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1. Introduction

Let k be an algebraically closed field of positive characteristic p. Let G be a connected, 
simply connected, simple algebraic group scheme such that p is larger than the Coxeter 
number. Under these assumptions, g = LieG is a simple Lie algebra, and the normalised 
Killing form κ is non-vanishing on g.

Understanding the geometry of the centre Z(g) of the enveloping algebra U(g) is 
fundamental to describing the representation theory of g. For example the maximal 
dimension of simple g-modules is equal to the generic rank of U(g) over Z(g) [36, The-
orem 6], and the smooth locus of SpecZ(g) coincides with the Azumaya locus [10]. 
These discoveries underpinned the derived localisation theorem [7] which relates the de-
rived category of g-modules (with fixed/generalised central characters) to the derived 
category of coherent sheaves on a Springer fibre. The starting point of such a study is 
describing Z(g) algebraically.

On one hand, there is the subalgebra U(g)G ⊆ Z(g) which is isomorphic to the algebra 
of Weyl group invariants U(h)W under the twisted Harish–Chandra homomorphism. 
We call this the Harish–Chandra centre. On the other hand, there is a large central 
subalgebra Zp(g) which is specific to the modular setting, known as the p-centre. This 
is best understood as a filtered lifting of the central subalgebra k[g∗]p of the Poisson 
algebra k[g∗]. The spectrum of Zp(g) naturally identifies with the Frobenius twist (g∗)(1). 
Veldkamp’s theorem [34] states that these two subalgebras generate the centre Z(g) and 
so

SpecZ(g) ∼−→ h∗/W• ×(h∗/W )(1) (g∗)(1) (1.1)

where W• denotes the ρ-shifted action (see [7, 3.1.6] for more details). Our goal is to 
give a similar description of the centre of the universal affine vertex algebra.

The Kac–Moody affinisation ĝ of g = Lie(G) is the non-split central extension of the 
loop Lie algebra g ⊗ k( (t) ) afforded by κ. The vacuum module V k(g) at level k is the 
generalised Verma module induced from a maximal parabolic subalgebra of ĝ, and it 
carries the structure of a vertex algebra [8]. The level k = −h∨ is called the critical level. 
As usual, h∨ denotes the dual Coxeter number.

For the moment we briefly leave the modular setting to discuss some features of the 
representation theory of V k(g) over the complex numbers. Here there is a well-known di-
chotomy between the critical and non-critical levels. The differences between these cases 
are quite stark. The multiplicity of simple highest weight modules in a Verma module 
is described by the Kazhdan-Lusztig polynomials/the inverse Kazhdan-Lusztig polyno-
mials associated with the affine Weyl groups at the non-critical levels [25], while at the 
critical level the multiplicity of simple hight weight modules in a restricted Verma mod-
ule [2] is described by the periodic Kazhdan-Lusztig polynomials [27,3,16]. The primary 
feature which causes these differences is the nature of the centre zV k(g) [13]. The centre 
zV k(g) is trivial away from the critical level (a direct consequence of the conformal grad-
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ing) whilst at the critical level zV −h∨(g) is an infinite rank polynomial ring, canonically 
identified with the algebra of regular functions on the moduli space of certain principle 
bundles on the formal disk, known as opers [6]. We remark that the non-negative part 
of the loop group acts on V −h∨(g) and the centre in the complex setting is equal to 
V −h∨(g)G[[t]].

Returning to our field k of positive characteristic, the study of vertex algebra in 
positive characteristic was initiated in [9] and has been developed in e.g. [12,5,26,18]. 
However, the representation theory of V k(g) is much less established compared to that 
over C.

In [5] the first author and Weiqiang Wang introduced the theory of baby Wakimoto 
modules. One of the basic observations is that the restricted structure on ĝ leads to a 
large central subalgebra zpV k(g) ⊆ V k(g), also dubbed the p-centre. This subalgebra is 
naturally isomorphic to the coordinate ring k[(J∞g∗)(1)] on the Frobenius twist of the 
arc space of g∗.

The natural way to understand a non-commutative algebra is to first understand 
the semi-classical limit. The Poincaré–Birkoff–Witt (PBW) filtration of the enveloping 
algebra U(ĝ) gives rise to a filtration of the vertex algebra V k(g) and the associated 
graded algebra is the classical affine vertex algebra [15, §16.2]. In Section 3.3 we explain 
the minor differences involved in the definition of a Poisson vertex algebra whilst working 
in positive characteristic.

The semiclassical limit grV k(g) is G[[t]]-equivariantly identified with the coordinate 
ring k[J∞g∗] of the arc space on g∗. Our first main theorem describes the centre of this 
Poisson vertex algebra.

Theorem 1.1. Let G be a simply connected, connected simple group scheme over a field 
k of characteristic p larger than the Coxeter number of G. Then the following holds

(1) k[J∞g∗]G[[t]] is a polynomial ring on infinitely many generators which we describe 
explicitly (4.4). The subalgebra k[J∞g∗]p of pth powers is also central.

(2) The centre of k[J∞g∗] is generated by k[J∞g∗]G[[t]] and k[J∞g∗]p.
(3) k[J∞g∗]g[[t]] is a free k[J∞g∗]p-module and a basis is described explicitly in (4.5).
(4) k[J∞g∗]g[[t]] is isomorphic to the tensor product of k[J∞g∗]p and k[J∞g∗]G[[t]] over 

the intersection.

Remark 1.2. Theorem 1.1 can be proven using our methods under the assumption that 
p is a very good prime for G. This means that p is good for G (see [20, §6.4] and that 
p ∤ n +1 in type An. We have worked under the assumption p > h for simplicity, in order 
to maintain uniform hypotheses throughout the paper.

In the final section of this paper we deduce a description of the centre of the vertex 
algebra V −h∨(g) at the critical level.
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Theorem 1.3. Suppose that we are in one of the following two situations:

(i) g is a classical simple Lie algebra, and p larger than the Coxeter number,
(ii) g is an exceptional simple Lie algebra and p � 0.

Then we have:

(1) V −h∨(g)G[[t]] is a free commutative differential algebra generated by r elements.
(2) zV −h∨(g) is generated by V −h∨(g)G[[t]] and zpV −h∨(g) as a commutative algebra.
(3) zV −h∨(g) is a free zpV −h∨(g)-module of finite rank over zpV −h∨(g).
(4) zV −h∨(g) is isomorphic to the tensor product of zpV −h∨(g) and V −h∨(g)G[[t]] over 

their intersection.

