to develop-
ing the distribution models, datasets were examined for stationarity using the augmented
Dickey–Fuller (ADF) test [38] to determine if there was a unit root, based on likelihood
ratio statistics to reject the null hypothesis of non-stationarity in time-series [39].

The study used a probability distribution to describe each variable for a specific
season, hence repeating the process 16 times (4 variables for 4 seasons). This research
examined a variety of variables and their interdependencies. Previous studies have used
distribution types like GEV and log-normal for hydrological evaluations [7,50]. In Ji
et al.’s [51] study involving agricultural commodities, the authors applied skewed Student-
t density distributions to account for asymmetric features in comparable data. This research
built on previous studies that have used similar distributions for ecological assessments,
agricultural commodities, and power markets.

The study selected 11 commonly applied density distributions (Appendix A Table A1).
Optimal parameters were determined by minimizing the residual sum of squares (RSS).
The RSS represented the deviation between predicted and empirical data values, as defined
in Equation (1).

RSS = ∑n
i=1(yi − f (xi))

2 (1)

where yi is the value of the variable to be predicted, xi is the explanatory variable, and f(xi)
is the predicted value of yi.

The RSS was used as the main score to rank the best theoretical distribution for
empirical variables. To validate the ranking, bootstrapping was applied to resample
the fitted distribution and compare with the empirical values. This step was repeated
10,000 times, and computations were performed in Python using the ‘distfit’ version 1.8 [52]
package for the probability density fitting of univariate distributions. Since a greater
quantity of samples (>10,000) did not show better optimal log-likelihoods (LLs), this was
regarded as the minimum sample.

3.3.2. Joint Distributions Based on Copula Technique

To support specific insights as it relates to the overview of supply management, we
considered the following bi-variate, tri-variate, and multivariate cases. The variables
modelled in each case, their expected insights on supply management, and the level of
dimension of the required joint distribution model (‘n’) are outlined in Table 3.

Gaussian and t-copula were used to generate multivariate distributions for each sea-
son, demonstrating their ease of application in describing multivariate dependency among
variables. This proved useful as the cases increased in dimensions, with the ‘n’-dimension
as large as 4, as was in the case in case 4. According to Sklar’s theorem [53], multivariate dis-
tributions can be expressed in terms of their univariate marginal functions. In n-dimensions,
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for H, an n-dimensional distribution function for n-variates, (x1, x2, · · · , xn), with marginal
(F1, F2, · · · , Fn), there exists an n-copula, C, such that [54]

H(x1, x2, · · · , xn) = C(F1(x1), F2(x2), · · · , Fn(xn) (2)

Table 3. This table outlines the interdependencies that were analyzed using the copula technique in
this study to support various inferences on the management of Belize’s power supply.

Case Variables Expected Insight(s) on ‘n’-Distribution

1 [PE, FP]

Correlation structure between forecasting
inaccuracies, which would be subject to higher spot

prices as a result of real-time adjustments and
premiums, which reflect the additional cost incurred

from real-time purchases

n = 2

2 [PU, PK]
Correlation structure between local RE unavailability
and the system’s demand requirements as a function

of peak demand
n = 2

3 [PK, PU, FP]
Correlation structure between the system’s demand

requirements, local RE unavailability, and the
additional costs incurred from real-time purchases

n = 3

4 [PE, PK, PU, FP]
(All)

Unit score risk based on correlation structure between
all four factors n = 4

For the Gaussian copula, CGauss, the main parameter is a covariance matrix, Σ, that
defines the model’s dependence structure between variables. Its theoretical probability
density function is defined by Equation (3) [55].

CGauss(x) =
1√

(2π)ndetΣ
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
(3)

where µ represents the mean and n denotes the number of variables (rank of model). For
t-copula, CT, the main parameter is a covariance matrix, also referred to as a shape matrix,
Σ, and the degrees of freedom, ν. Its theoretical probability density function is defined by
Equation (4) [56].

CT(x) =
Γ(ν + n)/2

Γ
(

υ
2
)
υ

n
2 π

n
2 |Σ|1/2

[
1 +

1
ν
(x − µ)TΣ−1(x − µ)

]−(υ+n)/2
(4)

where µ represents the mean, n denotes the number of variables, and denotes Euler’s
gamma function.

A theoretical Gaussian and t-copula was fitted to each case per season, and the model
which best represented the data was selected based on the estimated log-likelihood (LL).
Random variate samples of 10,000 were generated from the selected copula and transformed
from uniform variables to their prior defined optimal marginals using the inverse of their
respective cumulative density functions (CDFs). All computations were carried-out in
Python using scipy.stats version 1.14.0 [57].

Each case was scored based on varying percentiles of the distribution, estimated in
increments of 5 from 70th to 95th. Percentiles provided a widely understood statistical
metric for scoring the distributions. The percentile at a level q of a cumulative distribution
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function F(y) = P(Y ≤ y) of the probability measure P was defined by the value x that
met the conditions in Equation (5) [58].

P(Y < x) ≤ q/100and P(Y ≤ x) ≥ q/100 (5)

A similar principle is the traditional value at risk (VaR) used in financial applications,
which is a typical percentile-based score generated over a given period and for a given
probability level [59–61]. For example, a generalized inference of the VaR at the 95th
percentile models the possible loss or deficits that may occur in a 1 in 20 worst-case scenario.
However, in this analysis, the percentile returns a multivariate risk index between 0 and 1.
As its variables, this score was dimensionless, and percentiles were computed under the
assumption that the variables were of equal weighting.

