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Abstract: We present a continuative definition of topologi-

cal charge to depict the polarization defects on any resonant

diffraction orders in photonic crystal slab regardless they

are radiative or evanescent. By using such a generalized

definition, we investigate the origins and conservation of

polarization defects across the whole Brillouin zone. We

found that the mode crossings due to Brillouin zone folding

contribute to the emergence of polarization defects in the

entire Brillouin zone. These polarization defects eventu-

ally originate from the spontaneous symmetry breaking of

line degeneracies fixed at Brillouin zone center or edges,

or inter-band coupling caused by accidental Bloch band

crossings. Unlike Bloch states, the polarization defects live

and evolve in an unbound momentum space, obeying a

local conservation law as a direct consequence of Stokes’

theorem, but the total charge number is countless.

Keywords: photonic crystal; topological charge; polariza-

tion defect

1 Introduction

Polarization defects [1]–[13] are exotic phenomena that

can happen in both real and momentum space at which

one or two components that compose the light’s polariza-

tion are ill-defined, corresponding to some special points

on the Poincaré sphere, such as the north or south poles

which represent the circular-polarized states (CPs) [9],
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[14]–[16] and the amplitudes singularity at the sphere

center that is related to bound states in the continuum

(BICs) [17]–[24]. Polarization defects bridge the underlying

non-trivial physics in singular optics [25]–[27] and non-

Hermitian systems [28]–[32] to the characteristics of the

far-field radiation, thus enabling many applications such

as high-Q cavities [33], vortex beam generators [34], and

chiral devices with circular dichroism [35], [36]. In partic-

ular, from the view of topological photonics [37]–[43], the

polarization defects in photonic crystal (PC) slabs can be

characterized by quantized topological charges [44]–[49].

For example, the BICs carry integer topological charges; the

CPs and some paired exceptional points (EPs) [50]–[56] pos-

sess half-integer charges. The topological charge provides a

vivid picture to depict andmanipulate the far-field radiation

and paves the way to rich consequences such as merging

BICs [57]–[59] and unidirectional guided resonances (UGRs)

[60]–[62].

Although topological charges establish a valid interpre-

tation of polarization defects, such a picture is still incom-

petent in clarifying several important elusiveness, mainly

because it is defined on the far-field radiation, and thus,

their evolution is limited inside the light cone. For instance,

it is not clear how the polarization defects originate in

physics and how they evolve in the whole Brillouin zone

(BZ). Besides, as the footstone of the topological charge’s the-

ory, the conservation of topological charges in momentum

space has been widely recognized. Nevertheless, it remains

elusive what the physical origin of this conservation law is,

and whether or not any global conservation of topological

charges exists if taking all types of polarization defects into

account.

To address the questionsmentioned above,wefirst gen-

eralize the definition of topological charge to near-field con-

text in this letter, which is not only consistent with the con-

ventional definition in characterizing the radiative waves

but can also depict the topological features in evanescent

waves. As a result, such a generalized topological charge is

valid in the entire BZ and can be applied to any diffraction

orders including the non-radiative ones. Then, we reveal
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that in periodic structure, owing to BZ folding, polarization

defects are eventually resulted from the line degeneracy

fixed at BZ center or edges, or inter-band coupling near

the accidental Bloch band crossings. Moreover, we point out

that the polarization defects in a given diffraction order live

in an unbound momentum space rather than the reduced

BZ. Therefore, we need to consider the entire BZ to track

their dynamic evolution, which is quite different from the

Bloch states. Nevertheless, the topological charges always

obey the local conservation law due to Stokes’ theorem, but

the total charge number is countless.

