
Applied Mathematics and Computation 491 (2025) 129219

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Full Length Article

Convergence analysis of a regularized Newton method with 

generalized regularization terms for unconstrained convex 

optimization problems

Yuya Yamakawa ∗, Nobuo Yamashita
Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan

A R T I C L E I N F O A B S T R A C T

Keywords:

Unconstrained convex optimization

Regularized Newton method

Generalized regularization

Global (𝑘−2) convergence

Superlinear convergence

Local convergence

This paper presents a regularized Newton method (RNM) with generalized regularization terms for 
unconstrained convex optimization problems. The generalized regularization includes quadratic, 
cubic, and elastic net regularizations as special cases. Therefore, the proposed method serves as 
a general framework that includes not only the classical and cubic RNMs but also a novel RNM 
with elastic net regularization. We show that the proposed RNM has the global (𝑘−2) and local 
superlinear convergence, which are the same as those of the cubic RNM.

1. Introduction

We consider the following unconstrained convex optimization problem:

minimize
𝑥∈ℝ𝑛

𝑓 (𝑥), (1)

where the function 𝑓 is twice continuously differentiable and convex on ℝ𝑛. Moreover, we assume that problem (1) has a minimizer 
𝑥∗ and define 𝑓 ∗ ∶= 𝑓 (𝑥∗).

Newton’s method is one of the most well-known and basic iterative methods for solving unconstrained convex optimization 
problems. Each iteration computes a search direction 𝑑𝑘 , which is a solution of the following subproblem:

minimize
𝑑∈ℝ𝑛

⟨∇𝑓 (𝑥𝑘), 𝑑⟩+ 1
2
⟨∇2𝑓 (𝑥𝑘)𝑑,𝑑⟩,

and updates the current point 𝑥𝑘 as 𝑥𝑘+1 ∶= 𝑥𝑘 + 𝑡𝑘𝑑𝑘, where 𝑡𝑘 > 0 denotes a step size. It converges rapidly thanks to the use 
of the second-order information, that is, ∇2𝑓 (𝑥𝑘), of the objective function. However, it requires that ∇2𝑓 (𝑥𝑘) is nonsingular at 
each iteration. Even if the Hessian is nonsingular, the convergence rate may be reduced to linear when the Hessian is close to 
singular. Several variants of Newton’s method have been proposed to overcome these drawbacks including regularized Newton 
methods (RNMs) [1–5], cubic RNMs [6–8], and so forth [9–18].

RNMs can be considered modifications of Newton’s method because they improve the subproblem of Newton’s method such that 
it can be solved even if the Hessian matrix is singular. More precisely, RNMs iteratively solve the following subproblem to find a 
search direction 𝑑𝑘:
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minimize
𝑑∈ℝ𝑛

⟨∇𝑓 (𝑥𝑘), 𝑑⟩+ 1
2
⟨∇2𝑓 (𝑥𝑘)𝑑,𝑑⟩+ 𝜇𝑘

2
‖𝑑‖2,

where 𝜇𝑘 > 0 denotes a parameter. Since the objective function is strongly convex, the subproblem has a unique optimum. Nesterov 
and Polyak [6] proposed an RNM with the cubic regularization 𝜇𝑘6 ‖𝑑‖3. The proposed method is called the cubic RNM and iteratively 
solves the following subproblem:

minimize
𝑑∈ℝ𝑛

⟨∇𝑓 (𝑥𝑘), 𝑑⟩+ 1
2
⟨∇2𝑓 (𝑥𝑘)𝑑,𝑑⟩+ 𝜇𝑘

6
‖𝑑‖3.

For classical and cubic RNMs, global (𝑘−2) and local superlinear convergence were proven in [2,4,6,5].

For least squares problems, Ariizumi, Yamakawa, and Yamashita [19] recently proposed a Levenberg-Marquardt method (LMM) 
equipped with a generalized regularization term and showed its global and local superlinear convergence. Although a subproblem of 
the classical LMM has a quadratic regularization term 𝜇𝑘2 ‖𝑑‖2, they generalized the regularization term such that another regular-

ization can be adopted, such as the 𝐿1 and elastic-net regularization. Moreover, they reported numerical experiments in which their 
LMM with the elastic-net regularization worked well for certain examples, owing to the sparsity of the search direction.

Inspired by Ariizumi, Yamakawa, and Yamashita [19], we propose a generalized RNM (GRNM) for solving problem (1). We adopt 
new regularization terms provided as 𝜇𝑘

𝑝
‖𝑑‖𝑝2 + 𝜌𝑘‖𝑑‖1, where 𝑝 ∈ (1, 3] is a pre-fixed parameter. With the addition of the new 

regularization terms, the GRNM includes classical and cubic RNMs as well as novel RNMs with other regularizations, such as the 
elastic net and so forth. More precisely, if 𝑝 = 2 and 𝜌𝑘 = 0, the GRNM is reduced to the classical RNM; if 𝑝 = 3 and 𝜌𝑘 = 0, it is 
equivalent to the cubic RNM. Moreover, if 𝑝 = 2 and 𝜌𝑘 > 0, it can be regarded as a novel RNM with the elastic-net regularization.

The contributions of this study are as follows. This study provides

(i) the generalized RNM stated above;

(ii) sufficient conditions of 𝑝, 𝜇𝑘, and 𝜌𝑘 for which the GRNM has the global (𝑘−2) convergence;

(iii) local superlinear convergence under the local error bound condition.

Hence, these contributions include classical and cubic RNMs as special cases and provide a framework for new RNMs such as the 
elastic-net RNM.

The remainder of this paper is organized as follows. Section 2 provides a general proposition that plays an important role in the 
analysis of global (𝑘−2) convergence. Section 3 describes the proposed method. Section 4 presents global (𝑘−2) convergence of the 
proposed method. Section 5 proves local and superlinear convergence. In section 6, we conduct numerical experiments to confirm the 
performance of the proposed method by using several regularization terms. Finally, concluding remarks are presented in Section 7.

Throughout the paper, we use the following mathematical notation. Let ℕ be the set of natural numbers (positive integers). For 
𝑝 ∈ ℕ and 𝑞 ∈ ℕ, the set of real matrices with 𝑝 rows and 𝑞 columns is denoted by ℝ𝑝×𝑞 . Note that ℝ𝑝×1 is equal to the set of 𝑝-

dimensional real vectors, that is, ℝ𝑝×1 =ℝ𝑝, and note that ℝ1 represents the set of real numbers, namely, ℝ1 =ℝ. For any 𝑤 ∈ℝ𝑝, 
the transposition of 𝑤 is represented as 𝑤⊤ ∈ℝ1×𝑝. For 𝑢 ∈ℝ𝑝 and 𝑣 ∈ℝ𝑝, the inner product of 𝑢 and 𝑣 is defined by ⟨𝑢, 𝑣⟩ ∶= 𝑢⊤𝑣. 
We denote by 𝐼 the identity matrix, where these dimensions are defined by the context. For each 𝑤 ∈ℝ𝑝, the Euclidean and 𝐿1 norms 
of 𝑤 are respectively defined by ‖𝑤‖ ∶=√⟨𝑤,𝑤⟩ and ‖𝑤‖1 ∶= |[𝑤]1| + |[𝑤]2| +⋯ + |[𝑤]𝑝|, where [𝑤]𝑗 represents the 𝑗-th element 
of 𝑤. For 𝑊 ∈ℝ𝑝×𝑞 , we denote by ‖𝑊 ‖ the operator norm of 𝑊 , that is, ‖𝑊 ‖ ∶= sup{‖𝑊 𝑢‖; ‖𝑢‖ ≤ 1}. Let 𝜑 be a function from ℝ𝑝

to ℝ. The gradient of 𝜑 at 𝑤 ∈ℝ𝑝 is represented as ∇𝜑(𝑤). The Hessian of 𝜑 at 𝑤 ∈ℝ𝑝 is denoted by ∇2𝜑(𝑤). For a convex function 
𝜙∶ ℝ𝑝 →ℝ, we denote by 𝜕𝜙(𝑤) the subdifferential of 𝜙 at 𝑤. For 𝜂 ∈ℝ𝑝 and 𝑟 > 0, we define 𝐵(𝜂, 𝑟) ∶= {𝜇 ∈ℝ𝑝; ‖𝜇 − 𝜂‖ ≤ 𝑟}. For 
infinite sequences {𝑎𝑘} ⊂ ℝ and {𝑏𝑘} ⊂ ℝ, we write 𝑎𝑘 = (𝑏𝑘) (𝑘 →∞) if there exist 𝑐 > 0 and 𝑛 ∈ ℕ such that |𝑎𝑘| ≤ 𝑐|𝑏𝑘| for all 
𝑘 ≥ 𝑛.

2. Preliminaries

This section presents a general proposition that provides sufficient conditions under which arbitrary sequences generated by 
optimization methods have global (𝑘−2) convergence. This proposition plays a critical role in Section 4. The proof of the proposition 
is inspired by the technique presented in [5, Theorem 1].