Let X−h∨ := SpecV −h∨(g)G[[t]]. From Theorem 1.3 we deduce a geometric description 
of the centre

Spec zV −h∨
(g) ∼−→ X−h∨ ×(J∞h∗/W )(1) (J∞g∗)(1) (1.2)

The map (J∞g∗)(1) → (J∞h∗/W )(1) is the Frobenius twist of the jet morphism of the 
adjoint quotient g∗ → h∗/ /W , whilst X−h∨ → (J∞h∗/W )(1) arises from the natural 
maps k[(J∞g∗)(1)]G[[t]] ∼= zpV

−h∨(g)G[[t]] → V −h∨(g). This should be compared with 
(1.1).

Theorem 1.3 is deduced from Theorem 1.1 using a process of reduction modulo p. 
We make use of explicit formulas for the generators of V −h∨(g) discovered over C by 
Molev [30,31], in classical types. For exceptional types we use a rather primitive form of 
modular reduction, depending on the Feigin-Frenkel theorem [13].

Now in [5], the authors also conjectured that the centre of V k(g) for k �= −h∨ is given 
only by the p-centre. We have the following counterexample

Example 1.4. Let S := 1
2 (1

2h−1h−1 + f−1e−1 + e−1f−1)1 ∈ V k(sl2) for arbitrary k ∈ k. 
For p = 3 the following element is central1 in V k(sl2)

c :=(S(−1)S(−3) − S(−2)S(−2))1 + 2(k + 2)S(−5)1 + (k + 2)k(h−6 − f−3e−3 − h2
−3)1+

(k + 2)(f−2e−1h−3 + f−1e−3h−2 + f−3e−2h−1 − f−1e−2h−3 − f−3e−1h−2

1 In particular, from a direct calculation for a ∈ {e, f, h} mod 3 we have

a(z)(2T (: S(w)S′(w) :) + 2(k + 2)T (4)
S(w)) ∼

2(k + 2)
(z − w)3

T (: a(w)S(w) :) +
2(k + 2)
(z − w)2

T
2(: a(w)S(w) :) ,

where T denotes the translation operator, see Definition 3.2, and (·)′ = T (·). Additionally, we have that 
a(z)(c(w) −2T (: S(w)S′(w) :) −2(k+2)T (4)S(w)) satisfies the same relation but with factor (k+2) instead 
of 2(k + 2).
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− f−2e−3h−1)1 .

Note that the top graded component of c with respect to the PBW filtration is given 
by gr(c) = 2SS′′ − S′S′. Hence gr(c) ∈ k[J∞sl

∗
2]SL2[[t]] and gr(c) /∈ k[J∞sl

∗
2]p, see 

Theorem 1.1.

We note that this example implies that [21, Conjecture 6.8] is false: one can check that 
central element given here does not lie in ideal of V k(sl2) generated by the augmentation 
ideal of the p-centre. Thus the restricted quotient cannot be simple.

We briefly describe the structure of the paper. Section 2 surveys the required theory 
of group schemes, arcs and jets, and sets up our conventions for defining the Kac-Moody 
affinisation. We also recall the precise statement of Veldkamp’s theorem and its semi-
classical limit.

In Section 3 we recall the definition of a Poisson vertex algebra and vertex algebra 
over k, paying special attention to the minor differences to the complex setting, which 
is better understood. We explain that the vertex algebra V k(g) naturally degenerates to 
k[J∞g∗] and we construct the basic G[[t]]-invariants which freely generate k[J∞g∗]G[[t]]. 
Next we outline the procedure of modular reduction for invariants in vertex algebras. 
Finally we prove Theorem 1.1 following an approach analogous to [14], adapting to the 
modular setting using a powerful theorem of Skryabin [32].

In the final Section 5 we prove Theorem 1.3 using the tools of modular reduction and 
Molev’s formulas [30,31].

We expect that Theorem 1.3 will hold under the assumption that p is very good for 
G. We note that the methods of this paper are already sufficient to prove the theorem 
in type G2 for p > 3: Theorem 1.1 holds under this hypothesis (Remark 1.2) whilst the 
formulas for Segal–Sugawara vectors discovered by Yakimova in [35, §6] can be defined 
over a Z[6−1]-lattice in V −h∨(g), and so the Theorem follows in this case, following the 
observations of Section 5.4 verbatim. Similar remarks hold for slN when p ∤ N , using the 
formulas of [11], and the remarks of Section 5.3.
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2. Group schemes, jets and arcs

2.1. Arcs and jets

Throughout this paper we fix an algebraically closed field k of characteristic p > 0. 
All vector spaces, algebras and schemes will be defined over k, with the exception of 
Section 5.1 where we discuss modular reduction.

Here we discuss jet schemes and arc spaces. We refer the reader to [19] for slightly 
more detail.

A higher derivation of a commutative algebra A is a tuple ∂ = (∂(i) | i ≥ 0) of linear 
endomorphisms of A with ∂(0) equal to the identity, satisfying the following relations for 
i ≥ 0:

∂(i)(ab) =
∑

i1+i2=i ∂
(i1)(a)∂(i2)(b). (2.1)

Similarly a higher derivation of order m is a tuple ∂ = (∂(i) | i = 0, ..., m) satisfying 
(2.1) for i, j ≤ m. A differential algebra (of order m) (A, ∂) is an algebra equipped with 
a higher derivation (of order m).

There is a universal differential algebra (J∞A, ∂) with a homomorphism α : A → J∞A

such that, for every other differential algebra (B, σ) admitting a homomorphism β : A →
B, there is a unique homomorphism ϕ of differential algebras such that ϕ ◦ α = β.

We construct J∞A as follows. First assume A = k[xk | k ∈ K] is a polynomial ring, 
where K is an index set. Define J∞A := k[x(j)

k | k ∈ K, 0 ≤ j]. The homomorphism 

α : A → J∞A is given by xk �→ x
(0)
k and the differential ∂ is determined uniquely by 

(2.1) along with ∂(i)x
(0)
k = x

(i)
k and

∂(i)∂(j) =
(
i + j

i

)
∂(i+j)

for all i, j, k in the appropriate ranges. If I ⊆ A is an ideal then we can define J∞I :=
(∂(i)a | 0 ≤ i, a ∈ I), which is a differential ideal of J∞A.

Now if A has a presentation A = k[xk | k ∈ K]/I then we define J∞A := J∞k[xk |
k ∈ K]/J∞I. The map A → J∞A and higher derivation ∂ are defined as above, and 
A → J∞A is readily seen to inject. It is not hard to see that the isomorphism type of 
J∞A is independent of the presentation, and that J∞A satisfies the universal property 
mentioned above. It follows immediately that J∞ is an endofunctor on the category of 
commutative algebras, and J∞A is known as the arc algebra of A.