Percentile scores were used to compare case-by-case risk and its variation across sea-
sons, with and without incorporating the correlation structure between variables. The
copula technique was used to calculate percentiles for case variables, allowing for a com-
parison of perceived risk increases or decreases when considering the interdependencies of
variables. The analysis relied on sets of contour plots to assist with the visualization of the
bi-variate and multivariate cases in 2-dimensional space.

4. Results and Discussion
4.1. Summary Statistics

The time-series datasets for each variable were pre-processed and allocated seasonally,
as presented in Figure 4a–d. Due to the use of previously unassessed data, it was chal-
lenging to compare numerical findings with prior studies. However, data patterns and
descriptive statistics were compared with expected behaviour across different seasonal
conditions, as per the literature.

The data showed varying shapes per variable, suggesting different optimal probability
distributions. However, the shape per season was relatively consistent, except for the
unavailability factor of local renewable plants (PU). This inconsistency in intra-seasonal
patterns suggested that PU can account for the greatest shifts in risk across seasons in
supply management. PU skewed towards the right end of the normalized scale, indicating
that it can also account for larger effects on the system.
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Figure 4. This figure depicts the scatter plots for each risk variable per season. The sample includes
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Overall, none of the variables exhibited symmetry in these preliminary visualizations,
suggesting that the optimal distributions possessed asymmetric properties. This suggested
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that simple normal distributions may not be suitable for marginal distributions. Table 4a–d
provides further insight into individual risk factors.

Table 4. This table provides the summary statistics for each risk variable per season. The sample
includes hourly observations for each variable from 2018 to 2022. Risk variables are expressed
in percentages.

(a) PE

Season Mean Median Max Min Skew Kurtosis Std. dev

Early Dry 0.077 0.059 0.753 0.000 1.709 4.341 0.068
Late Dry 0.057 0.045 0.985 0.000 3.476 36.528 0.052
Early Wet 0.051 0.038 0.599 0.000 2.395 11.671 0.049
Late Wet 0.062 0.047 1.000 0.000 3.977 35.140 0.063

(b) PU

Season Mean Median Max Min Skew Kurtosis Std. dev

Early Dry 0.677 0.728 0.992 0.223 −0.385 −1.083 0.215
Late Dry 0.624 0.668 1.000 0.000 −0.875 0.151 0.161
Early Wet 0.553 0.552 0.974 0.028 −0.042 −1.331 0.201
Late Wet 0.622 0.595 1.000 0.140 0.082 −1.519 0.236

(c) PK

Season Mean Median Max Min Skew Kurtosis Std. dev

Early Dry 0.583 0.578 0.880 0.110 0.135 −0.597 0.107
Late Dry 0.666 0.662 1.000 0.071 0.063 −0.416 0.109
Early Wet 0.713 0.712 0.965 0.076 −0.044 −0.581 0.101
Late Wet 0.662 0.656 0.937 0.000 −0.053 −0.241 0.109

(d) FP

Season Mean Median Max Min Skew Kurtosis Std. dev

Early Dry 0.023 0.017 0.502 0.000 5.825 59.705 0.029
Late Dry 0.024 0.017 0.989 0.000 7.268 100.715 0.034
Early Wet 0.024 0.017 0.546 0.000 6.508 63.070 0.032
Late Wet 0.025 0.017 1.000 0.000 8.160 131.325 0.036

The system’s supply requirement (PE) forecasting accuracy was highest during the
early dry season (0.077), with the highest absolute error occurring in the late wet season,
followed by the late dry season (0.985). The distribution of PE showed right skewness and
kurtosis, with the late wet season showing the highest positive skewness (3.977) and the
largest kurtosis (36.528), suggesting higher probabilities of large prediction inaccuracies
during the late dry period.

The study found that PE’s intra-seasonal variations were high, amounting to as high
as 93% of the corresponding seasonal mean value during the dry season and exceeding
the mean value during wet seasons, indicating a volatile accuracy in predicting demand
requirements and, in turn, the quantity and price risks tied to this factor.

The risks associated with supply shortages due to ecological and commodity inter-
dependencies (PU) were highest during the dry seasons (0.677 and 0.624 for early and
late seasons, respectively). Surprisingly, the risk level was similar in the late wet season,
despite hydroelectric facilities’ anticipated higher capacity reducing this risk factor during
the out-of-crop season for lesser capacity biomass supply.

The distribution of PU showed greater symmetry and thinner tails than PE, with
low intra-seasonal variation across all seasons. The lowest deviation was observed in the
late dry season (0.161), likely due to supply constraints tied to ecological management
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reflecting a management protocol to conserve water for availability during the driest period
of the year.

This study found that the late dry season had the highest peak supply requirement,
while the early wet season had the highest average requirement. The PK variable showed
the least skew and asymmetry, suggesting the lowest probability of extreme lows or highs.
Intra-seasonal variations were relatively consistent across all four seasons, indicating that a
single theoretical distribution may be suitable for this variable across all seasons.

The mean values of seasonal premiums were fairly similar (between 0.023 and 0.025),
with the largest premiums observed in the late wet season and the late dry season (0.989).
The skew and kurtosis of the FP were larger in the late dry and wet seasons, suggesting
that extreme price spikes associated with FP were more likely to occur during these periods.
Overall, FP showed high positive skewness and heavy asymmetric tailing, indicating that
spot or real-time purchase prices were generally larger than forward prices. This finding
held economic implications, as any unforeseen adjustments to supply requirements were
subject to more expensive real-time pricing.

4.2. Marginal Distributions—Parameter Estimation and Fitting

The ADF test was applied to test for randomness and stationarity. The results are
summarized in Table 5.