Proposition 1. Suppose that 𝑓 ∶ ℝ𝑛 →ℝ is a continuously differentiable convex function. Let {𝑥𝑘} ⊂ℝ𝑛 be an infinite sequence. Suppose 
also that

(i) 𝑓 (𝑥𝑘+1) ≤ 𝑓 (𝑥𝑘) for all 𝑘 ∈ ℕ ∪ {0};

(ii) there exists 𝛾 > 0 such that ‖∇𝑓 (𝑥𝑘+1)‖ ≤ 𝛾‖∇𝑓 (𝑥𝑘)‖ for all 𝑘 ∈ ℕ ∪ {0};

(iii) there exists 𝛿 > 0 such that 𝑓 (𝑥𝑘) − 𝑓 ∗ ≤ 𝛿‖∇𝑓 (𝑥𝑘)‖ for all 𝑘 ∈ ℕ ∪ {0};

(iv) there exist 𝜃 ∈ (0, 1), 𝜈 > 0, and 𝓁 ∈ℕ such that 𝜃𝑘 ≤ 𝜈𝑘−2 and (𝛾𝜃)
𝑘
2 ≤ 𝜈𝑘−2 for all 𝑘 ≥ 𝓁, where 𝛾 is given in (ii).

Let (𝜃) ∶= {𝑖 ∈ ℕ ∪ {0}; 𝜃‖∇𝑓 (𝑥𝑖)‖ ≤ ‖∇𝑓 (𝑥𝑖+1)‖}. Suppose also that

3

2

(v) there exists 𝜏 > 0 such that 𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) ≤ −𝜏(𝑓 (𝑥𝑘) − 𝑓 ∗) 2 for all 𝑘 ∈ (𝜃).
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Then, one of the following statements holds:

(a) If |(𝜃)| <∞ holds, then

𝑓 (𝑥𝑘) − 𝑓 ∗ ≤
𝜃−(̂𝑖+1)𝜈𝛿‖∇𝑓 (𝑥𝑖̂+1)‖

𝑘2
∀𝑘 ≥max{𝓁, 𝑖̂+ 2},

where ̂𝑖 is the largest element of (𝜃).
(b) If |(𝜃)| =∞ holds, then

𝑓 (𝑥𝑘) − 𝑓 ∗ ≤max
{

36𝜏−2

(𝑘+ 4)2
,
𝜈𝛿‖∇𝑓 (𝑥0)‖

𝑘2

}
∀𝑘 ≥ 𝓁.

Proof. Let 𝑖𝓁 ∈ℕ be the 𝓁-th smallest element of (𝜃), that is, (𝜃) = {𝑖1, 𝑖2, … , ̂𝑖} with 𝑖𝓁 < 𝑖𝓁+1. Moreover, regarding assumption (ii), 
we suppose 𝛾 ≥ 1 without loss of generality.

To begin with, we consider case (a), that is, |(𝜃)| <∞ is satisfied. Let  (𝜃) ∶= {𝑖 ∈ℕ ∪{0}; 𝜃‖∇𝑓 (𝑥𝑖)‖ > ‖∇𝑓 (𝑥𝑖+1)‖}. Note that 
𝑖̂ = 𝑖|(𝜃)|. We can easily observe that

𝑘 ∈  (𝜃) ∀𝑘 > 𝑖̂. (2)

For every 𝑘 ≥ 𝑖̂+ 2, it follows from (2) that 𝑗 ∈  (𝜃) for any 𝑗 ∈ {̂𝑖+ 1, ̂𝑖+ 2, … , 𝑘 − 1}, that is,

‖∇𝑓 (𝑥𝑘)‖ < 𝜃‖∇𝑓 (𝑥𝑘−1)‖ <⋯ < 𝜃𝑘−(̂𝑖+1)‖∇𝑓 (𝑥𝑖̂+1)‖. (3)

Let us take 𝑘 ≥max{𝓁, ̂𝑖+ 2} arbitrarily. By assumption (iii) and (3), we obtain

𝑓 (𝑥𝑘) − 𝑓 ∗ ≤ 𝛿‖∇𝑓 (𝑥𝑘)‖ < 𝜃𝑘−(̂𝑖+1)𝛿‖∇𝑓 (𝑥𝑖̂+1)‖. (4)

Recall that 𝜃𝑘 ≤ 𝜈𝑘−2 from assumption (iv). Thus, the desired inequality is derived from (4).

Next, we discuss the case where |(𝜃)| =∞ holds. Let 𝑘 ∈ ℕ ∪ {0} and define 𝜓𝑘 ∶= 𝜏2(𝑓 (𝑥𝑖𝑘 ) − 𝑓 ∗). Combining assumption (i) 
and 𝑖𝑘+1 ≥ 𝑖𝑘 + 1 yields

𝜓𝑘+1 = 𝜏2(𝑓 (𝑥𝑖𝑘+1 ) − 𝑓 ∗) ≤ 𝜏2(𝑓 (𝑥𝑖𝑘+1) − 𝑓 ∗). (5)

Since assumption (v) implies that 𝑓 (𝑥𝑖𝑘+1) − 𝑓 (𝑥𝑖𝑘 ) ≤ −𝜏(𝑓 (𝑥𝑖𝑘 ) − 𝑓 ∗)
3
2 ,

𝜏2(𝑓 (𝑥𝑖𝑘+1) − 𝑓 ∗) ≤ 𝜏2(𝑓 (𝑥𝑖𝑘 ) − 𝑓 ∗) − 𝜏3(𝑓 (𝑥𝑖𝑘 ) − 𝑓 ∗)
3
2 = 𝜓𝑘 −𝜓

3
2
𝑘
. (6)

Exploiting (5) and (6) derives 𝜓𝑘+1 ≤ 𝜓𝑘 −𝜓
3
2
𝑘
≤ 𝜓𝑘 −

2
3𝜓

3
2
𝑘

. It then follows from [5, Proposition 1] that 𝜓𝑘 ≤ 9(𝑘 + 2)−2, that is,

𝑓 (𝑥𝑖𝑘 ) − 𝑓 ∗ ≤
9𝜏−2

(𝑘+ 2)2
∀𝑘 ∈ ℕ ∪ {0}. (7)

Let 𝑘 ∶= {𝑖 ∈ (𝜃); 𝑖 ≤ 𝑘}. In the following, we assume 𝑘 ≥ 𝓁. There are two possible cases: Case (1) |𝑘| ≥ 𝑘

2 and Case (2) |𝑘| < 𝑘

2 .

Case (1): The largest element of 𝑘 can be represented by 𝑖|𝑘|, and thus 𝑖|𝑘| ≤ 𝑘. This fact, assumption (i), and (7) imply that

𝑓 (𝑥𝑘) − 𝑓 ∗ ≤ 𝑓 (𝑥𝑖|𝑘 | ) − 𝑓 ∗ ≤
9𝜏−2

(|𝑘|+ 2)2
≤

36𝜏−2

(𝑘+ 4)2
.

Case (2): From assumption (ii), each 𝑗 ∈ {0, 1, … , 𝑘 − 1} satisfies

‖∇𝑓 (𝑥𝑗+1)‖ ≤ 𝛾‖∇𝑓 (𝑥𝑗 )‖ if 𝑗 ∈ 𝑘−1,‖∇𝑓 (𝑥𝑗+1)‖ < 𝜃‖∇𝑓 (𝑥𝑗 )‖ if 𝑗 ∉ 𝑘−1.
(8)

Combining assumption (iii) and (8) derives

𝑓 (𝑥𝑘) − 𝑓 ∗ ≤ 𝛿‖∇𝑓 (𝑥𝑘)‖ ≤ 𝛿𝛾 |𝑘−1|𝜃𝑘−|𝑘−1|‖∇𝑓 (𝑥0)‖. (9)

Note that 𝛾 ≥ 1, 𝜃 ∈ (0, 1), and (𝛾𝜃)
𝑘
2 ≤ 𝜈𝑘−2 hold from assumption (iv) and 𝑘 ≥ 𝓁. It then follows from |𝑘−1| ≤ |𝑘| < 𝑘

2 that

𝛾 |𝑘−1|𝜃𝑘−|𝑘−1| ≤ (𝛾𝜃)
𝑘
2 ≤

𝜈

𝑘2
. (10)
3

We have from (9) and (10) that
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𝑓 (𝑥𝑘) − 𝑓 ∗ ≤
𝜈𝛿‖∇𝑓 (𝑥0)‖

𝑘2
.

Cases (1) and (2) guarantee that the desired inequality holds when |(𝜃)| =∞. Therefore, the assertion is proven. □

Remark 1. We discuss sufficient conditions for assumptions (i)–(iv) of Proposition 1. Assumptions (i) and (ii) would be satisfied for 
any sequence generated by descent methods. Note that 𝛾 of item (ii) is allowed to be greater than or equal to 1. Assumption (iii) is 
satisfied when {𝑥𝑘} is bounded. Assumption (iv) holds if 𝜃 ∈ (0, 𝛾−1) because it implies 𝜃𝑘 = (𝑘−2) and (𝛾𝜃)

𝑘
2 = (𝑘−2) as 𝑘 →∞. 

From these discussions, we can see that assumption (v) is the key to global (𝑘−2) convergence.

3. An RNM with generalized regularization terms

In this paper, we consider an RNM with generalized regularization terms that iteratively solves the following subproblem:

minimize
𝑑∈ℝ𝑛

⟨∇𝑓 (𝑥𝑘), 𝑑⟩+ 1
2
⟨∇2𝑓 (𝑥𝑘)𝑑,𝑑⟩+ 𝜇𝑘

𝑝
‖𝑑‖𝑝 + 𝜌𝑘‖𝑑‖1, (11)

where 𝜇𝑘 > 0 and 𝜌𝑘 ≥ 0 are parameters, and 𝑝 ∈ (1, 3] is a pre-fixed constant. The proposed method obtains a search direction 𝑑𝑘 by 
solving subproblem (11), and the point 𝑥𝑘 is updated as 𝑥𝑘+1 ∶= 𝑥𝑘 + 𝑑𝑘.