2 Results and discussions

2.1 Generalizing the definition of topological
charges to full field

To elaborate on our findings, we start from a 1D dielectric

slab as shown in Figure 1a and consider the transverse-

electric (TE) modes with main components of (Hx, Ey,Hz)

for simplicity, while the discussion upon the 2D PC can be

found in Supplementary materials. We note that the other

components such as Ex are not zero, especially when it devi-

ates from the kx axis. When the alternating dielectric layers

in the PC have the same relative permittivities (𝜀1 = 𝜀2), the

slab degrades to a conventional homogeneous slab waveg-

uide, supporting several waveguidemodes such asG1 (black

line) and G3 (grey line) shown in left panel of Figure 1b. By

assuming an artificial periodic modulation of permittivity

𝛿𝜀 = 𝜀1 − 𝜀2 along x direction with a crystal constant of a,

an artificial Bloch wave vector kx𝛽0 can be defined, where

𝛽0 = 2𝜋∕a is the reciprocal lattice constant. As a result, the

energy dispersion curves of waveguide modes fold back to

the reduced BZ and thus result in varieties of band cross-

ings. Obviously, there are two types of crossings due to

the folding. First, the waveguide modes of the same order

(i.e. G1 propagating towards the left and the right) fold to

cross at the BZ center or edges (solid circles, left panel);

second, waveguidemodes of different orders (i.e. G1 and G3)

may cross with each other accidentally (dashed circles, left

panel). The crossings in the first case are inevitable as long

as the periodic modulation is applied. As a comparison, the

crossings in the second case are accidental and tunable if

the frequencies of waveguide modes vary, and thus can be

avoided totally by choosing proper parameters. Note that

when 𝛿𝜀 = 0, the foldedwaveguidemodes simply crosswith

each other without coupling due to the orthogonality.

Then, we introduce nonzero 𝛿𝜀 to turn the homoge-

neous slab into a PC slab. Due to the periodic modulation of

permittivity, if symmetries allow, two crossed waveguides

modes could couple with each other. Specifically, for first

crossing scenario mentioned above, waveguide modes of

the same order couple with themselves, get anti-crossed to

split the photonic bandgap, forming series of Bloch energy

bands (solid circles, right panel of Figure 1b). For the second

case, inter-band coupling may emerge between different

Bloch bands (dashed circles, right panel of Figure 1b), giving

rise to different crossing types (crossing or anti-crossing)

based on the coupling strength [62]. The crossings and cou-

pling between energy bands not only result in fancy band

structures, but also provide possibilities to manipulate the

far-field radiation, and thus create abundant polarization

defects by hybridizing multi radiation channels belonging

to different Bloch modes.

(c)

(a) (b)

Figure 1: Resonant diffraction orders in periodic PC slab. (a) Schematic of the 1D PC slab. (b) Band diagrams of the effective homogeneous slab

(𝛿𝜀 = 0, left panel) and the periodic PC slab (𝛿𝜀 = 1, right panel), with r∕a = 0.4 and h∕a = 1.2. Solid circles: crossings between the waveguide modes

of the same order; dashed circles: accidental crossings between different waveguide modes. Indices in each region indicate the radiative diffraction

orders. Dashed orange/purple lines: light lines for the 0th/1st diffraction orders. Dashed grey line: BZ edge. (c) Profiles of 0th (orange) and 1st (purple)

diffraction orders for  , and  modes shown in (b). Grey shading represents the slab.
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To investigate how to generate polarization defects

through the band crossings, we first propose a general pic-

ture to depict the radiation and polarization of Blochmodes

in PC slab. According to the Bloch’s theorem, Blochmodes in

periodic structure can be decomposed as a series of diffrac-

tion orders [63], [64]:

Ey(r) =
∑
m

Ey,m(z)e
i(m−kx)𝛽0x−ik y𝛽0 y

=
∑
m

Ey,m(z)e
igm⋅r (1)

with ky𝛽0 is the continuous non-Bloch wave vector along

y direction. Accordingly, the in-plane momentum of mth

diffraction order is given by gm with k‖ = (kxêx + kyêy)𝛽0
as the offset wavevector to the Γ point. The diffraction

orders can be either radiative or evanescent, determined

by whether its in-plane momentum falls into the light cone

as |gm| < 𝜔∕c or not. This criteria gives light lines for each
diffraction orders, such as dashed orange and purple lines