Table 5. This table provides the summarized results of the augmented Dickey–Fuller (ADF) test
performed on each dataset prior to distribution fitting to determine randomness and stationarity,
where (**) and (*) highlight that the test statistic had an observed significance at the 1% and 5% level
based on critical values.

Variable
ADF Statistic p-Value

Early Dry Late Dry Early Wet Late Wet Early Dry Late Dry Early Wet Late Wet

PE 12.48 ** −15.22 ** −15.10 ** −12.22 ** 6.91 × 10−20 1.74 × 10−22 1.13 × 10−22 1.71 × 10−19

PU −3.26 * −7.49 ** −4.36 ** −3.48 ** 1.70 × 10−2 1.09 × 10−9 2.54 × 10−3 8.64 × 10−3

PK −8.38 ** −9.92 ** −11.32 ** −8.75 ** 2.49 × 10−13 2.97 × 10−17 5.69 × 10−18 1.33 × 10−12

FP −14.79 ** −14.23 ** −14.22 ** −11.92 ** 2.85 × 10−22 6.96 × 10−22 7.17 × 10−22 5.18 × 10−19

The datasets were found to be random and stationary, making them suitable for
statistical analysis and fitting of probability distributions. A process of curve fitting,
parameter estimation, and scoring was conducted for each variable per season.

Appendix A Table A2 presents the scores and ranking of marginal distribution models
for each variable per season, with probability density functions and cumulative distribution
functions plotted alongside empirical data provided in Figure 5a–d. Based on scoring
and visualization, the selected marginal distribution models and their parameters were
identified, as summarized in Table 6.

The study found that a single distribution was not the best fit for all variables. Though
preliminary visualizations suggested that a single distribution could describe PE, PK, and
FP, only PE was best described by a single marginal distribution (beta).

The distributions of PU reflecting the level of unavailability of Belize’s renewable
power supply showed the greatest variability, with a beta profile best describing its be-
haviour during the early dry season, log-gamma during the late dry season, and Weibull
during the wet seasons. This was somewhat expected, as seasonality significantly im-
pacts the hydropower-generating capacity in river basins, requiring the consideration of
temperature, rainfall, evaporation, soil moisture, and runoff under changing conditions [6].
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Table 6. This table provides the results of parameter estimation of the selected marginal distributions
for each variable per season, where ‘a’ and ‘b’ reflect the shape parameters of beta distributions, ‘c’
reflects the shape parameter of all other distribution types, ‘loc’ is the locational parameter, and ‘scale’
is the scale of the fit.

Season Variable Marginal
Dist. a or c b loc scale

Early dry

PE beta 1.182 64.949 0.000 4.310
PU beta 1.673 1.028 0.153 0.378
PK GEV 0.257 na 1 0.547 0.103
FP beta 1.628 128.834 −0.001 1.673

Late dry

PE beta 1.249 75.286 0.000 3.493
PU log-gamma 4.708 na 0.142 0.334
PK GEV 0.258 na 0.624 0.106
FP GEV −0.422 na 0.011 0.010

Early wet

PE beta 1.113 181.039 0.000 8.231
PU Weibull 1.300 na 0.528 0.179
PK beta 14.388 7.840 0.054 1.021
FP GEV −0.338 na 0.012 0.011

Late wet

PE beta 1.114 73.828 0.000 4.221
PU Weibull 2.248 na 0.641 0.242
PK GEV 0.325 na 0.625 0.110
FP GEV −0.407 na 0.012 0.010

1 ‘na’—non-applicable parameter for distribution definition.

The relationship between optimal marginal distribution and data properties was
not clear. GEV distributions were well suited for higher asymmetries and heavy tailing,
suggesting its appropriateness for data with greater extremities [5]. However, GEV also
best described three of the four seasons of PK with low skew and light negative tailing.
Similarly, log-normal distributions that are known to be more suitable for positive values
of kurtosis and skewness performed poorly for all seasons of FP and received an average
ranking for PE.
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In contrast, the optimal marginal distribution of a risk factor was influenced by the
nature of the risk factor. For instance, PE, an actor-related variable, was best modelled by a
beta distribution. FP, an economic variable [47,62,63], and PK, a market variable reflecting
Belize’s grid power consumption pattern, were largely described by GEV. On the other
hand, the main generalization we were able to draw on seasonal conditions, including
ecological and commodity shifts, was that these variables can result in vastly different
distributions across time intervals as short as 3 months.

Seasonal behaviour variability among variables offered insights into individual vari-
ables and had quantitative implications for risk interdependencies, suggesting the presence
of similar shifts in their dependence structures. For example, the likelihood of heavy
positive tailing of FP and PE is higher during the late wet season (kurtosis 131.3 and 35.1,
respectively) compared to the early dry season (kurtosis 59.7 and 4.3, respectively). By
considering the dependence structure of these variables and allowing seasonal conditions
to switch, estimation and expectations on tail risk can be improved [7], allowing risk
managers to adjust the probabilities and extremities of variables’ effects periodically.

4.3. Joint Distribution Parameter Estimation and Fitting

The copula technique was used to analyze the dependency structure between samples,
developing a multivariate probability distribution with uniform marginal probability
distributions. The theoretical Gaussian or t-copula was selected based on the LL criterion.
The evaluation results are presented in Appendix A Table A3. Below, Table 7 summarizes
the selected theoretical copula, correlation matrix, and degrees of freedom for the t-copula.

Table 7. This table provides a summary of the selected theoretical copula, the correlation matrix, and
in the case of the t-copula, degrees of freedom.