Now, we denote by 𝜑𝑘 the objective function of subproblem (11), namely,

𝜑𝑘(𝑑) ∶= ⟨∇𝑓 (𝑥𝑘), 𝑑⟩+ 1
2
⟨∇2𝑓 (𝑥𝑘)𝑑,𝑑⟩+ 𝜇𝑘

𝑝
‖𝑑‖𝑝 + 𝜌𝑘‖𝑑‖1.

Since the objective function 𝜑𝑘 has generalized regularization terms 𝜇𝑘
𝑝
‖𝑑‖𝑝 and 𝜌𝑘‖𝑑‖1, we call the proposed method a generalized 

RNM (GRNM).

Remark 2. The GRNM includes the quadratic, cubic, and elastic net regularization as special cases. Moreover, it includes a novel 
regularization in addition to the aforementioned regularization.

Remark 3. The proposed GRNM can adopt the 𝐿1 regularization term, that is, 𝜇𝑘 = 0 and 𝜌𝑘 > 0. However, subproblem (11) with 
𝜇𝑘 = 0 might have no global optimum when ∇2𝑓 (𝑥𝑘) is not positive definite. Conversely, if 𝜌𝑘 is sufficiently large, the solution 
becomes 0. We provide sufficient conditions under which (11) has nonzero solutions.

Lemma 1. Let 𝑥𝑘 ∈ ℝ𝑛, 𝜇𝑘 > 0, and 𝜌𝑘 ≥ 0 be given. If 𝜌𝑘 < ‖∇𝑓 (𝑥𝑘)‖∞, then problem (11) has a unique global optimum 𝑑𝑘 ≠ 0 that 
satisfies

∇𝑓 (𝑥𝑘) + (∇2𝑓 (𝑥𝑘) + 𝜇𝑘‖𝑑𝑘‖𝑝−2𝐼)𝑑𝑘 + 𝜌𝑘𝜂𝑘 = 0

for some 𝜂𝑘 ∈ 𝜕‖𝑑𝑘‖1. Moreover, 𝑑𝑘 is the descent direction of 𝑓 at 𝑥𝑘, that is, ⟨∇𝑓 (𝑥𝑘), 𝑑𝑘⟩ < 0.

Proof. First, we show the solvability of (11). Recall that 𝜑𝑘 is closed, proper, and coercive. Hence, by using [20, Proposition 3.2.1], 
problem (11) has a global optimum 𝑑𝑘. The uniqueness of 𝑑𝑘 is derived from the strict convexity of 𝜑𝑘.

Hereafter, we show that 𝑑𝑘 ≠ 0 is satisfied. We assume to the contrary that 𝑑𝑘 = 0 holds. As 𝑑𝑘 = 0 satisfies the first-order optimality 
condition of (11), there exists 𝜂𝑘 ∈ 𝜕‖𝑑𝑘‖1 such that ∇𝑓 (𝑥𝑘) + 𝜌𝑘𝜂𝑘 = 0. It then follows from 𝜌𝑘 < ‖∇𝑓 (𝑥𝑘)‖∞ that ‖∇𝑓 (𝑥𝑘)‖∞ =
𝜌𝑘 < ‖∇𝑓 (𝑥𝑘)‖∞. This result contradicts, that is, 𝑑𝑘 ≠ 0.

Finally, the first-order optimality condition of (11) leads to the desired equality, and it yields

⟨∇𝑓 (𝑥𝑘), 𝑑𝑘⟩ = −⟨(∇2𝑓 (𝑥𝑘) + 𝜇𝑘‖𝑑𝑘‖𝑝−2𝐼)𝑑𝑘, 𝑑𝑘⟩− 𝜌𝑘‖𝑑𝑘‖1 < 0,

where note that ⟨𝑑𝑘, 𝜂𝑘⟩ = ‖𝑑𝑘‖1 and 𝑑𝑘 ≠ 0. This completes the proof. □

Remark 4. By utilizing the line search strategy or an appropriate choice of 𝜇𝑘 and 𝜌𝑘, we can prove the global convergence of 
Algorithm 1. However, because (𝑘−2) convergence implies global convergence, we omit discussions on the line search.

We provide a formal description of the proposed method in Algorithm 1.

Algorithm 1 (GRNM).

1: Choose 𝑝 ∈ (1, 3], 𝑥0 ∈ℝ𝑛 , 𝜀 > 0, and set 𝑘 ∶= 0.

2: If ‖∇𝑓 (𝑥𝑘)‖ ≤ 𝜀, then stop.

3: Set parameters 𝜇𝑘 > 0 and 𝜌𝑘 ≥ 0, and find a global optimum 𝑑𝑘 of (11).

4: Set 𝑥𝑘+1 ∶= 𝑥𝑘 + 𝑑𝑘 .
4

5: Set 𝑘 ← 𝑘 + 1, and go to Line 2.
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Remark 5. We briefly discuss how to solve subproblem (11) for specific choices of regularization parameters. For the setting 𝑝 = 2, 
𝜇𝑘 > 0, and 𝜌𝑘 = 0, the solution 𝑑𝑘 can be obtained by solving (∇2𝑓 (𝑥𝑘) + 𝜇𝑘𝐼)𝑑𝑘 = −∇𝑓 (𝑥𝑘). Regarding the setting 𝑝 = 3, 𝜇𝑘 > 0, 
and 𝜌𝑘 = 0, the subproblem is nonconvex minimization with respect to a cubic function. However, it is known that it can be reduced 
to a convex one-dimensional optimization problem [6]. Moreover, if 𝑝 = 2, 𝜇𝑘 > 0, and 𝜌𝑘 > 0, then (11) is formulated as the 𝐿1–𝐿2

optimization problem and this regularization is called the elastic net. In particular, it is possible that problem (1) can be quickly solved 
when the search direction 𝑑𝑘 is sparse for each 𝑘 ∈ ℕ. For the other cases, such as 𝑝 ∈ (1, 3)∖{2} and 𝜌𝑘 > 0, it is generally difficult 
to solve the subproblem efficiently. However, it may be possible to construct efficient methods by exploiting specific structures of 𝑓
if we restrict (1) to some special cases.

4. Global (𝒌−𝟐) convergence of Algorithm 1

This section shows that Algorithm 1 globally converges with the (𝑘−2) rate. From now on, we denote by 𝑥∗ ∈ ℝ𝑛 an optimal 
solution of problem (1), and use the following notation: 𝑓∗ ∶= 𝑓 (𝑥∗) and  ∶= {𝑥 ∈ℝ𝑛; 𝑓 (𝑥) ≤ 𝑓 (𝑥0)}.

We will show global (𝑘−2) convergence of Algorithm 1 by showing that assumptions (i)–(v) in Proposition 1 hold for a sequence 
{𝑥𝑘} generated by Algorithm 1.

In the subsequent argument, we suppose that 𝜀 = 0 and Algorithm 1 generates an infinite sequence {𝑥𝑘} satisfying ∇𝑓 (𝑥𝑘) ≠ 0 for 
each 𝑘 ∈ ℕ ∪ {0}. Moreover, we make the following assumptions.

(A1) There exists 𝐿 > 0 such that for any 𝑥, 𝑦 ∈ℝ𝑛,

‖∇𝑓 (𝑥) − ∇𝑓 (𝑦) − ∇2𝑓 (𝑦)(𝑥− 𝑦)‖ ≤𝐿‖𝑥− 𝑦‖2,|𝑓 (𝑥) − 𝑓 (𝑦) − ⟨∇𝑓 (𝑦), 𝑥− 𝑦⟩− 1
2
⟨∇2𝑓 (𝑦)(𝑥− 𝑦), 𝑥− 𝑦⟩| ≤ 𝐿

3
‖𝑥− 𝑦‖3.

(A2) The parameters 𝜇𝑘 and 𝜌𝑘 are set as follows: For all 𝑘 ∈ ℕ ∪ {0},

𝜇𝑘 ∶= 𝑐
𝑝−1
2

1 ‖∇𝑓 (𝑥𝑘)‖ 3−𝑝
2 , 𝜌𝑘 ∶= min

{
𝑞√
𝑛
‖∇𝑓 (𝑥𝑘)‖, 𝑐2‖∇𝑓 (𝑥𝑘)‖ 𝑝+1

2

}
,

where 𝑐1 ≥𝐿, 𝑐2 ∈ (0, 1), and 𝑞 ≥ 0.

(A3) There exists 𝑅 > 0 such that  ⊂ 𝐵(0, 𝑅).

Note that subproblem (11) has a global optimum 𝑑𝑘 ≠ 0 because (A2) satisfies the condition of Lemma 1. Note also that several basic 
properties of linear algebra derive‖‖‖(∇2𝑓 (𝑥𝑘) + 𝜇𝑘‖𝑑𝑘‖𝑝−2𝐼)−1‖‖‖ ≤ 𝜇−1

𝑘
‖𝑑𝑘‖2−𝑝, (12)‖‖‖(∇2𝑓 (𝑥𝑘) + 𝜇𝑘‖𝑑𝑘‖𝑝−2𝐼)−1∇2𝑓 (𝑥𝑘)
‖‖‖ ≤ 1. (13)

We now show that assumptions (i) and (ii) in Proposition 1 hold.