for the 0th and 1st order in Figure 1b. These light lines

divide the 𝜔− kx diagram into several regions. We color

these regions in Figure 1b to distinguish whether diffrac-

tion orders (m1,m2,…) are radiative or not. We pick three

Bloch modes P,Q, S in different regions as examples, whose

profiles are shown in Figure 1c. Obviously, the number of

radiative diffraction orders differs in different regions. In

any regions with only one radiative channel, such as white

region above the 0th lightline (left panel, Figure 1c), only

one diffraction order (i.e. 0th order) is radiative, referred

as the conventional far-field radiation channel. Elimination

of such a radiation channel gives rise to the emergence of

BICs, and the characteristics of polarization defects in such

a channel can be interpreted by utilizing the topological

charge picture. As for the regions withmulti radiation chan-

nels, such as blue region where both 0th and 1st diffraction

orders are radiative (middle panel, Figure 1c), topological

charges can be applied independently to depict the radi-

ation geometry of each individual channel [65]. In pink

regions below all the light lines (right panel, Figure 1c), all

the diffraction orders become evanescent and vanish in the

far-field, making the conventional definition of radiation as

well as topological charges invalid.

Accordingly, the topological charges picture is only

valid where radiative channels can be well-defined. How-

ever, the band crossings can happen everywhere in the

whole BZ. To figure out how band crossings contribute

to the emergence of polarization defects, we generalize

the definition of topological charges upon non-radiative

diffraction orders. Specifically, as shown in Figure 2a, if

mth diffraction order is radiative, the far-field polarization

(cs,m, cp,m) is generally elliptical and transverse to the 3D

wave vector k = (gm, kz,m), where kz,m =
√
𝜔2
b
∕c2 − |gm|2

is the vertical wave vector of this diffraction order and

𝜔b is the frequency of Bloch mode. Due to the transverse-

wave nature of the radiation, polarization can be projected

from s−p plane (dashed blue plane) onto the x−y plane

(yellow plane) in an appropriate way with the polarization

information preserved [24], [65], giving a reduced far-field
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Figure 2: Near-field topological charge. (a) Schematic of far-field and near-field polarization. Black arrow: 3D radiative wave vector k = (gm, kz,m);

blue dashed plane: far-field s−p plane perpendicular to k; blue arrow: far-field radiation in s−p plane; yellow plane: far-field x−y plane; yellow arrow:

projected far-field radiation in x−y plane; red plane: near-field plane located at upper surface of the PC slab; red arrow: near-field components in x−y
plane; green arrow: z component of near-field wave. (b) Top panels: band structures of Γ1

A
(red line) and X3

B
(gray line) modes with slab thickness of

h∕a = 1.2 and 2.1, respectively. A polarization defect (red dot) is found in Γ1

A
band. When increasing the slab thickness, the polarization defect evolves

along kx axis (red arrow). Bottom panels: conventional topological charge q and generalized topological charge qn
0
carried by the polarization defect

with slab thickness of h∕a = 1.2 and 2.1, respectively. (c) Evolution of conventional (grey dotted line) and generalized (red dotted line) topological

charge carried by the polarization defect.
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radiation (cx,m, cy,m) in x−y plane. We note that, the radi-

ation is actually dependent upon the 3D wave vector k.

However, since one diffraction order is just a constituent

of the Bloch mode, wave vector k is fully determined by

the in-plane wave vector k‖. Therefore, we consider the

characteristics of diffraction orders with respect to k‖ not
the k.

Then, we consider the near-field waves(
cn
x,m

, cn
y,m

, cn
z,m

)
, defined as the complex amplitude of

diffraction orders at near-field position (red plane, Figure

2a). For radiative diffraction, since it’s continuous and

uniform at any z position outside the slab, near-field

waves
(
cn
x,m

, cn
y,m

)
is exactly equivalent to the far-field one

(cx,m, cy,m), and thus can be employed directly to depict the

polarization. For non-radiative diffraction, vertical wave

vector kz,m becomes an imaginary number, and the far-field

radiation vanishes. However, the transverse condition still

holds for near-field waves (see Supplementary materials

for details), ensuring that the information of component

cn
z,m

is totally encoded in other two components cn
x,m

and

cn
y,m
. Therefore, we can still employ the near-field waves(

cn
x,m

, cn
y,m

)
to present the polarization, consistent with the

radiative case. In other words, the near-field polarization

defined by
(
cn
x,m

, cn
y,m

)
is valid for any diffraction orderm in

the whole BZ, regardless they are radiative or evanescent.