Case Variables Season Copula Correlation Matrix Degrees of
Freedom

1 [PE, FP]

Early dry Gaussian
[

1 0.008972
0.008972 1

]
na 1

Late dry t
[

1 −0.012128
−0.012128 1

]
71.425

Early wet t
[

1 −0.008733
−0.008733 1

]
50.005

Late wet t
[

1 0.022082
0.022082 1

]
76.781

2 [PU, PK]

Early dry Gaussian
[

1 0.003132
0.003132 1

]
na

Late dry Gaussian
[

1 0.003516
0.003516 1

]
na

Early wet t
[

1 0.005431
0.005431 1

]
75.3014

Late wet Gaussian
[

1 0.126815
0.126815 1

]
na

3 [PK,PU, FP]

Early dry t

 1 0.003237 −0.026092
0.003237 1 0.021153
−0.026092 0.021153 1

 157.532

Late dry Gaussian

 1 0.003517 0.010746
0.003517 1 −0.010254
0.010746 −0.010254 1

 na

Early wet t

 1 0.005377 −0.001673
0.005377 1 −0.0115
−0.001673 −0.0115 1

 126.136

Late wet Gaussian

 1 −0.005044 −0.003733
−0.005044 1 0.003792
−0.003733 0.003792 1

 na
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Table 7. Cont.

Case Variables Season Copula Correlation Matrix Degrees of
Freedom

4
[PE, PK, PU, FP]

(all)

Early dry Gaussian


1 0.010742 −0.00567 0.009111

0.010742 1 0.002987 −0.026331
−0.00567 0.002987 1 0.021241
0.009111 −0.026331 0.021241 1

 na

Late dry Gaussian


1 −0.016632 0.008526 −0.012621

−0.016632 1 0.003571 0.010668
0.008526 0.003571 1 −0.010186
−0.012621 0.010668 −0.010186 1

 na

Early wet t


1 −0.00149 −0.008739 −0.008215

−0.00149 1 0.005264 −0.001767
−0.008739 0.005264 1 −0.011523
−0.008215 −0.001767 −0.011523 1

 120.770

Late wet Gaussian


1 0.010845 −0.007552 0.022146

0.010845 1 −0.005045 −0.003733
−0.007552 −0.005045 1 0.003792
0.022146 −0.003733 0.003792 1

 na

1 ‘na’—non-applicable parameter for copula definition.

The Gaussian copula was found to be the most suitable for 9 out of 16 models, while
the t-copula was best for the remaining cases. This was surprising given its limitations in
modelling tails and extreme observations [53,54]. The Gaussian performance indicated that
dependencies were concentrated in the centre of joint distributions, and extreme values
were mostly independent [49]. The t-copula, on the other hand, best defined the multivari-
ate distribution of case 1 during most seasons, indicating significant tail dependencies.

Case 1 found a positive relationship between PE and FP during early dry and late
wet seasons (0.008972 and 0.0220, respectively) but an inverse relationship during late dry
and early wet seasons (−0.0121 and −0.0087, respectively). The late wet season showed
the strongest correlation (0.022082), followed by the late dry season, both exhibiting the
heaviest tailing and positive skew. These findings suggested that while the indicated
linkages were fairly weak, there was a tendency for the extreme values of PE and FP to
occur together. These results hold financial implications, as forecasting inaccuracies were
subject to higher spot prices as a result of real-time supply adjustments. However, the
inverse correlation of the late dry season revealed that there was a possibility that the
resultant exposure reduced as the risk in one variable offsets the risk in the other.

In contrast, PU and PK revealed a positive relationship in all seasons of case 2, indicat-
ing a dependence on the degree of unavailability of local renewable supply as the system’s
supply requirement increased. This dependency is likely due to the link between electricity
supply and demand, where high demand can strain supply resources [42,64].

Yet, the strongest dependency (0.1268) was seen during the late wet season. As per
Table 4, the mean values of PK and PU were near average (0.662 and 0.622, respectively).
The risk factors were not significantly high during this period, suggesting a possible
individual dependence on environmental factors. The previous literature identified that
increases in temperature and humidity are linked to peaking [42] and decreases in ecological
resources needed for renewable power production [6,65]. Therefore, PU and PK may
not be related. Instead, their dependency was defined by environmental conditions—a
confounding variable.

Environmental conditions may play a role in confounding variables, as evidenced
by the ranking of local renewable energy resources in the merit order of supply. The SO
must prioritize scheduling and allocating available resources to minimize waste or the
mismanagement of water and biomass [34,36]. This is assuming that RE supply is mainly
responsible for the grid’s base load requirement, as it cannot fully meet the grid’s supply



Energies 2025, 18, 49 21 of 35

requirement (43% on average, see Figure 1). Peaking is less likely to affect supply sources
like hydropower and biomass, which are primarily satisfying the grid’s base load. Instead,
peaking may influence the utilization of sources used as supply reserves, such as thermal
supply (11% on average, see Figure 1) in Belize.

In case 3, PK and PU maintained positive relationships of similar strengths as in case 2
(for example, early dry case 2 was 0.003132, while case 3 was 0.003237) across all seasons
except the late wet season, which was defined by an inverse relationship (−0.005044) of
considerably lower strength than the late wet season of case 2 (0.1268).

This structure of dependencies presented an interesting potential correlated offset,
seeing as PK and FP also exhibited an inverse relationship (−0.003733), while FP positively
reinforced PU during the late wet season (0.003792). In contrast, during the late dry season,
PK shared a positive association with PU and FP (0.003517 and 0.010746, respectively).
Meanwhile, the dependence between PU and FP was negative (−0.010254).

Case 4 expanded the joint distribution model by incorporating all study variables.
It revealed a mix of relationships between variables, with positive and negative types
varying across seasons. For instance, the early dry season showed the strongest positive
linkage between PU and FP (0.021241), changing to an inverse relationship in the late
dry (−0.010186) and early wet (−0.011523) seasons before reverting to a weaker positive
relationship in the late wet season (0.003792).