Lemma 2. Suppose that (A1) and (A2) are satisfied. Suppose also that 3 −(1 + 𝑞)
3−𝑝
𝑝−1 > 0 where 𝑞 is a constant in (A2). For any 𝑘 ∈ℕ ∪{0}, 

the following inequalities hold:

(a) 𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) ≤ −3 − (1 + 𝑞)
3−𝑝
𝑝−1

3
𝜇𝑘‖𝑑𝑘‖𝑝 < 0,

(b) ‖∇𝑓 (𝑥𝑘+1)‖ ≤(
1 + (1 + 𝑞)

3−𝑝
𝑝−1

)
𝜇𝑘‖𝑑𝑘‖𝑝−1 +min

{
𝑞‖∇𝑓 (𝑥𝑘)‖,√𝑛𝑐2‖∇𝑓 (𝑥𝑘)‖ 𝑝+1

2

}
,

(c) ‖∇𝑓 (𝑥𝑘+1)‖ ≤(
1 + 2𝑞 + (1 + 𝑞)

2
𝑝−1

)‖∇𝑓 (𝑥𝑘)‖.
Proof. It follows from Lemma 1 and (12) that

‖𝑑𝑘‖ ≤ ‖‖‖(∇2𝑓 (𝑥𝑘) + 𝜇𝑘‖𝑑𝑘‖𝑝−2𝐼)−1(∇𝑓 (𝑥𝑘) + 𝜌𝑘𝜂𝑘)
‖‖‖ ≤ 𝜇−1

𝑘
‖𝑑𝑘‖2−𝑝(‖∇𝑓 (𝑥𝑘)‖+√

𝑛𝜌𝑘) ≤ 𝜇−1
𝑘

‖𝑑𝑘‖2−𝑝(1 + 𝑞)‖∇𝑓 (𝑥𝑘)‖,
that is,

‖𝑑𝑘‖ ≤ (1 + 𝑞)
1

𝑝−1√
𝑐1

√‖∇𝑓 (𝑥𝑘)‖. (14)

By (14) and the first equality of (A2), we have

2 3−𝑝 𝑝−1
3−𝑝 𝑝−1

2
3−𝑝

𝑝−1
3−𝑝

𝑝−1
5

𝐿‖𝑑𝑘‖ ≤ 𝑐1‖𝑑𝑘‖ ⋅ ‖𝑑𝑘‖ ≤ (1 + 𝑞) 𝑝−1 ⋅ 𝑐1 ‖∇𝑓 (𝑥𝑘)‖ 2 ⋅ ‖𝑑𝑘‖ = (1 + 𝑞) 𝑝−1 𝜇𝑘‖𝑑𝑘‖ . (15)
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Recall that 𝑥𝑘+1 = 𝑥𝑘 + 𝑑𝑘 and ⟨𝜂𝑘, 𝑑𝑘⟩ = ‖𝑑𝑘‖1. Combining the second inequality of (A1), Lemma 1, and (15) yields

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) ≤ ⟨∇𝑓 (𝑥𝑘) + ∇2𝑓 (𝑥𝑘)𝑑𝑘, 𝑑𝑘⟩− 1
2
⟨∇2𝑓 (𝑥𝑘)𝑑𝑘, 𝑑𝑘⟩+ 𝐿

3
‖𝑑𝑘‖3

≤ −𝜇𝑘‖𝑑𝑘‖𝑝 − 𝜌𝑘‖𝑑𝑘‖1 + 1
3
‖𝑑𝑘‖ ⋅𝐿‖𝑑𝑘‖2

≤ −3 − (1 + 𝑞)
3−𝑝
𝑝−1

3
𝜇𝑘‖𝑑𝑘‖𝑝.

From 𝑥𝑘+1 = 𝑥𝑘 + 𝑑𝑘 and Lemma 1, we obtain

∇𝑓 (𝑥𝑘+1) = ∇𝑓 (𝑥𝑘 + 𝑑𝑘) − ∇𝑓 (𝑥𝑘) − (∇2𝑓 (𝑥𝑘) + 𝜇𝑘‖𝑑𝑘‖𝑝−2𝐼)𝑑𝑘 − 𝜌𝑘𝜂𝑘.

Subsequently, exploiting the first inequality of (A1), the second equality of (A2), and (15) derives

‖∇𝑓 (𝑥𝑘+1)‖ ≤ ‖∇𝑓 (𝑥𝑘 + 𝑑𝑘) − ∇𝑓 (𝑥𝑘) − ∇2𝑓 (𝑥𝑘)𝑑𝑘‖+ 𝜇𝑘‖𝑑𝑘‖𝑝−1 +√
𝑛𝜌𝑘

≤𝐿‖𝑑𝑘‖2 + 𝜇𝑘‖𝑑𝑘‖𝑝−1 +min
{
𝑞‖∇𝑓 (𝑥𝑘)‖,√𝑛𝑐2‖∇𝑓 (𝑥𝑘)‖ 𝑝+1

2

}
≤

(
1 + (1 + 𝑞)

3−𝑝
𝑝−1

)
𝜇𝑘‖𝑑𝑘‖𝑝−1 +min

{
𝑞‖∇𝑓 (𝑥𝑘)‖,√𝑛𝑐2‖∇𝑓 (𝑥𝑘)‖ 𝑝+1

2

}
, (16)

namely, item (b) is verified. Meanwhile, from (14) and the first equality of (A2), we have 𝜇𝑘‖𝑑𝑘‖𝑝−1 ≤ (1 + 𝑞)‖∇𝑓 (𝑥𝑘)‖. Utilizing 
this result, (16), and min{𝑞‖∇𝑓 (𝑥𝑘)‖, √𝑛𝑐2‖∇𝑓 (𝑥𝑘)‖ 𝑝+1

2 } ≤ 𝑞‖∇𝑓 (𝑥𝑘)‖ means

‖∇𝑓 (𝑥𝑘+1)‖ ≤(
1 + 2𝑞 + (1 + 𝑞)

2
𝑝−1

)‖∇𝑓 (𝑥𝑘)‖.
Therefore, the desired inequalities are obtained. □

Now, we provide the global (𝑘−2) convergence property of Algorithm 1 by showing assumptions (iii)-(v) in Proposition 1.

Theorem 1. Suppose that (A1)–(A3) hold. Moreover, suppose that the following assumptions (A4)–(A6) hold:

(A4) 3 − (1 + 𝑞)
3−𝑝
𝑝−1 > 0;

(A5) 1 + 2𝑞 + (1 + 𝑞)
2

𝑝−1 ≥ 1;

(A6) there exist 𝜃 ∈ (𝑞, 1), 𝜈 > 0, and 𝓁 ∈ℕ such that

𝜃𝑘 ≤ 𝜈𝑘−2,

((
1 + 2𝑞 + (1 + 𝑞)

2
𝑝−1

)
𝜃

) 𝑘
2
≤ 𝜈𝑘−2 ∀𝑘 ≥ 𝓁.

Let (𝜃) ∶= {𝑖 ∈ ℕ ∪ {0}; 𝜃‖∇𝑓 (𝑥𝑖)‖ ≤ ‖∇𝑓 (𝑥𝑖+1)‖}. Let 𝐷 and 𝜏 be defined as

𝐷 ∶=𝑅+ ‖𝑥∗‖, 𝜏 ∶=
(𝜃 − 𝑞)

𝑝
𝑝−1

(
3 − (1 + 𝑞)

3−𝑝
𝑝−1

)
3
√
𝑐1𝐷

3
2

(
1 + (1 + 𝑞)

3−𝑝
𝑝−1

) 𝑝
𝑝−1

.

Then, a sequence {𝑥𝑘} generated by Algorithm 1 satisfies one of the following statements:

(a) If |(𝜃)| <∞, then

𝑓 (𝑥𝑘) − 𝑓 ∗ ≤
𝜃−(̂𝑖+1)𝜈𝐷‖∇𝑓 (𝑥𝑖̂+1)‖

𝑘2
∀𝑘 ≥max{𝓁, 𝑖̂+ 2},

where ̂𝑖 is the largest element of (𝜃).
(b) If |(𝜃)| =∞, then

𝑓 (𝑥𝑘) − 𝑓 ∗ ≤max
{

36𝜏−2

(𝑘+ 4)2
,
𝜈𝐷‖∇𝑓 (𝑥0)‖

𝑘2

}
∀𝑘 ≥ 𝓁.

Proof. If items (i)–(v) in Proposition 1 hold, then the desired result can be obtained. Item (i) directly follows from (a) of Lemma 2. 