If A is a Hopf algebra with comultiplication Δ : A → A ⊗ A, counit η : A → k

and antipode S : A → A, then there is a natural Hopf structure on J∞A extending 
the structure on A. The existence of such a structure follows from functoriality of J∞, 
however we can describe it explicitly: for a ∈ A ⊆ J∞A we have
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(Δ(∂(i)a)) = ∂(i)Δ(a);
S(∂(i)(a)) = ∂(i)S(a);
η(a) = a + Jm Ker η,

(2.2)

where we equip A ⊗A with the structure of a differential algebra in the obvious manner, 
and note that J∞A/J∞ Ker η ∼= J∞k = k.

For m ∈ N there is an analogous construction of a universal differential algebra JmA

of order m. Briefly, Jmk[xk | k ∈ K] is the subalgebra of J∞k[xk | k ∈ K] generated by 
{x(j)

k | k ∈ K, 0 ≤ j ≤ m} with differential defined as before, along with the condition 

∂(i)x
(j)
k = 0 for i + j > m. We have J∞A = lim−−→ JmA as algebras.

If X is an affine scheme then the m-jet scheme JmX is defined to be JmX = SpecJmA

and the arc space is Spec J∞X. These functors behave well under gluing and thus Jm is 
a functor from schemes to schemes. If X has finite type then so do JmX for all m ∈ N, 
whilst JmX is of profinite type.

Jet schemes and arc spaces are uniquely determined by the adjunctions

HomSch /k(Y, JmX) = HomSch /k(Y ×Spec(k) Spec(k[t]/(tm+1)), X),

HomSch /k(Y, J∞X) = HomSch /k(Y ×Spec(k) Spec(k[[t]], X),

and so the k-points of JmX are naturally identified with the k[t]/(tm+1)-points of X for 
m ∈ N, and with the k[[t]]-points of X for m = ∞.

If G is a group scheme then, by our above remarks, both JmG and J∞G are group 
schemes.

Lemma 2.1. Suppose that G is a group scheme which is generated by a collection (Hk)k∈K

of subgroup schemes. Then J∞G is generated by (J∞Hk)k∈K .

Proof. Let A be a commutative Hopf algebra. Observe that the collection of Hopf ideals 
of A is stable under sums, but not intersections. It follows that for any algebra ideal 
I ⊆ A there is a unique maximal Hopf ideal subject to H(I) ⊆ I. More precisely it is 
sum of all Hopf ideals contained in I.

We claim that for any ideal I we have J∞H(I) = H(J∞I). Using properties (2.2)
one can show that J∞H(I) is a Hopf ideal of J∞A contained in J∞I, and so J∞H(I) ⊆
H(J∞I). Conversely we have H(I) ⊆ I ⊆ J∞I and so H(I) ⊆ HJ∞(I). In order to 
obtain J∞H(I) ⊆ HJ∞(I) it suffices to show that HJ∞(I) is closed under ∂. Using 
(2.2) once again one can easily show that H preserves the class of differential-closed 
ideals, and this completes the proof of the claim.

For k ∈ K we let Ik ⊆ k[G] be the Hopf ideal defining the subgroup Hk. The hypoth-
esis of the lemma is equivalent to the assertion H(∩kIk) = 0, and the goal is to show 
that H(∩kJ∞Ik) = 0. Now we have H(∩kJ∞Ik) = H(J∞ ∩k Ik) = J∞H(∩kIk) = 0, and 
the proof is complete. �
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2.2. Simple group schemes

Let G be a connected, simple group scheme of rank r, and write g = Lie(G). The 
Coxeter number (resp. dual Coxeter number) is denoted by h (resp. by h∨).

For the rest of the paper we will assume that p > h which has the following conse-
quences:

(i) 2h∨ is invertible;
(ii) The Lie algebra g is simple (see [22, Proposition 1.2] for example);
(iii) the space of g-invariant forms on g is one dimensional and every nonzero g-invariant 

form is non-degenerate, by (ii);
(iv) The Killing form is non-vanishing, hence non-degenerate (see [33, Theorem 4.8]).

Throughout this article we fix the normalised Killing form on g which is defined by

κ(x, y) = 1
2h∨ Tr(ad(x) ad(y)). (2.3)

When we consider the induced bilinear form on h∗, the normalisation ensures that the 
square length of every long root is equal to 2, which is the standard convention in 
the literature [14,23]. In classical types this form is just the trace form x, y �→ Tr(xy)
associated to the natural representation.

We fix a torus T ⊆ G, let X∗(T ) denote the character lattice, and write Φ ⊆ X∗(T )
for the roots. For α ∈ Φ we consider the morphism of group schemes corresponding to 
the α-root subgroup uα : Ga → G (see [29, §21.c]).

Lemma 2.2.

(1) G is generated by {uα | α ∈ Φ}.
(2) J∞G is generated by {J∞uα | α ∈ Φ}.

Proof. Part (1) is [29, Proposition 21.62], whilst part (2) follows from Lemma 2.1. �
2.3. Chevalley restriction and Veldkamp’s theorem

Let U(g) be the universal enveloping algebra of g, equipped with the Poincaré–
Birhoff–Witt (PBW) filtration U(g) =

⋃
i≥0 U(g)i. The associated graded algebra is 

grU(g) = S(g) = k[g∗] as G-algebras.
Write Z(g) for the centre of U(g). Both G and g act naturally on U(g) and k[g∗] via 

automorphisms extending the adjoint representation, and we have the following obvious 
inclusions U(g)G ⊆ U(g)g = Z(g) and k[g∗]G ⊆ k[g∗]g, as well as grU(g)G ⊆ k[g∗]G and 
grZ(g) ⊆ k[g∗]g.
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We write k[g∗]p = {fp | f ∈ k[g∗]} for the subalgebra of pth powers. There is an 
obvious inclusion k[g∗]p ⊆ k[g∗]g since g acts by derivations.

Recall that g admits a natural G-equivariant restricted structure x �→ x[p], which 
gives rise to a large central subalgebra of U(g) known as the p-centre. It is generated by 
elements xp − x[p]. Since the map x �→ xp − x[p] is p-semilinear Zp(g) is a polynomial 
ring in dim(g) generators, and its spectrum is naturally identified as a G-set with the 
first Frobenius twist of the coadjoint representation SpecZp(g) = (g∗)(1), and grZp(g) =
k[g∗]p under the identification grU(g) = k[g∗]; see [20] for more detail.

The next result, known as Veldkamp’s theorem, describes the centre of U(g) for p > h; 
[34]. Numerous authors improved the bound on p (see [20, §9]), and in fact the theorem 
holds under the standard hypotheses [10, Theorem 3.5].

The statement presented here can easily be deduced from [10, Section 3] and [32, 
Theorem 5.4(1)], see also [24].

Theorem 2.3. We have the following:

(1) k[g∗]G is generated by r algebraically independent elements P1, ..., Pr.
(2) k[g∗]g is generated by k[g∗]G and k[g∗]p
(3) k[g∗]g is a free k[g∗]p-module with basis given by restricted monomials

{P k1
1 · · ·P kr

r | 0 ≤ kj < p for all j}.