This study found that high-dimensional distributions have a complex dependence
structure, with intra-seasonal variations in relationship types and strength. Based on the
variations observed across the strengths and type of correlation between risk factors from
season to season, the dependence structure of high-dimension distributions were complex.
This observation highlighted a few key insights about the behaviour of exposure levels.
First, the varying relationship types meant that one risk factor might sometimes reinforce
or counteract another. In effect, reinforcement can increase the overall degree of exposure.
In such instances, the SO’s chances of meeting an undesired occurrence grew when risk
variables converged. In contrast, counteractions resulted in the offsetting of risk factors.
Offsets showed that the degree of exposure may be reduced. As a result of offsets, the SO’s
likelihood of experiencing an undesired occurrence decreased as risk variables coincided.

Second, the resultant level of exposure depended on the strength of the individual
factors and their relationship. This meant that while a risk factor can reinforce another
risk factor, lower-strength relationships during periods where the risk of an unwanted
event occurring for each risk factor is medium-to-low resulted in insignificant shifts to
the exposure level. In turn, the SO may deem the result as inconsequential, although
their overall exposure to unwanted events increased as a result of the correlation. In
such cases, SOs may respond by building on protective controls. In contrast, significant
correlations might lead to considerable reinforcing of risk variables. As a consequence,
the SO’s exposure level exceeds the calculated combined exposure to risk variables. If the
likelihood of undesirable outcomes is substantial, the SO may regard the resulting exposure
as significant and choose to take preventative actions. The final steps of the analysis gained
a deeper understanding of these interpretations.

4.4. Relative Levels of Exposure per Season and Inferences on Preventative Controls

The analysis used contour plots to visually compare multivariate distributions, pre-
senting the relationship between samples from marginal distributions and those from
re-transformed marginal distributions that included copula-modelled dependencies, as
shown in Figure 6a–d.
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Figure 6. This figure provides contour plots comparing the multivariate joint distributions, where the
correlation structures between variables are (A) not included in the joint modelling and (B) included
in the joint modelling for cases 1–4 per season.

Figure 6a provides a visual representation of the relationship between PE and FP,
showing side-by-side results with and without the copula-modelled correlation structure.
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In contrast to the plots without the copula-modelled dependencies, the elongated tailing
perpendicular to the x-axis (higher exposure occurrence due to FP) in the case of the copula-
modelled late dry season and parallel to the x-axis (higher exposure occurrence due to PE)
in the case of the late wet season is shown.

This result suggested that although most likelihoods of incidents were centrally con-
centrated, extreme values of PE and FP can occur together, especially when reinforcing
dependencies are accounted for. The contour planes also showed that the area of expo-
sure widened towards the upper and right end of the plot when interdependencies were
considered, indicating that despite the presence of offsets in relationships between vari-
ables, the correlated dependencies were generally positive when the copula-modelled
interdependencies were considered, thereby reinforcing supply management risk.

The study found that models without copula-modelled dependencies had slightly
smaller distances between outer contour spacing, indicating that while copula-modelled
interdependencies captured higher exposure levels, their unit likelihoods were less than
those in models without interdependencies. As such, an SO manager can interpret the
latter as a less conservative representation of the risk level.

Table 8 presents the relative exposure results based on sampled data from marginal
distributions and re-transformed marginal distributions of copula modelled dependencies.
The measure denotes the exposure not exceeded by levels below the value presented in the
chart, allowing for a better comparison of various bounds of risk exposure levels per case
and per season.

Table 8. This table presents the relative exposure effect of systemic risks per case (‘C1’–‘C4’) per
season, based on joint distribution percentiles. The copula-modelled correlation structure between
variables is not included in the estimations denoted by ‘nc’. Variables were assumed to have equal
weighting. Higher levels of exposure are denoted in ‘red’ in the colour gradient, while lower levels
are highlighted in ‘green’.

Percentile 70 75 80 85 90 95

Early dry C1 0.078 0.095 0.116 0.142 0.179 0.237

C1 (nc) 1 0.051 0.061 0.075 0.094 0.122 0.169

C2 0.610 0.638 0.665 0.695 0.730 0.775

C2 (nc) 0.555 0.583 0.610 0.640 0.675 0.722

C3 0.527 0.565 0.610 0.651 0.695 0.749

C3 (nc) 0.501 0.522 0.555 0.596 0.640 0.696

C4 0.495 0.518 0.545 0.609 0.664 0.728

C4 (nc) 0.454 0.454 0.515 0.555 0.610 0.675

Late dry C1 0.073 0.085 0.099 0.118 0.145 0.145

C1 (nc) 0.045 0.054 0.064 0.078 0.098 0.133

C2 0.780 0.799 0.819 0.841 0.869 0.909

C2 (nc) 0.717 0.736 0.757 0.781 0.811 0.855

C3 0.730 0.755 0.780 0.808 0.842 0.887

C3 (nc) 0.666 0.691 0.718 0.747 0.782 0.830

C4 0.682 0.714 0.747 0.780 0.818 0.870

C4 (nc) 0.617 0.650 0.682 0.717 0.757 0.811
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Table 8. Cont.