Accordingly, we can define the general topological charges

in near-field waves as:

qn
m
= 1

2𝜋∮
C

dk‖ ⋅∇k‖𝜃
n
m
(k‖) (2)

Here, 𝜃n
m
(k‖) is the orientation angle of near-field polar-

ization
(
cn
x,m

, cn
y,m

)
of m-order diffraction. Obviously, the

conventional topological charge q defined in the far-field

polarization is a subset of qn
m
. In the following discussions

we refer to them both as the “topological charges”.

The above continuative definition of qn
m
allows us to

learn how polarization defects evolve in the whole BZ. To

show this fact, we take the Γ1
A
band in Figure 2b as an

example. This band spreads along the Γ-kx direction and

get below the 0th light line around the X point. As shown in

left panel of Figure 2b, inside the light cone (white region),

only 0th diffraction order is radiative, and a conventional

integer topological charge (left bottom panel, Figure 2b) can

be employed to describe a polarization defect (red dot) on

it, corresponding to a tunable accidental BIC. When varying

the parameter slab thickness h, this integer charge evolves

robustly along the kx axis (red arrow) until it enters into

the pink region and thus drops out of the light cone. The

evolution trajectory is shown in Figure 2c as the dotted grey

line. Obviously, it is limited inside the light cone. As shown

in the right panel of Figure 2b, when h increases to 2.1a, this

polarization defect travels to kx = 0.431 below the light line.

In this case, it can’t be captured by the conventional topo-

logical charge any more since the conventional definition

is only valid inside the light cone. As a comparison, we can

employ the generalized topological charge defined in Eq. (2)

to extract the evolution trajectory of this polarization defect

outside the light cone. As shown in the right bottom panel

of Figure 2b, the polarization defect carries a generalized

charge of qn
0
= −1 in 0th diffraction order, consistent with

the conventional one. The trajectory of this generalized

charge is plotted in Figure 2c as the dotted red line. Obvi-

ously, inside the lightcone, the trajectories of conventional

charge and generalized charge overlapwell with each other,

but the latter smoothly crosses the light line and evolves

to the BZ edge (kx = 0.5), verifying that generalized charge

can be applied in the whole BZ. We note that, the slight

deviation between the two trajectories inside the lightcone

is resulted from the numerical error when we calculate

the near-field polarization numerically through the Fourier

transformation.

2.2 First crossing scenario: mode
combination and formation of lattice
charge

By utilizing the generalized topological charges, we investi-

gate the physical origin of polarization defects, that is, how

band crossings contribute to the emergence of polarization

defects. We also discuss the conservation law that the gen-

eralized topological charges obey. As we stated above, in

periodic PC slab there are two types of band crossings due to

the BZ folding: inevitable crossings between the waveguide

modes of the same order, and accidental Bloch bands cross-

ings between waveguide modes of different orders. Both of

them introduce the inter-mode couplings and can gener-

ate nontrivial polarization defects accordingly [23]. We first

take waveguide mode G1 as an example to investigate the

first crossing scenario.

Specifically, G1
R
and G1

L
denote the G1 mode propagating

towards the left and the right. Due to BZ folding, they cross

with each other at Γ point [21], [23] (red circle, left panel of

Figure 1b), forming a two-level system around the crossing

point as:

̂0 = 𝜔0 + 𝜂k2
y
+
(
Δx +Δyk

2
y

)
𝜎x + 𝜉kx𝜎z (3)

where𝜔0 is the degenerate frequency of G
1
R,L

atΓ point, and
𝜂, 𝜉 are coefficients associating with the dispersion. Param-

eters Δx,y describe the periodic permittivity modulation
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(a) (c)

(d) (e)

(b)

(f)

Figure 3: Generation of polarization defects from lattice charge. (a,b) Band structures when 𝛿𝜀 = 0. Blue line: line degeneracy due to BZ folding.