Let us define 𝑟 ∶= 1 + 2𝑞 + (1 + 𝑞)
2

𝑝−1 . Recall that (A5) ensures 𝑟 ≥ 1. Thus, item (ii) holds from (c) of Lemma 2. The definition of 𝑟
6

and (A6) imply that item (iv) is satisfied. Thus, it is sufficient to show items (iii) and (v).
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Since {𝑥𝑘} ⊂  holds, we have from (A3) that ‖𝑥𝑘‖ ≤𝑅 for 𝑘 ∈ ℕ ∪ {0}. Let us take 𝑘 ∈ ℕ ∪ {0} arbitrarily. Then, it is clear that ‖𝑥𝑘 − 𝑥∗‖ ≤𝐷, and hence the convexity of 𝑓 yields 𝑓 (𝑥𝑘) − 𝑓 ∗ ≤ ⟨∇𝑓 (𝑥𝑘), 𝑥𝑘 − 𝑥∗⟩ ≤𝐷‖∇𝑓 (𝑥𝑘)‖. This fact implies that item (iii) 
holds, and(

𝑓 (𝑥𝑘) − 𝑓 ∗

𝐷

) 3
2
≤ ‖∇𝑓 (𝑥𝑘)‖ 3

2 . (17)

Now, we take arbitrary 𝑘 ∈ (𝜃). The definition of 𝜇𝑘 in (A2) and (b) of Lemma 2 derive

𝜃‖∇𝑓 (𝑥𝑘)‖ ≤(
1 + (1 + 𝑞)

3−𝑝
𝑝−1

)
𝑐

𝑝−1
2

1 ‖∇𝑓 (𝑥𝑘)‖ 3−𝑝
2 ‖𝑑𝑘‖𝑝−1 + 𝑞‖∇𝑓 (𝑥𝑘)‖,

which implies

(𝜃 − 𝑞)
𝑝

𝑝−1

𝑐
𝑝
2
1

(
1 + (1 + 𝑞)

3−𝑝
𝑝−1

) 𝑝
𝑝−1

‖∇𝑓 (𝑥𝑘)‖ 𝑝
2 ≤ ‖𝑑𝑘‖𝑝.

Multiplying both sides of this inequality by 𝜇𝑘 = 𝑐
𝑝−1
2

1 ‖∇𝑓 (𝑥𝑘)‖ 3−𝑝
2 yields

(𝜃 − 𝑞)
𝑝

𝑝−1

√
𝑐1

(
1 + (1 + 𝑞)

3−𝑝
𝑝−1

) 𝑝
𝑝−1

‖∇𝑓 (𝑥𝑘)‖ 3
2 ≤ 𝜇𝑘‖𝑑𝑘‖𝑝. (18)

Using item (a) of Lemma 2 and (18), we obtain

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) ≤ −
(𝜃 − 𝑞)

𝑝
𝑝−1

(
3 − (1 + 𝑞)

3−𝑝
𝑝−1

)
3
√
𝑐1

(
1 + (1 + 𝑞)

3−𝑝
𝑝−1

) 𝑝
𝑝−1

‖∇𝑓 (𝑥𝑘)‖ 3
2 . (19)

Moreover, from (17) and (19),

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) ≤ −𝜏(𝑓 (𝑥𝑘) − 𝑓 ∗)
3
2 ∀𝑘 ∈ (𝜃).

Therefore, we can verify that item (v) of Proposition 1 holds. □

From Theorem 1, we have to indicate the existence of 𝑞 and 𝜃 satisfying (A4)–(A6) to show global (𝑘−2) convergence of Algo-

rithm 1. Although the existence of these parameters cannot be ensured for all 𝑝 > 1, we can show their existence for specific 𝑝 ∈ (1, 3]. 
Two examples of these concrete parameters are presented.

Example 1.

𝑝 ∈ (1,3], 𝑞 ∶= 0, 𝜃 ∶= 3
8
.

Example 2.

𝑝 ∈ (1,3], 𝑞 ∶= min
{

1
10

(2
𝑝−1
3−𝑝 − 1), 1

20
2

3−𝑝
𝑝−1

}
, 𝜃 ∶= 1

5
.

The parameters 𝑝, 𝑞, and 𝜃 described in Examples 1 and 2 satisfy conditions (A4)–(A6). Note that these examples are valid for 
any 𝑝 ∈ (1, 3]. For details, see Appendix A.

Remark 6. When (𝑝, 𝑞, 𝜃) = (2, 0, 4−1), we can easily verify that 𝜏 = (96𝐷3∕2√𝑐1)−1. This value coincides with that of Mishchenko [5], 
implying that the proposed method is a generalization of [5].

Remark 7. Parameter 𝜃 described in Theorem 1 is only required for the proof and is unrelated to problem (1) and Algorithm 1. 
Hence, it should be selected to provide a good coefficient regarding the convergence rate. Since the coefficients are determined by

1
𝜃 (̂𝑖+1)

,

⎡⎢⎢⎢⎢⎣
3
√
𝑐1𝐷

3
2

(
1 + (1 + 𝑞)

3−𝑝
𝑝−1

) 𝑝
𝑝−1

(𝜃 − 𝑞)
𝑝

𝑝−1

(
3 − (1 + 𝑞)

3−𝑝
𝑝−1

)
⎤⎥⎥⎥⎥⎦

2

,

7

we should take 𝜃 as large as possible.
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5. Local superlinear convergence of Algorithm 1

This section aims to show local and superlinear convergence of Algorithm 1. Throughout this section, the set of optimal solutions 
is denoted by 𝑋∗ ⊂ℝ𝑛. We first make an additional assumption.

(A7) There exist 𝑟1 > 0 and 𝑚1 > 0 such that dist(𝑥, 𝑋∗) ≤𝑚1‖∇𝑓 (𝑥)‖ for each 𝑥 ∈ 𝐵(𝑥∗, 𝑟1).

For a given point 𝑥 ∈ℝ𝑛, let 𝑥 be a point satisfying

𝑥 ∈𝑋∗, ‖𝑥− 𝑥‖ = dist(𝑥,𝑋∗).

Some important inequalities for local convergence are as follows:

Lemma 3. Suppose that (A1), (A2), and (A7) hold. Then, there exist 𝑟2 > 0, 𝑚2 ≥𝑚3 > 0, and 𝑚4 > 0 such that

(a) ‖𝑑𝑘‖ ≤𝑚2dist(𝑥𝑘, 𝑋∗) and ‖𝑑𝑘‖ ≥𝑚3dist(𝑥𝑘, 𝑋∗) for 𝑥𝑘 ∈𝐵(𝑥∗, 𝑟2);
(b) dist(𝑥𝑘+1, 𝑋∗) ≤𝑚4dist(𝑥𝑘, 𝑋∗)

𝑝+1
2 for 𝑥𝑘, 𝑥𝑘+1 ∈ 𝐵(𝑥∗, 𝑟2).

Proof. To begin with, we define 𝑢1 and 𝑢2 as

𝑢1 ∶= sup
{‖∇2𝑓 (𝑧)‖;𝑧 ∈𝐵(𝑥∗, 𝑟1)

}
, 𝑢2 ∶= 𝑢1 +

𝑐1𝑟1
2

,

respectively, and will show the following inequality:

‖∇𝑓 (𝑥)‖ ≤ 𝑢2dist(𝑥,𝑋∗) ∀𝑥 ∈ 𝐵(𝑥∗, 𝑟1). (20)

We have ‖𝑥− 𝑥‖ ≤ ‖𝑥 − 𝑥∗‖ ≤ 𝑟1. Hence, the first inequality of (A1) guarantees ‖∇𝑓 (𝑥) −∇𝑓 (𝑥) −∇2𝑓 (𝑥)(𝑥− 𝑥)‖ ≤ 𝑐1
2 dist(𝑥, 𝑋

∗)2. 
It then follows from ∇𝑓 (𝑥) = 0 and dist(𝑥, 𝑋∗) ≤ ‖𝑥 − 𝑥∗‖ ≤ 𝑟1 that ‖∇𝑓 (𝑥)‖ − 𝑢1dist(𝑥, 𝑋∗) ≤ 𝑐1𝑟1

2 dist(𝑥, 𝑋∗). Thus, inequality (20)

holds.

We show item (a). Define 𝑟2 as follows:

𝑟2 ∶= min
⎧⎪⎨⎪⎩𝑟1,

(
2
√
𝑛𝑐2𝑢

𝑝−1
2

2

)− 2
𝑝−1

⎫⎪⎬⎪⎭ .

Let 𝑥𝑘 ∈ 𝐵(𝑥∗, 𝑟2). The definition of dist(𝑥𝑘, 𝑋∗) and inequality (20) ensure

dist(𝑥𝑘,𝑋∗) ≤ ‖𝑥𝑘 − 𝑥∗‖ ≤ 𝑟2, (21)‖∇𝑓 (𝑥𝑘)‖ ≤ 𝑢2dist(𝑥𝑘,𝑋∗) ≤ 𝑢2‖𝑥𝑘 − 𝑥∗‖ ≤ 𝑢2𝑟2. (22)

Lemma 1 and (12) lead to ‖𝑑𝑘‖ ≤ ‖(∇2𝑓 (𝑥𝑘) + 𝜇𝑘‖𝑑𝑘‖𝑝−2𝐼)−1∇𝑓 (𝑥𝑘)‖ + √
𝑛𝜌𝑘

𝜇𝑘‖𝑑𝑘‖𝑝−2 . It then follows from (A2) and (20) that

‖𝑑𝑘‖ ≤ ‖‖‖(∇2𝑓 (𝑥𝑘) + 𝜇𝑘‖𝑑𝑘‖𝑝−2𝐼)−1∇𝑓 (𝑥𝑘)
‖‖‖+

√
𝑛𝑐2𝑢

𝑝+1
2

2
𝜇𝑘‖𝑑𝑘‖𝑝−2 dist(𝑥𝑘,𝑋∗)

𝑝+1
2 . (23)