Percentile 70 75 80 85 90 95

Early wet C1 0.065 0.075 0.089 0.106 0.131 0.173

C1 (nc) 0.040 0.047 0.057 0.069 0.086 0.118

C2 0.797 0.816 0.836 0.860 0.890 0.939

C2 (nc) 0.732 0.753 0.775 0.800 0.829 0.871

C3 0.741 0.768 0.796 0.825 0.859 0.909

C3 (nc) 0.675 0.704 0.733 0.764 0.800 0.848

C4 0.682 0.722 0.760 0.796 0.836 0.889

C4 (nc) 0.608 0.653 0.693 0.732 0.775 0.829

Late wet C1 0.076 0.090 0.107 0.128 0.158 0.208

C1 (nc) 0.047 0.056 0.068 0.084 0.108 0.148

C2 0.831 0.853 0.878 0.908 0.948 1.009

C2 (nc) 0.760 0.785 0.812 0.843 0.882 0.942

C3 0.771 0.800 0.831 0.865 0.908 0.977

C3 (nc) 0.688 0.724 0.759 0.797 0.841 0.906

C4 0.710 0.752 0.791 0.832 0.879 0.950

C4 (nc) 0.607 0.663 0.712 0.759 0.811 0.881
1 joint percentile estimation; no correlation structure included.

The study compared cases across seasons, based on the 95th and 90th percentiles
(representing the exposure level that could arise in the worst 1 in 20 and 1 in 10 situations
across a given season); case 1 had the highest exposure level during the early dry season
(0.237 and 0.179) and case 2 had the highest exposure level during the late wet season (1.009
and 0.948), along with cases 3 (0.977 and 0.908) and 4 (0.950 and 0.879).

The overall implications for management were that joint exposure due to a lack of
local RE and high supply requirement during the wet season were the highest inherent
risk, followed by early wet and late dry seasons due to the joint distribution of PU and PK.
The early dry season had the lowest inherent risk for supply management. The conceptual
and practical implications of the main findings were reinterpreted back to the study’s
conceptual framework.

Conceptually, the maximum joint exposure of PK and PU suggested that the greatest
inherent risk was posed by shared SO and third-party activity. The practical implication
of the share of exposure posed by PK is that there is a lack of implemented control to
reduce the electricity consumed during peak demand. This implication proved consistent
with the existing operation of Belize’s SO. The SO had not implemented preventative
control measures for demand-side management (DSM), such as demand response or energy
efficiency (EE) strategies [66]. Thermal generation or additional power imports were used
to meet sharp increases in demand by local agriculture and aquaculture industries. Relying
on additional power generation in this situation represented a protective control, implying
that only the residual risk of peaking was managed.

The share of exposure posed by PU was largely third party-related. The possible
unavailability of power generation by local RE suppliers significantly contributed to the
inherent risk of the SO. Similarly to PK, the protective controls of PU, including protocols
for water management of the existing PPAs, were inadequate in mitigating the inherent
risk impact. As previously reviewed, Belize’s SO can decide on preventative control like
re-purposing the RE asset [1,29] to reduce the effect climate warming has on third-party
RE supply.
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Initially, the study predicted the late dry season to have the highest inherent risk. This
was because Belize experienced a series of planned load shedding due to supply shortages
during the most recent late dry season. This inconsistency was likely due to the challenge
of isolating preventative from protective controls in the quantitative synthesis.

The study conceived that risk which threatens the SO from achieving their objectives
is categorized into two types, namely inherent and residual. Risk types were distinguished
based on the absence/presence of protective controls. From a practical modelling per-
spective, accounting for the actor response was a challenge. This was because the actor
response resulted in tangible controls, as well as intangible controls. For example, the
scheduling decisions of hydropower could be influenced by the SO manager’s favourable
or unfavourable outlook on the season’s weather conditions, which is an intangible factor
that goes beyond the standard management protocols of reservoirs.

The literature has previously highlighted the challenge of quantifying aspects like
mismanagement or optimism [13]. Furthermore, while our models neatly categorize
management into seasonal groups, it was acknowledged that the actor response may not
always align with these boundaries. For example, supply decisions made during the early
parts of the year can impact the inherent risks of the late wet season, which contractually
occurs at the end of an annual cycle. The methodological approach can be improved by
introducing a time-varying supply expectation variable to capture the actor response.

Conversely, including variable dependency in the quantitative synthesis proved valu-
able. This study found that modelled interdependencies led to higher exposure levels
in different seasons. The largest difference was observed in case 4 during the late wet
season (0.103), while the smallest difference was observed in case 1 during the late dry
season (0.012). This confirms the reinforcing effect of risk factors due to their dependency
structures. At the same time, the analysis showed that negative relationships between
variables can reduce risk, as seen with case 4’s four-variable model resulting in a lower
exposure level than the bi-variate case 2 for all seasons.

It was evident that identifying and selecting risk factors was crucial for quantifying
interdependencies. The previous literature suggested that risks can be underestimated due
to ignorance of systemic interdependencies. Our results also showed that if risk factors are
not comprehensively identified and their dependencies not adequately captured, exposure
level can result in overly conservative estimates, resulting in inconsistencies between
empirical estimations and field evidence.

5. Conclusions
This study examined inherent risks associated with power supply management based

on the operations of the SO and relevant third parties. Two primary objectives were
defined, namely to (i) identify inherent risk factors and variables to appropriately represent
power supply-related exposures and to (ii) evaluate the SO’s level of exposure from these
risk factors.

Its findings aimed to enhance the awareness of interdependence, leading to more
informed decisions and investments in preventative risk management control, particularly
among small emerging economies. We proposed that by considering interdependencies
and the possible coincidences of risk variables, the quantification of risk may reveal a larger
potential impact on the power sector.

To fulfil the research objectives, the study developed a seasonal multivariate approach
identifying risk factors and selecting variables, developing univariate distribution models
for each risk factor, and generating multivariate distributions using the copula method to
define the dependency structures for four scenarios. Joint risk exposure was computed
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based on varied percentile measures for each scenario, allowing for a comparison of
exposure levels.