(c) Band structures when 𝛿𝜀 > 0. (d,e) Polarization vector fields of waveguide modes G1
R,L
(d) and their linear combinations along the line degeneracy

(e) when 𝛿𝜀 = 0. Nonzero lattice charge emerges due to mode combination at line degeneracy. (f) Polarization vector fields of Bloch modes Γ1

A
and X3

B

when 𝛿𝜀 > 0.

and thus depend on 𝛿𝜀. For a homogeneous slab (𝛿𝜀 = 0),

both Δx and Δy are zero, and thus G
1
R
and G1

L
simply cross

with each other at Γ point without coupling, whose energy

bands are shown in Figure 3a. For waveguide modes, there

are actually no diffraction orders. Nevertheless, we can

calculate the near-field polarization vector fields of waveg-

uide modes G1
R,L

themselves according to Eq. (2), shown in

Figure 3d (see Supplementary materials for details). Obvi-

ously, around the Γ point, there are no polarization defects

for both two modes.

Although no polarization defect exists for individual

G1
R,L
, this crossing results in a line degeneracy at kx = 0

along Γ-ky direction (blue line, Figure 3b), where G1
R,L

can

hybridize with each other arbitrarily, giving rise to possi-

ble polarization singularities. Specifically, along the ky axis

(kx = 0), two degenerate eigenvectors𝜙1 = [1,0]T forG1
L
and

𝜙2 = [0, 1]T for G1
R
can be solved according to Eq. (3). Due to

the line degeneracy, any linear combinations of𝜙1,2 are still

eigenvectors of Hamiltonian ̂0 along the ky axis. Similar to

the physics of spontaneous symmetry breaking [66], [67], to

consistent with a real PC structure, the combinations should

be determined according to the realistic periodic permit-

tivity modulation. By assuming nonzero Δx,y, the eigen-

vectors of ̂0(kx = 0, ky) are 𝜙
′
1,2

= [1,±1]T . Accordingly, at
the line degeneracy, the combinations of eigenvectors can

be chosen as: 𝜙1 ± 𝜙2 = [1,±1]T = 𝜙′
1,2
, corresponding to

G1
L
± G1

R
. By applying these combinations at the line degen-

eracy, we restructure the waveguide modes along the ky

axis, distinguish the two bands by their frequencies, and

replot the near-field polarization vector fields in Figure 3e.

Obviously, the generalized topological charge for
(
G1
R
− G1

L

)
is zero (qn

0,− = 0) while an integer charge of qn
0,+ = 1 can

be found for
(
G1
R
+ G1

L

)
. This nonzero charge doesn’t corre-

spond to any physical polarization defect since it is directly

resulted from amathematical dealing: a linear combination

of eigenmodes, and is a consequence of the spontaneous

symmetry breaking of the line degeneracy. In other words,

this nonzero topological charge is a footprint of the mode

degeneracy in the polarization field and is determined only

from the BZ folding brought by the periodic permittivity

modulation. Thus, we denote it as the “lattice charge”.

By introducing the realistic periodicmodulation to turn

the homogeneous slab into a PC slab, the two waveguide

modes couple with each other and the line degeneracy is lift

to form two band-edge BlochmodesΓ1
A,B
, whose band struc-

tures are shown in Figure 3c. For Bloch modes, varieties of

diffraction orders can be defined according to Eq. (1). Here

we take the 0th diffraction order as an example,whose near-

field polarization vector fields for Γ1
A,B

modes are shown

in Figure 3f. Discussions about other diffraction orders can

be found in Supplementary materials. Obviously, inside the

region of interest (ROI, red dashed loop) around theΓ point,
varieties of polarization defects carrying nontrivial topolog-

ical charges are generated. Specifically, an integer charge

of qn
0
= −1 can be found for Γ1

A
mode, corresponding to

a symmetry-protected BIC. Besides, a pair of Dirac points



100 — X. Yin et al.: Origins and conservation of topological polarization defects

(DPs) canbe found at (kx = 0, ky = ±
√
Δx∕Δy) for bothΓ1

AB

modes (black dots, Figure 3c), each carrying a half charge of

qn
0
= 1∕2 (Figure 3f). As a result, we find that the total gen-

eralized topological charges inside the ROI for Γ1
A,B

modes

conserve to the lattice charge: qn
0,− = qn

0,A
= 1∕2+ 1∕2− 1 =

0 and qn
0,+ = qn

0,B
= 1∕2+ 1∕2 = 1. This conservation origi-

nates from the fact that, the lattice change is intrinsically a

consequence of eigenvector combination at line degeneracy,

whose combination coefficients are chosen to be consistent

with the case of realistic periodic modulation. Therefore,

when homogeneous slab turns to real PC slab, the lattice

charge turns into generalized topological charges carried by

polarization defects in every diffraction orders (see Supple-

mentary materials for details).