(4) k[g∗]g ∼= k[g∗]G ⊗(k[g∗]p)G k[g∗]p.
(5) The Pi admit filtered lifts Z1, ..., Zr and U(g)G is a polynomial algebra on r genera-

tors.
(6) Z(g) is generated by U(g)G and Zp(g).
(7) Z(g) is a free Zp(g)-module of rank pdim g, with basis given by restricted monomials

{Zi1
1 · · ·Zir

r | 0 ≤ ij < p for all j}.

(8) Z(g) ∼= U(g)G ⊗Zp(g)G Zp(g). �
3. Modular vertex algebras

3.1. Spaces of formal series

Let V a k-vector space, and V [z] (resp. V [[z]], resp. V ( (z) )) the space of polynomials 
(resp. formal power series, resp. formal Laurent series) in z with coefficients in V . We 
warn the reader that V ⊗k k[[z]] ⊊ V [[z]] when V is infinite dimensional. These spaces 
are equipped with a higher derivation ∂z = (∂(i)

z )≥0 where ∂(0)
z is the identity map and 

∂
(k)
z is defined by

∂(i)zm =
(
m
)
zm−i for i ∈ N, m ∈ Z. (3.1)
i
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The reader can easily check that (2.1) holds. Note that if i = i0 + i1p + · · ·+ ikp
k is the 

p-adic expansion of i ∈ Z>0 we have a factorisation

∂(i) = (∂)i0(∂(p))i1 · · · (∂(pk))ik . (3.2)

3.2. Modular vertex algebras

Vertex algebras have been widely studied over the complex numbers, and so to em-
phasise the fact that our underlying field has positive characteristic we call them modular 
vertex algebras, see [8,9].

Definition 3.1. A modular vertex algebra is a k-vector space V equipped with a family 
of bilinear products

V ⊗ V → V

a⊗ b → a(n)b , n ∈ Z ,

and a vector 1 ∈ V such that

(1) a(n)b = 0 for n � 0,
(2) 1(n)a = δn,−1a,
(3) a(−1)1 = a,
(4) The following identity is satisfied

∑
j∈Z+

(−1)j
(
n

j

)(
a(m+n−j)b(k+j) − (−1)nb(n+k−j)a(m+j))

)

=
∑
j∈Z+

(
m

j

)
(a(n+j)b)(m+k−j) . (3.3)

We also have the following equivalent definition.

Definition 3.2. A modular vertex algebra is a k-vector space V , equipped with a vector 
1 ∈ V , a family of endomorphism T (k) ∈ End(V ), k ∈ Z>0, and a linear map

Y : V → Homk(V, V ((z))) , a �→ Y (a, z) ,

subject to the following axioms:

(1′) Y (1, z) = I, Y (a, z)1 ∈ V [[z]], Y (a, z)1
∣∣
z=0 = a.

(2′) Y (T (k)a, z) = ∂
(k)
z Y (a, z) and T (k)1 = 0.
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(3′) For every a, b ∈ V , there exists N ∈ N such that

(z1 − z2)NY (a, z1)Y (b, z2) = (z1 − z2)NY (b, z2)Y (a, z1) .

The equivalence between the Definition 3.1 and Definition 3.2 is well-known over C
and is explained in [28, Theorem 4.3] in case the base is an arbitrary ring. We sketch 
the correspondence here. From Definition 3.1 we define T (k) ∈ End(V ) for k ≥ 1 and 
Y : V → End(V )((z)) as follows

Y (a, z) =
∑
n∈Z

a(n)z
−n−1 , T (k)(a) := a(−k−1)1 , for a ∈ V.

The conditions (1), (2) and (3) follow easily from (3.3). On the other hand, using Def-
inition 3.2 we can write Y (a, z) =

∑
n∈Z a(n)z

−n−1 and the operators a(i) satisfy the 
required axioms.

Definition 3.3. For a vertex algebra V the centre is the subspace

z(V ) := {b ∈ V | a(n)b = 0 for all a ∈ V and n ≥ 0} .

From (3.3) with n = 0 we see that the centre coincides with the set of elements v ∈ V

such that

[v(m), a(k)] = 0 for all a ∈ V

for all m, k ∈ Z.

3.3. Modular Poisson vertex algebras

A commutative vertex algebra V is one such that u(n)v = 0 for all u, v ∈ V and 
n ≥ 0. Equivalently it satisfies Y (•, z) : V → V [[z]]. In this case, the product a, b �→
a(−1)b is commutative, associative and unital with unit 1. And, the endomorphisms T (k)

define a higher derivation of this commutative algebra (2.1). Moreover the category of 
commutative differential algebras is equivalent to the category of commutative vertex 
algebras. The key difference between characteristic zero and the modular setting is that 
differential algebras over C are equipped with a higher differential of order 1, as opposed 
to a higher differential over k.

Definition 3.4. Let (V, 1, T ) be a commutative vertex algebra, with T = (T (k))k≥0.
For a formal power series a(z) =

∑
m∈Z amzm the polar part of a(z) is defined to be 

a−(z) =
∑

m<0 a(m)z
m.
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We say that V is a Poisson vertex algebra if it is equipped with a linear map

Y− : V → Hom(V, z−1V [z−1]),
a �→ Y−(a, z) =

∑
n≥0 a(n)z

−n−1 (3.4)

subject to the following axioms:

(i) Y−(T (k)a, z) = ∂
(k)
z Y (a, z).

(ii) Y−(a, z)b =
(∑

k≥0 z
kT (k)Y (b,−z)a

)
−

.

(iii) [a(m), Y−(b, w)] =
∑

k≥0
(
m
k

) (
wm−kY−(a(k)b, w)

)
−.

(iv) Y−(a, w)(b · c) = (Y−(a, w)b) · c + (Y−(a, w)c) · b.

We refer the reader to [15, §16.2] for an introduction.

Now suppose that V is a graded vertex algebra V =
⊕

i≥0 Vi. Then we can define a 
filtration V =

⋃
i≥0 FiV by letting FdV be the subspace spanned by

a1
−n1−1a

2
−n2−1 · · · am−nm−11 (3.5)

where a1, ..., am ∈ V are strong generators with ai ∈ Vdi
and 

∑m
i=1 di ≤ d. For the 

following theorem see for example [1, §3.7].

Theorem 3.5. This filtration is compatible with the vertex algebra structure, and the as-
sociated graded algebra grV inherits the structure of a Poisson vertex algebra.

3.4. Modular affine vertex algebras

Let G be a connected, simple group scheme over k such that the characteristic of k is 
very good for the root system. Recall that κ denotes the normalised Killing form (2.3)
on g = Lie(G).