Now, we notice that ∇𝑓 (𝑥𝑘) = −(∇𝑓 (𝑥𝑘) − ∇𝑓 (𝑥𝑘) − ∇2𝑓 (𝑥𝑘)(𝑥𝑘 − 𝑥𝑘)) − ∇2𝑓 (𝑥𝑘)(𝑥𝑘 − 𝑥𝑘) holds from ∇𝑓 (𝑥𝑘) = 0. Then, combin-

ing (A1), (12), and (13) implies‖‖‖(∇2𝑓 (𝑥𝑘) + 𝜇𝑘‖𝑑𝑘‖𝑝−2𝐼)−1∇𝑓 (𝑥𝑘)
‖‖‖

≤
‖‖‖(∇2𝑓 (𝑥𝑘) + 𝜇𝑘‖𝑑𝑘‖𝑝−2𝐼)−1‖‖‖‖∇𝑓 (𝑥𝑘) − ∇𝑓 (𝑥𝑘) − ∇2𝑓 (𝑥𝑘)(𝑥𝑘 − 𝑥𝑘)‖+ ‖‖‖(∇2𝑓 (𝑥𝑘) + 𝜇𝑘‖𝑑𝑘‖𝑝−2𝐼)−1∇2𝑓 (𝑥𝑘)

‖‖‖‖𝑥𝑘 − 𝑥𝑘‖
≤

𝑐1
2𝜇𝑘‖𝑑𝑘‖𝑝−2 dist(𝑥𝑘,𝑋∗)2 + dist(𝑥𝑘,𝑋∗). (24)

By (21), (23) and (24), we get ‖𝑑𝑘‖ ≤ 𝑢3
𝜇𝑘‖𝑑𝑘‖𝑝−2 dist(𝑥𝑘, 𝑋∗)

𝑝+1
2 + dist(𝑥𝑘, 𝑋∗), where 𝑢3 ∶=

1
2 𝑐1𝑟

3−𝑝
2

2 +
√
𝑛𝑐2𝑢

𝑝+1
2

2 . This inequality 

can be reformulated as 𝜇𝑘‖𝑑𝑘‖𝑝−1 ≤ 2 max{𝑢3dist(𝑥𝑘, 𝑋∗)
𝑝+1
2 , 𝜇𝑘‖𝑑𝑘‖𝑝−2dist(𝑥𝑘, 𝑋∗)}. There are two possible cases: (i) 𝜇𝑘‖𝑑𝑘‖𝑝−1 ≤

2𝑢3dist(𝑥𝑘, 𝑋∗)
𝑝+1
2 ; (ii) 𝜇𝑘‖𝑑𝑘‖𝑝−1 ≤ 2𝜇𝑘‖𝑑𝑘‖𝑝−2dist(𝑥𝑘, 𝑋∗). In case (i), utilizing (A2) and (A7) derives

𝑐
𝑝−1
2

1 dist(𝑥𝑘,𝑋∗)
3−𝑝
2

3−𝑝 ‖𝑑𝑘‖𝑝−1 ≤ 𝜇𝑘‖𝑑𝑘‖𝑝−1 ≤ 2𝑢3dist(𝑥𝑘,𝑋∗)
𝑝+1
2 .
8

𝑚 2
1
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Hence, we have ‖𝑑𝑘‖ ≤ 𝑐
− 1

2
1 (2𝑢3𝑚

3−𝑝
2

1 )
1

𝑝−1 dist(𝑥𝑘, 𝑋∗). Meanwhile, case (ii) leads to ‖𝑑𝑘‖ ≤ 2dist(𝑥𝑘, 𝑋∗). Thus, there exists 𝑚2 > 0
such that ‖𝑑𝑘‖ ≤𝑚2dist(𝑥𝑘, 𝑋∗).

Now, Lemma 1, (A2), and (22) yield

‖𝑑𝑘‖ ≥ ‖∇𝑓 (𝑥𝑘) + 𝜌𝑘𝜂𝑘‖‖∇2𝑓 (𝑥𝑘) + 𝜇𝑘‖𝑑𝑘‖𝑝−2𝐼‖ ≥
1 −

√
𝑛𝑐2(𝑢2𝑟2)

𝑝−1
2

𝑢1 + 𝜇𝑘‖𝑑𝑘‖𝑝−2 ‖∇𝑓 (𝑥𝑘)‖ ≥ 1
2(𝑢1 + 𝜇𝑘‖𝑑𝑘‖𝑝−2)‖∇𝑓 (𝑥𝑘)‖, (25)

where the last inequality follows from the definition of 𝑟2 . Exploiting (A2) and ‖𝑑𝑘‖ ≤𝑚2dist(𝑥𝑘, 𝑋∗) derives

𝜇𝑘‖𝑑𝑘‖𝑝−2 ≤ 𝑐
𝑝−1
2

1 ‖∇𝑓 (𝑥𝑘)‖ 3−𝑝
2 𝑚

𝑝−2
2 dist(𝑥𝑘,𝑋∗)𝑝−2.

It then follows from (21) and (22) that

𝜇𝑘‖𝑑𝑘‖𝑝−2 ≤ 𝑐
𝑝−1
2

1 𝑢
3−𝑝
2

2 𝑚
𝑝−2
2 𝑟

𝑝−1
2

2 . (26)

By (25), (26), and (A7), there exists 𝑚3 > 0 satisfying ‖𝑑𝑘‖ ≥𝑚3dist(𝑥𝑘, 𝑋∗).
Next, we prove item (b). Let 𝑥𝑘+1 = 𝑥𝑘 + 𝑑𝑘 ∈𝐵(𝑥∗, 𝑟2). Lemma 1 implies

∇𝑓 (𝑥𝑘+1) = (∇𝑓 (𝑥𝑘 + 𝑑𝑘) − ∇𝑓 (𝑥𝑘) − ∇2𝑓 (𝑥𝑘)𝑑𝑘) − (𝜇𝑘‖𝑑𝑘‖𝑝−2𝑑𝑘 + 𝜌𝑘𝜂𝑘) + (∇𝑓 (𝑥𝑘) + (∇2𝑓 (𝑥𝑘) + 𝜇𝑘‖𝑑𝑘‖𝑝−2𝐼)𝑑𝑘 + 𝜌𝑘𝜂𝑘)

= (∇𝑓 (𝑥𝑘 + 𝑑𝑘) − ∇𝑓 (𝑥𝑘) − ∇2𝑓 (𝑥𝑘)𝑑𝑘) − (𝜇𝑘‖𝑑𝑘‖𝑝−2𝑑𝑘 + 𝜌𝑘𝜂𝑘).

Then, we have from (A1), (A2), and (A7) that

dist(𝑥𝑘+1,𝑋∗) ≤𝑚1‖∇𝑓 (𝑥𝑘 + 𝑑𝑘)‖
≤𝑚1‖∇𝑓 (𝑥𝑘 + 𝑑𝑘) − ∇𝑓 (𝑥𝑘) − ∇2𝑓 (𝑥𝑘)𝑑𝑘‖+𝑚1𝜇𝑘‖𝑑𝑘‖𝑝−1 +√

𝑛𝑚1𝜌𝑘

≤
𝑐1𝑚1
2

‖𝑑𝑘‖2 + 𝑐
𝑝+1
2

1 𝑚1‖∇𝑓 (𝑥𝑘)‖ 3−𝑝
2 ‖𝑑𝑘‖𝑝−1 +√

𝑛𝑐2𝑚1‖∇𝑓 (𝑥𝑘)‖ 𝑝+1
2 . (27)

Now, recall that ‖𝑑𝑘‖ ≤ 𝑚2dist(𝑥𝑘, 𝑋∗), ‖∇𝑓 (𝑥𝑘)‖ ≤ 𝑢2dist(𝑥𝑘, 𝑋∗), and dist(𝑥𝑘, 𝑋∗) ≤ 𝑟2, where the second and third inequalities 
follow from (20) and (21), respectively. Thus, we can easily verify that

𝑐1𝑚1
2

‖𝑑𝑘‖2 + 𝑐
𝑝+1
2

1 𝑚1‖∇𝑓 (𝑥𝑘)‖ 3−𝑝
2 ‖𝑑𝑘‖𝑝−1 +√

𝑛𝑐2𝑚1‖∇𝑓 (𝑥𝑘)‖ 𝑝+1
2

≤

⎛⎜⎜⎜⎝
𝑐1𝑚1𝑚

2
2𝑟

3−𝑝
2

2
2

+ 𝑐
𝑝+1
2

1 𝑢
3−𝑝
2

2 𝑚
𝑝−1
2 +

√
𝑛𝑐2𝑚1𝑢

𝑝+1
2

2

⎞⎟⎟⎟⎠dist(𝑥𝑘,𝑋
∗)

𝑝+1
2 . (28)

Therefore, combining (27) and (28) guarantees the existence of 𝑚4 > 0 satisfying dist(𝑥𝑘+1, 𝑋∗) ≤𝑚4dist(𝑥𝑘, 𝑋∗)
𝑝+1
2 . □

Finally, we establish local and superlinear convergence of Algorithm 1. Although we can prove the theorem using the above 
lemmas in a manner similar to [2, Theorem 3.2], the proof is given in Appendix B for completeness of the paper.

Theorem 2. Suppose that (A1), (A2), and (A7) hold. If an initial point 𝑥0 is chosen sufficiently close to 𝑥∗, then any sequence {𝑥𝑘}
generated by Algorithm 1 converges to some global optimum 𝑥̄ ∈ 𝑋∗ superlinearly. Moreover, if 𝑝 = 3 is satisfied, then {𝑥𝑘} converges to 
𝑥̄ ∈𝑋∗ quadratically.