Similar line degeneracy also emerges at BZ edge (blue

circle, left panel of Figure 1b). And nonzero lattice charge

also emerges as the direct consequence of the mode com-

bination and eventually turns into polarization defects for

all the diffraction orders. We note that, as a mathematical

concept, the lattice charge only depends on the assumed

periodic modulation, or in other words, the lattice, and has

no relationship with the concrete geometry of the unit cell

of the PC slab. By changing the geometry or symmetry of

the unit cell, the lattice charge may turns into different

polarization defects, but the conservation law always holds.

More discussions and examples can be found in Supplemen-

tary materials.

2.3 Second crossing scenario: inter-band
coupling and local charge conservation

We take the Γ1
A
mode and X3

B
mode as examples to discuss

how accidental Bloch band crossing gives rise to the emer-

gence of polarization defects. As shown in Figure 1b, waveg-

uide modes G3
R
(grey line) and folded G1

L
(black line) cross

with each other due to BZ folding (dashed red circle). When

introducing the periodic permittivity modulation, these two

waveguide modes become Bloch bands Γ1
A
and X3

B
, between

which the inter-band coupling occurs around the crossing

point. As we stated before, this accidental crossing point

is tunable when parameters vary. By increasing the slab

thickness h, red shift of the frequency of X3
B
mode makes

the crossing point approach X point, until the X3
B
band gets

totally below the Γ1
A
band and thus the crossing point dis-

appears. On the other hand, decreasing the h results in blue

shift of frequency of X3
B
mode and thus the crossing point

moves towards the Γ point. Considering the Q factor of X3
B

is relatively low when h is small, we consider the coupling

between Γ1
A
and X3

B
modes in 2D parameter space (kx, ky =

0, h) near the X point.

The band structures of Γ1
A
and X3

B
modes in such a

parameter space are shown in Figure 4a. Obviously, around

theX point, both theΓ1
A
andX3

B
modes areunder the lightline

and form a Hermitian two-level system. A DP (black dot) is

found at (kx = 0.5, hc = 2.29a), giving a critical slab thick-

nesshc determines howbands get coupled.Whenh > hc (i.e.

h∕a = 2.3, Figure 4c), two bands are gapped and there’s no

(a) (c) (d) (e)

(b) (f) (g) (h)

Figure 4: Generation of polarization defects from accidental inter-band coupling between different Bloch bands. (a) Coupling scenario of Γ1

A
and X3

B

modes in 2D parameter space (kx, h) around the X point. (b) Evolution of the polarization defects carrying integer topological charges on 0th diffraction

order for Γ1

A
(red dotted line) and X3

B
(gray dotted line) modes. (c–h) Band structures, polarization vector fields for Γ1

A
and X3

B
when h∕a = 2.3 (c–e) and

h∕a = 2.28 (f–h).
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inter-band coupling between them. Then, the polarization

vector fields of 0th diffraction order are shown in Figure 4d

and e for both two bands. Obviously, in the ROI (red box)

around the X point, no polarization defects can be found.

As a comparison, when h < hc (i.e. h∕a = 2.28, Figure 4f),

two bands get crossed and coupled to each other, gener-

ating two DPs (black dots) at (kx = 0.5, ky = ±0.03). Due
to the inter-band coupling, several polarization defects are

spawned from the X point. As shown in Figure 4g and h,

for 0th diffraction order, each DP generates a half-charge

of qn
0
= 1∕2. At the same time, an integer charge qn

0
= −1

appears for both two bands. It’s easy to find that inside the

ROI, the total 0th topological charges are conserved for both

bands, followed as qn
0,all

= 1∕2+ 1∕2− 1 = 0 which is the

same as the uncoupled case.