The loop Lie algebra is g( (t) ) := g ⊗ k( (t) ) and the Kac–Moody affinization ĝ :=
g( (t) ) ⊕kK of g is the central extension of g( (t) ) afforded by κ. Note that K ∈ ĝ is central 
and the Lie brackets in ĝ are determined by [xti, ytj ] = [x, y]ti+j + δi,−jκ(x, y)iK. We 
use the standard notation xti := xi which may denote either the endomorphism v �→ xiv

of V k(g), or the element xi1 of V k(g).
Let kk be the one dimensional representation of g[[t]] ⊕ kK upon which g[[t]] acts 

trivially and K acts by k. The vacuum module for ĝ is the induced module

V k(g) := U(ĝ) ⊗g[[t]]⊕kK kk, (3.6)

and k is known as the level of V k(g).
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The vacuum module carries a canonical structure of modular vertex algebra, see 
[15,23]. If we pick and ordered basis {xi | i = 1, ..., dim g} for g, then the Poincare–
Birkhoff–Witt (PBW) theorem implies that we have a basis given by ordered monomials

xi1
−n1−1 · · ·xim

−nm−11 (3.7)

such that 0 ≤ n1 ≤ n2 ≤ · · · ≤ nm, and ij ≤ ij+1 whenever nj = nj+1. The vacuum 
vector in V k(g) is 1 = 1 ⊗ 1. For k ∈ N the translation operator T (k) is determined by 
T (k)1 = 0 and

T (k)xi
−n−11 =

(
n + k

k

)
xi
−n−k−11 (3.8)

whilst in general, T (k) acts on V k(g) by

T (k)(xi1
n1

· · ·xim
nm

1) =
∑

j1+···+jm=m

T (j1)(xi1
n1

) · · ·T (jm)(xam
nm

)1 . (3.9)

The fields are defined as follows. We have Y (1, z) = IdV k(g) and

Y (xi
−11, z) = xi(z) :=

∑
n∈Z

xi
nz

−n−1,

whilst in general we have

Y (xi1
−n1−1 · · ·xim

−nm−11, z) =: ∂(n1)
z xi1(z) · · · ∂(nm)

z xim(z) : (3.10)

where : : denotes the normally ordered product (see [23]). The locality of the fields is a 
consequence of the explicit description of Lie brackets in ĝ.

In this article we are interested in describing the centre z(V k(g)). Consider the space 
of g[[t]] invariants

V k(g)g[[t]] = {b ∈ V κ(g) | (xn)b = 0 for x ∈ g and n ≥ 0} .

The following useful property follows from (3.10); see [14, Lemma 3.1.1] for more detail.

Lemma 3.6. zV k(g) = V k(g)g[[t]]. �
3.5. The p-centre of modular affine vertex algebras

We introduce a central subalgebra of V k(g), following [5]. The restricted structure on 
g gives rise to a natural restricted structure on ĝ determined by (xti)[p] = x[p]tpi and 
K [p] = K. We denote the p-centre of U(ĝ) by Zp(ĝ), which is generated by {xp − x[p] |
x ∈ ĝ}. It is isomorphic to a polynomial ring in countably many generators.
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We define the p-centre zpV k(g) ⊆ V k(g) to be the image of the natural map Zp(ĝ) →
U(ĝ) → V k(g). Note that zpV k(g) ⊆ V k(g)g[[t]], and so Lemma 3.6 implies the following 
result.

Lemma 3.7. zpV κ(g) ⊆ zV κ(g). �
3.6. The current group and the centre

The current group G[[t]] of k[[t]]-points of G is equal to the group of k-points of J∞G, 
by definition. Let ε be a formal variable satisfying ε2 = 0. The Lie algebra LieG[[t]] of 
G[[t]] is defined to be the kernel of the homomorphism G(k[[t]][ε]) → G(k[[t]]) coming 
from the map k[[t]][ε] → k[[t]] by functoriality. By [29, p. 192] we have LieG[[t]] = g[[t]]. 
See also [4].

Lemma 3.8. For any k ∈ k there is a natural rational G[[t]]-action on V k(g) such that 
the differential at the identity element is the left action of g[[t]].

Proof. The action of G[[t]] on ĝ ∼= g((t)) ⊕ kK is given by g · (A(t) + cK) = gA(t)g−1 +
K Rest(g−1dg, y) +Kc where g−1dg is the logarithmic differential, see also [14, Sec 1.3.6]. 
This action lift to an action on U(ĝ) and on the vertex algebra through the surjective 
map U(ĝ) → V k(g). �

The next result follows from Lemma 3.6 and Lemma 3.8.

Corollary 3.9. V k(g)G[[t]] ⊆ zV k(g). �
4. Invariants and arc spaces

4.1. The semiclassical limit of the affine vertex algebra

We equip V k(g) with the filtration described in (3.5). This filtration is ascending, 
exhaustive V k(g) =

⋃
d≥0 FdV

k(g), and connected F0V
k(g) = k1. Furthermore, G[[t]], 

g[[t]] and {T (i) | i ≥ 0} all preserve the filtered pieces.
This gives rise to an associated graded space

grV k(g) =
⊕

d≥0 FdV
k(g)/Fd−1V

k(g)

= S(g[t−1]t−1) = k[J∞g∗]
(4.1)

where the final identification follows from the remarks of Section 2.1 (see [1, §3.8, (34)]
for more detail). There is an induced action of G[[t]] and g[[t]] on grV k(g). Via (4.1)
these actions coincide with the natural ones on S(ĝ)/(g0

+) which arise from the adjoint 
action of G[[t]] on g( (t) )/g[[t]], in the same manner as Lemma 3.8. This is an isomorphism 
of g[[t]]-modules, and we will identify grV k(g) = k[J∞g∗] in the sequel.
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Similarly the translation operator T gives rise to a higher derivation ∂ = (∂(0), ∂(1),

∂(2), ...) on S(g[t−1]t−1) by the rule ∂(i)(v + F d−1V k(g)) := T (i)(v) + F d−1V k(g) for 
i, d ≥ 0. More explicitly, ∂(i) coincides with (−1)i∂(i)

t where ∂t is described in Section 3.1.
Combining our remarks with Lemma 3.6 we have the inclusion

gr zV k(g) ⊆ k[J∞g∗]g[[t]]. (4.2)

We also have

gr zpV k(g) = S(g[t−1]t−1)p. (4.3)

By Theorem 2.3 we have a homogeneous invariant generating set P1, ..., Pr ∈ k[g∗]G. 
If we let G[[t]] act on k[g∗] via the homomorphism G[[t]] � G then the inclusion k[g∗] ⊆
k[J∞g∗] given by x �→ x−1 is G[[t]]-equivariant. Therefore the elements {Pi,−1 | i =
1, ..., r} we obtain are G[[t]]-invariant.