Beta distributions were the most effective way to model the actor-related variable. GEV
largely provided suitable descriptions of economic and market characteristics. Meanwhile,
the variable extensively impacted by seasonal factors, including ecological and commodity
variations, resulted in greatly varying distributions between seasons.

The Gaussian copula was determined to be the best fit for the majority of the models,
demonstrating that dependencies were concentrated in the centre of joint distributions and
extreme values were mostly independent. However, the t-copula best described case 1’s
multivariate distribution during most seasons, showing that the PE-FP joint distribution
had large tail dependencies. Joint distributions showed that despite the weak links, extreme
values might occur simultaneously.

Essential findings showed that risk factors can sometimes reinforce or offset each other,
influencing the behaviour of exposure. In case 1, early dry and late wet seasons showed
a reinforcing relationship (PE: 0.008972, FP: 0.0220), while late dry and early wet seasons
exhibited an inverse relationship (PE: −0.0121, FP: −0.0087). Case 2 demonstrated the
strongest dependency (0.1268) between PK and PU during the late wet season. Case 3 re-
vealed a negative correlation between PK and FP (−0.003733), but FP positively reinforced
PU (0.003792). A late dry season saw positive associations of PK with PU (0.003517) and
FP (0.010746), while PU and FP were negatively correlated (−0.010254). Case 4 illustrated
a complex dependence structure among all variables, with varied intra-seasonal relation-
ships.

This dynamic was observed in exposure levels, revealing periods of increased or
decreased exposure to risk factors. Case 1 exhibited the highest exposure levels in the early
dry season (0.237 and 0.179), while case 2 showed peak exposure levels in the late wet
season (1.009 and 0.948), along with cases 3 (0.977 and 0.908) and 4 (0.950 and 0.879). Copula-
modelled interdependencies capture higher exposure levels but have less unit likelihoods,
making them a more conservative representation of risk levels for SO managers.

Furthermore, findings suggested that the inherent risk posed by the joint distribution
of PK and PU presented the highest inherent risk. These results implied that protective
measures were no longer sufficient in mitigating the threats associated with peaking and
climate impact on RE power generation. PK mitigation can be considered with a particular
focus on the demand-side potential for load shifting or overall load reduction. PU, on
the other hand, requires consideration of the supply-side infrastructure investment and
maintenance and operation strategies, including excess capacity. Practical implications
highlight that preventative controls should be prioritized in the areas such as demand-side
management through strategies including smart buildings and energy storage systems
and incremental re-purposing of RE infrastructure. However, practical implementation
and policy implementation to facilitate such strategies are greatly influenced by context,
necessitating further research.

A limitation of the methodology was incorporating intangible aspects of the actor
response, like optimism or making management decisions under varying levels of informa-
tion. Moreover, the limitation extended to accounting for intangible factors varying the SO
response over time. For example, hydropower scheduling decisions may be influenced by
the SO manager’s favourable or negative outlook on weather conditions, as well as how
this outlook evolves over time. Future studies can enhance this methodological approach
by using a time-varying supply expectation variable to capture cross-seasonal exposure.
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Appendix A

Table A1. This table provides a list of distribution PDFs used in this study.

Distribution Probability Density Function Parameter

normal 1√
2πσ2 e−

(x−µ)2

2σ2
µ—mean

σ—standard deviation

exponential
{

λe−λx x ≥ 0,
0 x < 0

λ—rate parameter

Pareto

{
αxα

m
xα+1 x ≥ xm,

0 x < xm

xm—minimum possible value of x
α—shape parameter/tail index

Weibull

{
k
λ

( x
λ

)k−1e−( x
λ )

k
x ≥ 0,

0 x < 0

k—shape parameter
λ—scale of distribution

t Γ( ν+1
2 )√

πνΓ( ν
2 )

(
1 + t2

ν

)−(ν+1)/2 ν—degrees of freedom
Γ—gamma function

GEV


e−sexp(−e−s) f or ξ = 0

(1 + ξs)−(1+ 1
ξ )exp

(
−(1 + ξs)

−1
ξ

)
f or ξ ̸= 0, ξs > −1

0 otherwise

ξ—shape parameter
s—location parameter

gamma xα−1e−βx βα

Γ(α) x > 0 α, β > 0
α,β—shape parameters

Γ—gamma function

log-normal 1
xσ

√
2π

exp
(
− (lnx−µ)2

2σ2

)
µ—natural log mean

σ—natural log standard deviation

beta 1
B(α,β) xα−1(1 − x)β−1 α,β—shape parameters

B—normalization constant

uniform
{ 1

b−a a ≤ x ≤ b,
0 x < a or x > b

a,b—minimum and maximum
bounds

log-gamma λα

Γ(α)
(logx)α−1

xλ+1

α—shape parameters
λ—scale of distribution

Γ—gamma function

Table A2. This table provides the results of parameter estimation of the distribution fitting process
and scoring of fits using RSS in order to rank the fits.

(a) PE

Season Distribution RSS Rank

Early Dry

normal 174.135 9
exponential 24.234 3

Pareto 24.234 3
Weibull 125.247 8
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Table A2. Cont.