In fact, for a specific diffraction order (i.e. 0th order

here), inside the ROI around the X point, the total gen-

eralized topological charge carried by all the polarization

defects generated from the second crossing scenario always

conserves to zero. Different from the line degeneracy in

the first crossing scenario, here the crossing between Bloch

bands is accidental, local, and can be eliminated by simply

adjusting the parameter of the PC slab to get two Bloch

bands separated and uncoupled. When h > hc (Figure 4c),

the two bands are gapped inside and outside the ROI, and

thus no polarization defects emerge. Then, when h get

smaller than hc, two bands get crossed and coupled inside

theROI (Figure 4f), but still gapped outside theROI. Since the

polarization vector fields are smooth everywhere except the

polarization defects, along the closed boundary of the ROI

(i.e. red boxes in Figure 4d and g), the total winding number

of polarization vector should be the same before and after

the coupling, which equals to zero. Then, according to the

Stokes’ theorem, it’s derived that the total topological charge

of the polarization defects inside the ROI is always con-

served to zero. By varying the parameters, the polarization

defectsmay evolve away from theX point and leave the ROI.

However, the local conservation still holds by enlarging the

ROI to again include all these polarization defects generated

from the second crossing scenario.

The evolution trajectories of two integer topological

charges in Figure 4g and h are shown in Figure 4b, where

the black dot denotes the DP which is the same with the one

in Figure 4a. When slab thickness decreasing from critical

value of hc, the two integer charges are spawned from the

DP, and evolve towards the opposite direction: the integer

charge on X3
B
band moves away from the reduced BZ (black

arrow), while the charge on Γ1
A
band gradually approaches

the Γ point (red arrow) and eventually falls into the light

cone and become an accidental BIC, which is exactly the

one shown in Figure 2. In other words, the accidental BIC

in Γ1
A
mode actually comes from the interband coupling

happening at the BZ edge. In PC slab, the crossing behaviour

between different Bloch bands is a common phenomenon

and could result in varieties of polarization defects due to

the inter-band coupling effect. Another example is Γ1
B
and

Γ3
A
modeswhich cross and couple to each other (blue dashed

circle, Figure 1b). Similar with the case we discuss above, by

increasing the slab thickness h, the red shift of frequency of

Bloch mode Γ3
A
makes the crossing point move towards the

Γ point, until the Γ3
A
mode is totally below the Γ1

B
mode and

thus the crossing point disappears. The coupling between

Γ1
B
and Γ3

A
modes around the Γ point gives rise to vari-

eties of polarization defects including a Friedrich–Wintgen

(FW) BIC [18]. And the local conservation due to the Stokes’

theorem also holds during the whole coupling process. The

specific crossing behaviour is analyzed and presented in the

Supplementary materials. Besides, TE band and transverse-

magnetic (TM) band can also couple to each other in some

cases to generate polarization defects [24].

2.4 Evolution of polarization defects
in unfolded BZ

Combining the above discussions, we conclude that the

band crossings in PC slab contribute to the emergence of

polarization defects in any diffraction orders due to the

BZ folding. These polarization defects carry nonzero gen-

eralized topological charges conserve to the lattice charge,

or locally conserve to the trivial uncoupled case due to

the Stokes’ theorem. Considering that the band crossings

are universal and common in PC slab, it’s interesting and

important to ask about whether the global conservation of

all these topological charges in BZ exists or not. To answer

this question, we note one important fact that, polariza-

tion defects belong to the feature of one specific diffraction

order, but not the Bloch mode itself. According to the Bloch

theorem, the reduced BZ is a compact and closed manifold

for Bloch states, so that the discussions upon its characteris-

tics can be limited inside the reduced BZ. As a comparison,

a single diffraction order is not periodic over the whole

momentum space. As for the polarization defects in a given

diffraction order, the BZ is flattened and can’t be scrolled

up. In fact, although originated from the BZ folding, the

polarization defects can emerge everywhere in the entire

BZ, not limited inside the reduced one. One example is the

integer charge in X3
B
band shown in Figure 4b which moves

away from the reduced BZWhen slab thickness h decreases.