6. Numerical experiments

This section provides numerical experiments to confirm the performance of Algorithm 1. In particular, we compare results among 
the following four regularization terms in problem (11): the quadratic regularization 𝜇𝑘2 ‖𝑑‖2, elastic-net regularization 𝜇𝑘2 ‖𝑑‖2 +
𝜌𝑘‖𝑑‖1, cubic regularization 𝜇𝑘3 ‖𝑑‖3, and cubic–𝐿1 regularization 𝜇𝑘3 ‖𝑑‖3 + 𝜌𝑘‖𝑑‖1. The termination criterion 𝜀 of Algorithm 1 was 
set as 𝜀 ∶= 10−6. The parameters 𝜇𝑘 and 𝜌𝑘 were updated as follows:

𝜇𝑘 ∶= 𝑐
𝑝−1
2

𝑘
‖∇𝑓 (𝑥𝑘)‖ 3−𝑝

2 , 𝜌𝑘 ∶= min

{
𝑞√
𝑛
‖∇𝑓 (𝑥𝑘)‖, 𝑐‖∇𝑓 (𝑥𝑘)‖ 𝑝+1

2

}
,

where 𝑐 ∶= 0.5, 𝑞 ∶= 0.01, 𝑐0 ∶= 100, and

𝑐𝑘 ∶= max
{
𝑚𝑘,

𝑐𝑘−1
}
, 𝑚𝑘 ∶=

‖∇𝑓 (𝑥𝑘) − ∇𝑓 (𝑥𝑘−1) − ∇2𝑓 (𝑥𝑘−1)(𝑥𝑘 − 𝑥𝑘−1)‖

9

2 ‖𝑥𝑘 − 𝑥𝑘−1‖2
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Table 1

Performance of Algorithm 1 on problem (29).

quadratic elastic net cubic cubic–𝐿1

Max of ♯ite 24 24 22 23

Min of ♯ite 23 23 21 21

Averaged ♯ite 23.2 23.6 21.8 21.8

Max of ‖∇𝑓 (𝑥∗)‖ 9.46e-07 2.88e-07 9.27e-07 8.38e-07

Table 2

Performance of Algorithm 1 on problem (30).

quadratic elastic net cubic cubic–𝐿1

Max of ♯ite 19 19 20 21

Min of ♯ite 18 18 16 18

Averaged ♯ite 18.4 18.4 18.6 19.6

Max of ‖∇𝑓 (𝑥∗)‖ 6.77e-07 8.93e-07 9.81e-07 7.94e-07

for 𝑘 ∈ ℕ. Note that the updating rule of 𝑐𝑘 is inspired by [5, Section 3]. The initial point 𝑥0 ∈ℝ𝑛 was set as 𝑥0 ∶= 0. All the programs 
were implemented with MATLAB R2023a and ran on a machine with an Intel Core–i9–9900K 3.60GHz and 128GB RAM. Moreover, we 
utilized fminunc, which is a MATLAB optimizer for unconstrained optimization problems, to solve problem (11) at each iteration ex-

cept for the quadratic and elastic net regularization. Regarding the quadratic regularization, we solved (∇2𝑓 (𝑥𝑘) +𝜇𝑘𝐼)𝑑 = −∇𝑓 (𝑥𝑘)
instead of problem (11). For the elastic net regularization, we utilized quadprog, which is a MATLAB optimizer for quadratic 
programming problems, to solve the following quadratic programming problem obtained by reformulating the corresponding sub-

problem:

minimize
(𝑑,𝑡)∈ℝ𝑛×ℝ𝑛

⟨∇𝑓 (𝑥𝑘), 𝑑⟩+ 1
2
⟨∇2𝑓 (𝑥𝑘)𝑑,𝑑⟩+ 𝜇𝑘

2
‖𝑑‖2 + 𝜌𝑘

𝑛∑
𝑗=1

𝑡𝑗 ,

subject to −𝑡𝑗 ≤ 𝑑𝑗 ≤ 𝑡𝑗 ∀𝑗 ∈ {1,2,… , 𝑛}.

The following two types of test problems were solved. The first one is the following convex optimization problem [2]:

minimize
𝑥∈ℝ𝑛

1
2

𝑛−1∑
𝑖=1

(𝑥𝑖 − 𝑥𝑖+1)2 +
1
12

𝑛−1∑
𝑖=1

𝛼𝑖(𝑥𝑖 − 𝑥𝑖+1)4, (29)

where 𝛼1, 𝛼2, … , 𝛼𝑛 ∈ℝ are positive constants. In the experiments, we set 𝑛 = 200 and 𝛼𝑖 = 1 for each 𝑖 ∈ ℕ. The second problem is 
the log-sum-exp problem [5]:

minimize
𝑥∈ℝ𝑛

𝜅 log

[
𝑚∑
𝑖=1

exp

(
𝑎⊤
𝑖
𝑥− 𝑏𝑖

𝜅

)]
, (30)

where 𝑎1, 𝑎2, … , 𝑎𝑚 ∈ℝ𝑛 are constant vectors and 𝜅, 𝑏1, 𝑏2, … , 𝑏𝑚 ∈ℝ are constants. For the test problem, we set 𝑛 = 200, 𝑚 = 500, 
and 𝜅 = 0.5. Moreover, 𝑎𝑖 (𝑖 = 1, 2, … , 𝑚) and 𝑏𝑖 (𝑖 = 1, 2, … , 𝑚) were generated randomly from [−1, 1]𝑛 and [−1, 1], respectively. For 
each test problem, five instances were randomly made and solved by Algorithm 1.

Tables 1 and 2 provide the averaged, maximum, and minimum number of iterations and the maximum value of ‖∇𝑓 (𝑥∗)‖ obtained 
by solving the five instances for problems (29) and (30), respectively. Note also that 𝑥∗ described in the tables indicates the final 
iteration point calculated by Algorithm 1. We can confirm that all the instances were solved because there are no maximum values 
of ‖∇𝑓 (𝑥∗)‖ being greater than 10−6. No significant differences were observed among the four regularization terms concerning 
the number of iterations as seen in Tables 1 and 2. Meanwhile, the computational time of the elastic net, cubic, and cubic–𝐿1

regularization was higher than the quadratic regularization because we utilized generic optimizers to solve their subproblems except 
for the quadratic regularization. Since there are no significant differences in the number of iterations, solving subproblems and 
evaluating the objective function affect the computational time. Thus, it is important to develop efficient methods for solving the 
subproblems and to compute search directions that can reduce the cost of evaluating the objective function 𝑓 , e.g., search directions 
with sparsity.

7. Concluding remarks

In this paper, we have proposed Algorithm 1, which is an RNM with generalized regularization terms. The proposed method is 
based on the RNM proposed by Mishchenko [5], but it is a generalization of the existing one regarding regularization. Therefore, not 
only the quadratic and cubic RNMs but also novel RNMs with other regularization, such as the elastic net, are included in Algorithm 1. 
We have proven global (𝑘−2) and local superlinear convergence of Algorithm 1. Moreover, we have examined the performance of 
10

Algorithm 1 by using several regularization terms.
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One of future research is to propose an accelerated GRNM that globally converges in the order of (𝑘−3). For the existing methods, 
such as the RNM [5] and cubic RNM [6], their accelerated methods have been proposed in [1,7]. In these studies, accelerated schemes 
have been proposed and they have been incorporated in the proposed accelerated methods. Thus, we think that such an accelerated 
scheme can be applied to Algorithm 1 and its accelerated method can also be proposed. As another challenge, it would be worthwhile 
to develop a specialized optimizer to solve subproblems of a specific regularization other than the quadratic one. Specifically, we 
can consider regularization that utilizes the sparsity of search directions by including the 𝐿1 regularization term in subproblem (11)

because Ariizumi et al. [19] proposed a Levenberg-Marquardt method equipped with such a regularization and succeeded in quickly 
finding solutions for nonlinear equations.
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Appendix A

In this appendix, we show that the parameters described in Examples 1 and 2 satisfy assumptions (A4)–(A6) stated in Theorem 1.

We now discuss Example 1. It can be verified that

𝑝 ∈ (1,3], 𝑞 = 0, 3 − (1 + 𝑞)
3−𝑝
𝑝−1 = 2, 1 + 2𝑞 + (1 + 𝑞)

2
𝑝−1 = 2,

(
1 + 2𝑞 + (1 + 𝑞)

2
𝑝−1

)
𝜃 = 3

4
.

Thus, we can easily verify that assumptions (A4) and (A5) hold. Moreover, assumption (A6) is obtained from

𝜃𝑘 =
(3
8

)𝑘

=(𝑘−2) (𝑘→∞),
((

1 + 2𝑞 + (1 + 𝑞)
2

𝑝−1

)
𝜃

) 𝑘
2
=
(3
4

) 𝑘
2 =(𝑘−2) (𝑘→∞).

Next, we consider Example 2. In this case, the parameter 𝑞 depends on 𝑝 ∈ (1, 3], and hence we denote 𝑞 = 𝑞(𝑝). Moreover, we 
use the following notation:

𝑠(𝑝) ∶= 3 − (1 + 𝑞(𝑝))
3−𝑝
𝑝−1 , 𝑡(𝑝) ∶= 1 + 2𝑞(𝑝) + (1 + 𝑞(𝑝))

2
𝑝−1 .