(a) PE

Season Distribution RSS Rank

Early Dry

t 119.414 7
GEV 38.240 6

gamma 3.475 2
log-normal 25.570 5

beta 2.831 1
uniform 664.120 11

log-gamma 178.426 10

Late Dry

normal 299.378 9
exponential 71.087 3

Pareto 71.087 3
Weibull 213.689 7

t 203.947 6
GEV 81.456 5

gamma 697.393 10
log-normal 61.608 2

beta 16.399 1
uniform 1447.070 11

log-gamma 296.963 8

Early Wet

normal 492.381 9
exponential 29.889 3

Pareto 29.889 3
Weibull 347.407 8

t 323.893 7
GEV 108.585 6

gamma 6.221 2
log-normal 66.800 5

beta 6.095 1
uniform 1681.720 11

log-gamma 503.463 10

Late Wet

normal 327.835 8
exponential 40.318 2

Pareto 42.010 3
Weibull 215.910 7

t 190.403 6
GEV 68.808 5

gamma 531.113 10
log-normal 47.286 4

beta 11.206 1
uniform 1227.130 11

log-gamma 354.224 9

(b) PU

Season Distribution RSS Rank

Early Dry

normal 9.467 6
exponential 23.191 10

Pareto 23.191 10
Weibull 8.410 5

t 9.467 7
GEV 4.385 2

gamma 10.011 9
log-normal 9.467 8

beta 2.485 1
uniform 6.220 4

log-gamma 5.590 3
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Table A2. Cont.

(b) PU

Season Distribution RSS Rank

Late Dry

normal 26.650 6
exponential 96.983 10

Pareto 96.983 10
Weibull 24.676 3

t 25.688 4
GEV 21.623 2

gamma 29.540 7
log-normal 26.471 5

beta 37.028 8
uniform 67.458 9

log-gamma 9.888 1

Early Wet

normal 13.158 6
exponential 32.313 10

Pareto 32.313 10
Weibull 5.434 1

t 13.158 8
GEV 11.274 3

gamma 13.139 4
log-normal 13.158 6

beta 9.351 2
uniform 17.440 9

log-gamma 13.145 5

Late Wet

normal 14.676 8
exponential 21.628 10

Pareto 21.628 10
Weibull 7.861 1

t 14.676 8
GEV 13.691 5

gamma 14.610 7
log-normal 13.383 4

beta 9.031 2
uniform 10.495 3

log-gamma 14.589 6

(c) PK

Season Distribution RSS Rank

Early Dry

normal 3.429 6
exponential 144.361 10

Pareto 144.361 10
Weibull 10.965 8

t 3.429 7
GEV 2.040 1

gamma 2.586 4
log-normal 2.581 3

beta 2.331 2
uniform 92.019 9

log-gamma 3.389 5

Late Dry

normal 3.384 5
exponential 138.269 10

Pareto 138.269 10
Weibull 5.557 8

t 3.384 6
GEV 2.100 1

gamma 3.019 3
log-normal 2.997 2

beta 4.235 7
uniform 94.236 9

log-gamma 3.321 4
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Table A2. Cont.

(c) PK

Season Distribution RSS Rank

Early Wet

normal 5.373 4
exponential 161.130 10

Pareto 161.130 10
Weibull 7.091 7

t 5.373 5
GEV 125.856 9

gamma 5.299 2
log-normal 5.373 3

beta 4.894 1
uniform 111.461 8

log-gamma 5.509 6

Late Wet

normal 4.556 5
exponential 145.056 10

Pareto 145.056 10
Weibull 6.535 8

t 4.556 4
GEV 3.657 1

gamma 4.315 2
log-normal 4.449 3

beta 4.705 6
uniform 100.576 9

log-gamma 4.866 7

(d) FP

Season Distribution RSS Rank

Early Dry

normal 4275.100 7
exponential 563.132 1

Pareto 775.352 3
Weibull 2180.030 6

t 1583.700 5
GEV 965.400 4

gamma 5923.220 9
log-normal 11,555.600 11

beta 593.196 2
uniform 11,349.300 10

log-gamma 4491.330 8

Late Dry

normal 5035.380 7
exponential 555.753 1

Pareto 855.044 3
Weibull 3050.850 6

t 1488.620 5
GEV 836.784 2

gamma 6770.940 9
log-normal 11,551.600 10

beta 1259.270 4
uniform 11,904.600 11

log-gamma 5636.840 8

Early Wet

normal 4648.500 7
exponential 1331.130 4

Pareto 1781.760 5
Weibull 3169.760 6

t 857.826 3
GEV 452.987 1

gamma 8813.020 9
log-normal 12,178.800 11

beta 736.449 2
uniform 11,979.900 10

log-gamma 5163.200 8



Energies 2025, 18, 49 32 of 35

Table A2. Cont.

(d) FP

Season Distribution RSS Rank

Late Wet

normal 5262.680 7
exponential 713.711 2

Pareto 1065.730 4
Weibull 1895.200 6

t 1192.070 5
GEV 687.460 1

gamma 7716.980 9
log-normal 11,686.800 10

beta 762.518 3
uniform 12,064.100 11

log-gamma 5648.630 8

Table A3. This table provides the evaluation results of the joint distributions using the theoretical
Gaussian and t-copulas based on LLs for each case.

Case Variables Season
LL

Gaussian t

1 [PE, FP]

Early dry 0.4012 −0.3928
Late dry 0.7780 0.8374

Early wet 0.3306 1.5575
Late wet 2.4448 3.0894

2 [PU, PK]

Early dry 0.0489 −0.8444
Late dry 0.0616 −0.7765

Early wet 0.1490 1.4114
Late wet −0.0050 −0.1373

3 [PK, PU, FP]

Early dry 5.7091 5.1105
Late dry 1.1653 −0.6835

Early wet 0.8230 1.2862
Late wet 0.2672 −2.4446

4 All

Early dry 6.8772 3.4665
Late dry 3.6390 −1.3443

Early wet 1.5505 2.7388
Late wet 3.5941 1.9977
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