For j > 0 we define regular functions Pi,−j ∈ k[J∞g] by

Pi,−j := ∂(j−1)Pi,−1. (4.4)

We can define these regular functions on J∞g∗ equivalently using fields. For i =
1, ..., dim g we let xi(z) =

∑
n<0 x

i
nz

−n−1. The change of variables xi �→ xi(z) produces 
a map k[g∗] �→ k[J∞g∗][z] and the image of Pi under this map is the generating function 
for the series (Pi,−n−1)n≥0.

In the following lemma we write x1, ..., xn for a basis of g.

Lemma 4.1. For P ∈ k[g∗] consider P−1 ∈ k[J∞g∗] as above. Then

∂

∂xi
−1−s

∂(m)P−1 =

⎧⎨
⎩∂(m−s) ∂P−1

∂xi
−1

, m ≥ s ≥ 0 ,

0 , m < s .

Proof. It suffices to check the claim for monomials in x1, ..., xn. The case m < s is clear 
because ∂(m)P−1 only depends on variables xj

−1, ..., x
j
−1−m with j = 1, ..., dim g.

We prove the statement for m ≥ s by induction on the total degree of P . The degree 
1 case is easily verified. Now suppose it has been verified for all P of degree less than d. 
Any monomial of degree greater than 1 can be written as a product PQ of monomials 
of degrees strictly less than d.

Using (2.1) have

∂(m−s) ∂

∂xi
−1

(P−1Q−1)

=
m−s∑ (

(∂(j) ∂P−1

∂xi
−1

)(∂(m−s−j)Q−1) + (∂(j)P−1)(∂(m−s−j) ∂Q−1

∂xi
−1

)
)

j=0
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=
m∑
j=s

(∂(j−s) ∂P−1

∂xi
−1

)(∂(m−j)Q−1)) +
m−s∑
j=0

(∂(j)P−1)(∂(m−s−j) ∂Q−1

∂xi
−1

).

In the second line we shift the indexes for half of the summands.
On the other hand we have

∂

∂xi
−1−s

∂(m)(P−1Q−1)

=
m∑
j=0

(
( ∂

∂xi
−1−s

∂(j)P−1)(∂(m−j)Q−1) + (∂(j)P−1)(
∂

∂xi
−1−s

∂(m−j)Q−1)

=
m∑
j=s

( ∂

∂xi
−1−s

∂(j)P−1)(∂(m−j)Q−1) +
m−s∑
j=0

(∂(j)P−1)(
∂

∂xi
−1−s

∂(m−j)Q−1)

where the second line uses the vanishing statement of the lemma for s < m. Since the 
degree of both P and Q is less than the degree of PQ the proof concludes using the 
inductive hypothesis. �

Over the complex numbers the G[[t]]-invariance of the polynomials Pi,−j is equivalent 
to the g[[t]]-invariance. In our setting this is no longer the case, and so we check the 
invariance.

Lemma 4.2. Pi,−j ∈ k[J∞g∗]G[[t]].

Proof. The coadjoint action G × g∗ → g∗ is given by μ : k[g∗] → k[g∗] ⊗k[G], we define 
ι : k[g∗] → k[g∗] ⊗k[G] by ι(f) = f⊗1 for f ∈ k[g∗]. Then, k[g∗]G = Ker(μ −ι). Moreover, 
k[J∞g∗]J∞G = Ker(J∞μ − J∞ι) and Pi,−j−1 = ∂(j)Pi,−1 then (J∞μ − J∞ι)Pi,−j−1 =
∂(j)(J∞μ − J∞ι)Pi,−1 = 0. Note that J∞μ and J∞ι commute with ∂ since J∞ is a 
functor to differential algebras. �

We provide one example to show that the invariance of Pi,−j can be derived directly 
in special cases.

Example 4.3. Let G = SLn+1 so that

G[[t]] = {g ∈ Matn+1(k[[t]])) | det(g) = 1}

Let {xi,j | 1 ≤ i, j ≤ n + 1} be the standard basis for Matn+1(k). Define a matrix 
X ∈ Matn+1(k[t−1]t−1[[z]]) whose i, j entry is the series xi,j(z) =

∑
m<0 x

i,j
m z−1−m. 

Write

det(λ−X) = λn +
n∑

Pi(z)λi
i=0
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We identify Matn+1(k[t−1]t−1) with Homk(Matn+1(k[[t]]), k) via the residue pair-
ing. Then the zj coefficient of the series Pi(z) restricts to Pi,−1−j on J∞sln+1 ⊆
Matn+1(k[[t]]).

The group G[[t]] acts on Matn+1(k[t−1]t−1) = J∞gl
∗
n+1 and the invariance of the 

Pi,−j is now a simple consequence of the fact that the characteristic polynomial is G[[t]]-
invariant.

Finally, we prove the main theorem of this section, which is a vertex algebra analogue 
of Theorem 2.3(1)-(4).

Theorem 4.4.

(1) k[J∞g∗]G[t]] = k[Pi,−j | i = 1, .., r, j < 0] polynomial ring on infinitely many 
generators.

(2) k[J∞g∗]g[[t]] is generated by k[J∞g∗]G[[t]] and k[J∞g∗]p.
(3) k[J∞g∗]g[[t]] is a free k[J∞g∗]p-module with basis{∏

i,j

P
ki,j

i,−j | 0 ≤ ki,j < p, finitely many nonzero
}
. (4.5)

(4) k[J∞g∗]g[[t]] is isomorphic to the tensor product of k[J∞g∗]p and k[J∞g∗]G[[t]] over 
the intersection.

Proof. In the proof we make use of the group of m-jets JmG which has Lie algebra 
gm := g ⊗ k[t]/(tm + 1) and k-points Gm, known as the truncated current group.

The map g∗[[t]] � g∗m gives rise to an inclusion k[g∗m] → k[J∞g∗]. This subalgebra 
is a G[[t]]-submodule and the action factors through the homomorphism G[[t]] � Gm

arising from the inclusion of Hopf algebras Jmk[G] ↪→ J∞k[G] (see (2.2)). Now in order 
to prove the theorem it suffices to prove the corresponding claims about k[Jmg∗]Gm and 
k[Jmg∗]gm , mutatis mutandis.

In order to prove (2) and (3), we apply a result of Skryabin [32, Theorem 5.4]. To 
satisfy the conditions of his theorem we must demonstrate that:

i) ind(gm) = (m + 1) rank(g)
ii) codimg∗

m
(g∗m \ J(Pi,−j)) ≥ 2

where ind(gm) := minχ∈g∗ dim gχm is the index of the Lie algebra, and J(Pi,−j) denotes 
the Jacobian locus of the Pi,−j , i.e. the open set of g∗m consisting of points χ such that 
the functions dχPi,−j are linearly independent.