According to Eq. (1), themth diffraction order is exactly

equivalent to nth order by translating a reciprocal vector
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Figure 5: Polarization defects in unfolded BZ. Dark grey shading: reduced BZ; light grey shading: Entire BZ; solid arrows: schematic of evolution

trajectories of polarization defects in different diffraction orders.

of (n−m)𝛽0 in momentum space due to the same in-plane

wave vector:

gm(kx, ky) = gn(kx + (n−m), ky) (4)

This equivalence indicates that, polarization defects in

different diffraction orders can convert to each other. For

example, as schematically shown in Figure 5, a polarization

defect in 0th diffraction order (blue line) can convert into a

−1th diffraction order (orange line) by translating a recipro-
cal vector of 𝛽0. Actually, it can also convert into any other

−mth diffraction order by translating a reciprocal vector

of m𝛽0. In other words, there are two ways to deal with

the polarization defects in momentum space: taking all the

polarization defects in multi diffraction orders into account

but limited inside the reduced BZ, or focusing on polariza-

tion defects in only one diffraction orders (i.e. 0th order) but

in the entire flattened BZ. The two pictures are equivalent

to each other. Accordingly, there are also two viewpoints to

deal with the global conservation of generalized topological

charges.

In the first viewpoint, we consider the reduced BZ

(dark grey shading, Figure 5), where exist infinite diffrac-

tion orders bearing possible polarization defects (solid

lines, Figure 5). Obviously, the total number of polarization

defects is countless since the number of diffraction orders

is infinite. Moreover, it’s hard to deal with the topological

charge right at the BZ edge (i.e. half charge in Figure 4g and

h) if we only consider the reduced BZ. Also, it’s counter-

intuitive to count for the total number of topological charges

from different diffraction orders. As for the second view-

point, we focus on only one diffraction order such as 0th

order, distributed and evolving in entire BZ (blue line,

Figure 5). And for polarization defects on any other diffrac-

tion order, we can convert them to defects in 0th order

according to Eq. (4). In this way, the conservation question

of topological charges turns out to ask whether the total

0th charges conserve or not in entire BZ. Obviously, the

total number of polarization defects is still infinite, and

thus it’s hard to derive a so-called “global” conservation in

such a boundless momentum space. Nevertheless, the local

conservation still holds to regulate the behaviour of topo-

logical charges. Specifically, as for the polarization defects

rooted from the BZ folding, we have concluded that they

are conserved with the lattice charge as a consequence of

mode combination in line degeneracy. As for the polariza-

tion defects raised by accidental Bloch band crossings, they

are actually local wrinkles on polarization vector field. Due

to the Stokes’ theorem, they are always conserved to uncou-

pled case, which is zero.

3 Conclusions

To summarize, we generalize the definition of topological

charge to any resonant diffraction orders regardless they

are radiative or evanescent, which allows us to track and

discuss the origins and conservation of polarization defects

across the entire BZ. We found that in periodic PC struc-

ture, band crossings due to the BZ folding result in the

emergence of polarization defects, which originate from the

spontaneous symmetry breaking of the line degeneracy in

BZ edge or center, or inter-band coupling between acciden-

tally crossed Bloch bands. The dynamic behaviour of these

polarization defects can be depicted by generalized topo-

logical charges, which locally conserve to lattice charges or

trivial uncoupled case, respectively. Different from Bloch

state, polarization defects evolve in unbound momentum

space.We conclude that topological charge locally conserves

owing to Stokes’ theorem, but the total number of charges

in entire BZ is countless. Our work proposes a universal

picture of polarization defects in any diffraction orders not
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just the radiative one.With this novel picture, it’s possible to

realize topological charges in near-field and non-radiative

channels, promote the conventional topological radiation

theory from far field to the full field, and tailor the near-field

diffraction arbitrarily from a topological perspective. Our

theory is potentially powerful in boosting exotic phenom-

ena about versatile light manipulation, such as near-field

light confinement and enhancement, and near-field beam

morphing and steering, thus benefiting various optoelec-

tronic applications such as near-field illumination, near-

field vortex beam generator, one-way wave guide and on-

chip circulator.
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