Part (i) is a special case of a theorem of Raïs–Tauvel (where they work over the 
complex numbers) and we include a short proof valid in our setting. Pick a triangular 
decomposition g = n− ⊕ h ⊕ n+, which gives gm = n−m ⊕ hm ⊕ n+

m. Let h◦m = {
∑m

i=0 hit
i |

h0 ∈ hreg}.
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The differential of the adjoint action Gm × hm → gm at a point (1, h) is the linear 
map gm × hm → gm given by x, z �→ [x, h] + z. When h ∈ h◦m we have that

[h, gm] = n−m ⊕ n+
m and ghm = hm , (4.6)

in more detail, [h0, n±] = n± then [h, n±m] = n±m and easily [h, hm] = 0. And so the 
differential is surjective for such a point. Consequently the conjugates of h◦m are dense in 
gm. On the other hand dim ghm = (m +1) rank(g) by (4.6), and so by upper-semicontinuity
of dimensions of fibres of morphisms, we have that minx∈gm

dim gxm = (m + 1) rank(g).
There is a gm-invariant bilinear form on gm given by xti, ytj �→ δi,m+1−jκ(x, y), and 

this induces an isomorphism θ : gm → g∗m of gm-modules. We deduce that ind(gm) =
(m + 1) rank(g), which proves (i).

Let g◦m = {
∑m

i=0 xit
i | x0 ∈ greg}. Thanks to [10, Proposition 3.2] we have codimg(g \

g◦) = 3 hence we have codimgm
(gm \ g◦m) = 3. We shall show that θ(g◦m) ⊆ J(Pi,−j), 

which shall prove (ii).
Once again we write x1, ..., xn for a basis of linear functions on g∗, which gives a basis 

{xi
−j | i = 1, ..., r, j = 1, ..., m + 1} of linear functions on Jmg∗. Consider the Jacobian 

of the functions {Pi,−j | 1 ≤ i ≤ r, 1 ≤ j ≤ m + 1}, a matrix of size (m + 1) dim g ×
(m + 1) rank g. It has block form

⎛
⎜⎜⎜⎜⎜⎜⎝

∂Pi,−1

∂xj
−1

0
∂Pi,−2

∂xj
−1

∂Pi,−2

∂xj
−2

...
. . .

∂Pi,−1−m

∂xj
−1

∂Pi,−1−m

∂xj
−2

. . .
∂Pi,−m−1

∂xj
−m−1

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.7)

where each block has size (dim g) × (rank g). Using Lemma 4.1 we see that the diagonal 
blocks are all equal to (∂Pi,−1

∂xj
−1

). Evaluating at any point of g◦m we see that this matrix 

has full rank, thanks to the differential criterion for regularity of g (see Lemma 3.4 and 
Proposition 3.4 of [10]). We have now shown that θ(g◦m) ⊆ J(Pi,−j), which completes 
the proof of (ii), and part (2) and (3) of the current theorem.

For part (1) it suffices to show that k[Jmg∗]Gm = k[Pi,−j | i = 1, ..., r, −m −1 ≤ −j <

0] is a polynomial ring. Suppose that f ∈ k[Jmg∗]Gm . Then by part (1) we can write 
f uniquely as f =

∑
b∈B gbb where B denotes the collection of monomials described in 

(4.5) (with all j ≤ m + 1) and gb ∈ k[Jmg∗]p. By uniqueness, and using Lemma 4.2, 
we see that each gb is Gm-invariant. Since k[Jmg∗] has no nilpotent elements it follows 
that gb = (ḡb)p for some ḡb ∈ k[Jmg∗]Gm . Now part (1) may be proven by a downward 
induction on total degree.

Part (4) follows from [17, Lemma 2.1], whose proof does not require the free basis to 
be finite. �
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5. Centre of V k(g) at the critical level

5.1. Integral forms on vertex algebras

Let GZ be a connected, split simple group such that the base change of GZ to k is 
equal to G. Also let TZ be a choice of split maximal torus whose base change to k is T .

Let R be the subring of Q generated by the reciprocals of integers between 1 and h. 
Since p > h there is a natural homomorphism R → k. Write GC for the base change to 
C, write gC = LieGC. Similarly we write GR and gR for the R-defined objects. Since g
is simple for p > h we can identify gZ ⊗Z k = g.

Since S(gR[t−1]t−1) is a free R-module, it acts as an intermediary between the 
symmetric algebras S(gC[t−1]t−1) and S(g[t−1]t−1), to be precise we have natural iden-
tifications

S(gR[t−1]t−1) ⊗R C = S(gC[t−1]t−1) (5.1)

S(gR[t−1]t−1) ⊗R k = S(g[t−1]t−1). (5.2)

Now we address the modular reduction of the affine vertex algebra V −h∨(gC). We 
let ĝR = gR ⊗R R[t±1] ⊕ RK, which is a Lie R-subalgebra of ĝC, and a free R-module. 
The enveloping algebra U(ĝR) satisfies the conditions of the PBW theorem, and we can 
construct the vacuum module V −h∨(gR) := U(ĝR) ⊗ĝ+,R R−h∨ (Cf. (3.6)), where ĝ+,R

is the induced R-form on ĝ+ and R−h∨ is the rank one free R-module with ĝ+,R-action 
given by letting K act via −h∨ and gR[[t]] acts trivially. This is a free R-module and so 
we have

V −h∨
(gR) ⊗R C = V −h∨

(gC) (5.3)

V −h∨
(gR) ⊗R k = V −h∨

(g). (5.4)

5.2. A criterion for the existence of Segal–Sugawara vectors

Recall that R is the subring of Q generated by {1/n | 1 ≤ n ≤ h}, and now let Q ⊆ Q

be a finitely generated R-algebra. Retain the notation GC, gC, GR, gR from Section 5.1. 
In this section we discuss the centre of V −h∨(g) at the critical level, and so we ease 
notation further by writing VA = V −h∨(gA) whenever A ∈ {R, Q, C, k}. Similarly we 
write SA = S(gA[t−1]t−1).

Recall that zVk is a commutative vertex algebra and, in particular, it is a commutative 
(differential) algebra. To prove Theorem 1.3 we use the following criterion, which follows 
directly from Theorem 4.4 by modular reduction and a standard filtration argument.

Proposition 5.1. Suppose that there is a non-zero homomorphism Q → k and that there 
exist elements Si,−1 ∈ VQ ∩ zVC such that
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grSi,−1 = Pi,−1 (5.5)

for i = 1, ..., r. If Si,−j := T (j−1)Si,−1 and denote the image of Si,−j under VQ → Vk by 
the same symbol. The following hold:

(1) V
G[[t]]
k = k[Si,−j | i = 1, .., r, j > 0] is a polynomial algebra on infinitely many 

generators.
(2) zVk is generated by V G[[t]]

k and zpVk as a commutative algebra.
(3) zVk is a free zpVk-module of over zpVk with basis

{∏
i,j

S
ki,j

i,−j | 0 ≤ ki,j < p, finitely many nonzero
}
. (5.6)

(4) zVk is isomorphic to the tensor product of zpVk and V G[t]]
k over their intersection.

Proof. Recall Lemma 3.6, Lemma 3.7 and Corollary 3.9 which state that zpVk, V G[[t]]
k ⊆

zVk = V
g[[t]]
k .

It is clear that VQ is a vertex Q-subalgebra of VC and that the translation operators 
on VQ and Vk intertwine the natural map VQ → Vk. Therefore grSi,−j = Pi,−j for all 
i, j. Since C has characteristic zero, gC[[t]]-invariants are GC[[t]]-invariant, and so we 
have Si,−j ∈ V

GC [[t]]
C .

Now let T be either C, Q or k. By Lemma 2.2 we know that J∞GT is generated by 
{J∞uα | α ∈ Φ}. The group of T -points of J∞uα is isomorphic to the additive group 
T [[t]]. For each m ≥ 0 and α ∈ Φ we consider the morphism of schemes uT

α,m : Ga →
J∞GT determined by setting uT

α,m(a) = J∞uα(atm), for any T -algebra A and element 
a ∈ A. Thus we have a group homomorphism uT

α,m(T ) : T → GT [[t]] of T -points. If 
f ∈ VT then uα,m(T )(z) · f is a polynomial expression in z for z ∈ T .

We now fix i, j and α, m. The GC[[t]]-invariance of Si,−j implies that uCα,m(C)(z) ·
SC
i,−j − SC

i,−j vanishes identically for all values of z ∈ C. We can regard this as a poly-
nomial identity in VT [z] where z is a formal variable. Reducing modulo p we deduce 
that ukα,m(k)(z) · Si,−j − Si,−j = 0 in VT . Since this holds for every α, m, and since 
G[[t]] is generated by the images of the morphisms ukα,m(k) we deduce that Si,−j is 
G[[t]]-invariant.

Using an argument identical to the proof of Lemma 4.2 we see that the images Si,−j ∈
Vk are G[[t]]-invariant. Property (5.5) continues to hold in Vk and so we have k[Si,−j |
i, j] ⊆ V

G[[t]]
k . By Theorem 4.4 we have grk[Si,−j | i, j] ⊆ grV G[[t]]

k ⊆ S
G[[t]]
k = k[Pi,−j |

i, j] = grk[Si,−j | i, j] and so we must have equality throughout. This proves (1).
Part (2) follows by a very similar line of reasoning, in view (4.2) and (4.3). Arguing in 

the same fashion once again, we see that the elements (5.6) span zVk as a zpVk-module. 
If there were a zpVk-linear relation amongst them the projection into grVk would give an 
Sp
k-linear relation amongst {Pi,−j | i, j}, which contradicts Theorem 4.4(3). This proves 

(3).
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Part (4) follows from [17, Lemma 2.1], whose proof does not require the free basis to 
be finite. �

In order to complete the proof of Theorem 1.3 we must show that the hypotheses of 
Proposition 5.1 can be satisfied for each simple finite root datum.

5.3. Completing the proof: type A

Let n ∈ N. The known formulas for generators of the Feigin–Frenkel centre in type A
are expressed inside the vertex algebra V −h∨(glN (C)). The Coxeter number h for SLN

is N . Since we have assumed that p > h it follows that glN (R) is the direct sum (as Lie 
R-algebras) of slN (R) and the rank 1 centre RI.

The normalised Killing form on glN (R) is given by κ(x, y) =Tr(xy) − 1
N Tr(ad(x) ad(y)). 

The kernel is the centre of glN (R) and the restriction to slN (R) is the normalised Killing 
form (2.3).

Let cR = RI⊗R((t)) ⊕RK ⊆ ĝlN (R) a commutative Lie subalgebra. Then the image 
HR of U(cR) in V −h∨(glN (R)) is a commutative vertex subalgebra, isomorphic to the 
semiclassical limit of the Heisenberg vertex algebra. Furthermore we have an R-linear 
isomorphism of vertex rings V −h∨(glN (R)) ∼= V −h∨(slN (R)) ⊗R HR. Similar remarks 
hold over k or C. The next lemma follows immediately from these remarks.

Lemma 5.2. Theorem 1.3 holds for V −h∨(slN ) if and only if it V −h∨(glN ). �
Generators of V −h∨(glN (C)) satisfying the hypotheses of Proposition 5.1 are described 

[11, Theorem 3.1] or [31, Theorem 7.1.3]. They are manifestly defined over R = Z[1/n |
1 ≤ n ≤ N ] and this completes the proof in type A.

5.4. Completing the proof: classical types

Let G be a connected, simply connected, simple classical group scheme of type B, C, 
or D. Under the hypothesis p > h there are no inseparable isogenies, and so it does no 
harm to replace G by one of the matrix groups SON or SpN .

In this case the hypotheses of Proposition 5.1 are satisfied with Q = R, thanks to 
Theorems 8.1.6, 8.1.9 and 8.3.8 of [31]. See also [30] and [35].

5.5. Completing the proof: exceptional types

Finally we let G be a simply connected, connected exceptional simple group scheme, 
and g = Lie(G). Recall the notation from Section 5.2, and x1, ..., xn denotes a basis for 
g.

Fix i = 1, ..., r. For m > 0 let V [m]
C be the span of PBW monomials (3.7) of degree 

less than degPi,−1 involving xj
−k where m ≥ k ≥ 1 and j = 1, ..., n.
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Since gC[[t]] is topologically generated by gC and gC ⊗ t, the existence of an element 
Si,−1 ∈ (V [m]

C )gC [[t]] such that grSi,−1 = Pi,−1 can be expressed as a solution to a finite 
system of affine linear equations with integer coefficients. The Feigin–Fenkel theorem (see 
[14, Theorem 8.1.3] implies that there exists m > 0 such that the system has a solution 
and, by integrality, the existence of a solution in (V [m]

C )gC [[t]] implies the existence of a 

solution Si,−1 ∈ (V [m]
Q )gQ[[t]]. Writing Si,−1 as a Q-linear span of elements of the PBW 

basis, we can choose an integer qi ∈ N (say, the maximal denominator appearing in the 
coefficients) so that Si,−1 ∈ VRi

where Ri = Z[q−1
i ]. Taking q = max{qi | i = 1, ..., r}

and setting Q := R[q−1] we have Si,−1 ∈ VQ ∩ V
gC [[t]]
C for all i = 1, ..., r.

Now provided the characteristic of the field k is greater than q there is a nonzero 
homomorphism Q → k, and so the hypotheses of Proposition 5.1 are satisfied. This 
completes the proof of Theorem 1.3.
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