For any 𝑥 ∈ (1, 3), we define

𝑞1(𝑥) ∶=
1
10

(2
𝑥−1
3−𝑥 − 1) > 0, 𝑡1(𝑥) ∶= 1 + 2𝑞1(𝑥) + (1 + 𝑞1(𝑥))

2
𝑥−1 ,

𝑞2(𝑥) ∶=
1
20

2
3−𝑥
𝑥−1 > 0, 𝑡2(𝑥) ∶= 1 + 2𝑞2(𝑥) + (1 + 𝑞2(𝑥))

2
𝑥−1 .

Recall that 𝑞(𝑝) and 𝑡(𝑝) can be represented as follows:

𝑞(𝑝) =

{
𝑞1(𝑝) if 𝑝 ∈ (1,2],

𝑞2(𝑝) if 𝑝 ∈ (2,3],
𝑡(𝑝) =

{
𝑡1(𝑝) if 𝑝 ∈ (1,2],

𝑡2(𝑝) if 𝑝 ∈ (2,3].
(A.1)

By the definitions of 𝑞1 and 𝑞2, we obtain

𝑑

𝑑𝑝
𝑞1(𝑝) =

1
10(3 − 𝑝)2

2
2

3−𝑝 log2 > 0 ∀𝑝 ∈ (1,2],

𝑑

𝑑𝑝
𝑞2(𝑝) = − 1

20(𝑝− 1)2
2

2
𝑝−1 log2 < 0 ∀𝑝 ∈ (2,3].

(A.2)

Thus, the first equality of (A.1) implies that 𝑞 is monotonically increasing for 𝑝 ∈ (1, 2] and is monotonically decreasing for 𝑝 ∈ (2, 3]. 
Thus, using 𝜃 = 1

5 yields

0 < 𝑞(𝑝) ≤ 𝑞(2) = 1
10

< 𝜃 < 1 ∀𝑝 ∈ (1,3]. (A.3)

Since 𝑞(𝑝) =min{𝑞1(𝑝), 𝑞2(𝑝)} ≤ 𝑞1(𝑝) =
1
10 (2

𝑝−1
3−𝑝 − 1) < 2

𝑝−1
3−𝑝 − 1 for 𝑝 ∈ (1, 3], we have

𝑠(𝑝) = 3 − (1 + 𝑞(𝑝))
3−𝑝
𝑝−1 > 3 − 2 = 1 > 0 ∀𝑝 ∈ (1,3]. (A.4)

Noting 2
𝑝−1 ≥ 1 and 𝑞(𝑝) > 0 derives

2

11

𝑡(𝑝) = 1 + 2𝑞(𝑝) + (1 + 𝑞(𝑝)) 𝑝−1 ≥ 2 + 3𝑞(𝑝) ≥ 1 ∀𝑝 ∈ (1,3]. (A.5)
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Utilizing (A.2) implies

𝑑

𝑑𝑝
𝑡1(𝑝) =

(
2 + 2

𝑝− 1
(1 + 𝑞1(𝑝))

3−𝑝
𝑝−1

)
𝑑

𝑑𝑝
𝑞1(𝑝) > 0 ∀𝑝 ∈ (1,2],

𝑑

𝑑𝑝
𝑡2(𝑝) =

(
2 + 2

𝑝− 1
(1 + 𝑞2(𝑝))

3−𝑝
𝑝−1

)
𝑑

𝑑𝑝
𝑞2(𝑝) < 0 ∀𝑝 ∈ (2,3].

Hence, the second equality of (A.1) derives 𝑡(𝑝) ≤ 𝑡(2) = 241
100 for 𝑝 ∈ (1, 3]. It then follows from (A.5) and 𝜃 = 1

5 that

0 < 1
5
≤ 𝜃𝑡(𝑝) ≤ 241

500
< 1 ∀𝑝 ∈ (1,3]. (A.6)

Therefore, the assumptions are ensured by (A.3), (A.4), (A.5), and (A.6).

Appendix B

This appendix provides the proof of Theorem 2.

Proof. We define 𝑟3 and 𝑟4 as follows:

𝑟3 ∶= min
⎧⎪⎨⎪⎩𝑟2,

(
𝑚3

3𝑚2𝑚4

) 2
𝑝−1

⎫⎪⎬⎪⎭ , 𝑟4 ∶=
1

2 +𝑚2
min

⎧⎪⎨⎪⎩𝑟3,
(

𝑚3
3𝑚2𝑚4

) 2
𝑝−1

⎫⎪⎬⎪⎭ ,

where 𝑟2, 𝑚2, 𝑚3, and 𝑚4 are positive constants described in Lemma 3. Assume that the initial point 𝑥0 is selected from 𝐵(𝑥∗, 𝑟4), 
thus it satisfies ‖𝑥0 − 𝑥∗‖ ≤ 𝑟4.

The proof is divided into two parts: The former part will prepare two inequalities regarding ‖𝑑𝑘‖, and the latter part will prove 
fast convergence of {𝑥𝑘} using those inequalities. We first show

‖𝑑𝑘‖ ≤ 1
3
‖𝑑𝑘−1‖, ‖𝑑𝑘‖ ≤ 𝑟4𝑚2

3𝑘
∀𝑘 ∈ℕ. (B.1)

Let 𝑘 ∈ ℕ be arbitrary. Using (a) and (b) of Lemma 3 yields

‖𝑑𝑘‖ ≤𝑚2𝑚4dist(𝑥𝑘−1,𝑋∗)
𝑝+1
2 ≤

𝑚2𝑚4
𝑚3

𝑟
𝑝−1
2

3 ‖𝑑𝑘−1‖ ≤ 1
3
‖𝑑𝑘−1‖, (B.2)

where note that the last inequality follows from the definition of 𝑟3 . Now, let us show that

𝑥𝓁 ∈𝐵(𝑥∗, 𝑟3) ∀𝓁 ∈ {0,1,… , 𝑘} ⟹ ‖𝑑𝓁‖ ≤ 𝑟4𝑚2
3𝓁

∀𝓁 ∈ {0,1,… , 𝑘}. (B.3)

From (B.2) and (a) of Lemma 3, we have

‖𝑑0‖ ≤𝑚2dist(𝑥0,𝑋∗) ≤𝑚2‖𝑥0 − 𝑥∗‖ ≤ 𝑟4𝑚2,‖𝑑𝓁‖ ≤ 1
3
‖𝑑𝓁−1‖ ≤⋯ ≤

1
3𝓁

‖𝑑0‖ ≤ 𝑟4𝑚2

3𝓁
∀𝓁 ∈ {1,2,… , 𝑘},

namely, (B.3) can be verified.

From now on, we prove by mathematical induction that 𝑥𝑘 ∈𝐵(𝑥∗, 𝑟3) for all 𝑘 ∈ ℕ. Let us consider the case where 𝑘 = 1. Item (a) 
of Lemma 3 implies ‖𝑥1 −𝑥∗‖ ≤ ‖𝑥0 −𝑥∗‖ +‖𝑑0‖ ≤ 𝑟4 +𝑚2dist(𝑥0, 𝑋∗) ≤ 𝑟4(1 +𝑚2) ≤ 𝑟3. Next, let 𝑘 ∈ ℕ be arbitrary, and we assume 
that 𝑥𝑗 ∈ 𝐵(𝑥∗, 𝑟3) for 𝑗 ∈ {0, 1, … , 𝑘}. By (B.3) and item (a) of Lemma 3, we obtain

‖𝑥𝑘+1 − 𝑥∗‖ ≤ ‖𝑥𝑘 − 𝑥∗‖+ ‖𝑑𝑘‖ ≤⋯ ≤ ‖𝑥0 − 𝑥∗‖+ 𝑘∑
𝓁=0

‖𝑑𝓁‖ ≤ 𝑟4 +
𝑟4𝑚2
2

(
1 − 1

3𝑘+1

)
≤

2 +𝑚2
2

𝑟4 ≤ 𝑟3.

Thus, we verify that 𝑥𝑘 ∈ 𝐵(𝑥∗, 𝑟3) for 𝑘 ∈ ℕ. It then follows from (B.3) that ‖𝑑𝑘‖ ≤ 𝑟4𝑚2
3𝑘 for 𝑘 ∈ ℕ, namely, the desired inequalities 

of (B.1) are proven.

The second part shows the local fast convergence of {𝑥𝑘}. We arbitrarily take 𝑖 ∈ ℕ and 𝑗 ∈ℕ with 𝑖 ≫ 𝑗. Using (B.1) yields

‖𝑥𝑖 − 𝑥𝑗‖ ≤ ‖𝑥𝑖−1 − 𝑥𝑗‖+ ‖𝑑𝑖−1‖ ≤ ‖𝑥𝑖−2 − 𝑥𝑗‖+ 𝑖−1∑
𝓁=𝑖−2

‖𝑑𝓁‖ ≤⋯ ≤

𝑖−1∑
𝓁=𝑗

‖𝑑𝓁‖ ≤ 𝑟4𝑚2

𝑖−1∑
𝓁=𝑗

1
3𝓁

= 𝑟4𝑚2

(
1

3𝑗−1
− 1

3𝑖−1

)
≤

𝑟4𝑚2
3𝑗−1

.

This fact implies that {𝑥𝑘} is a Cuachy sequence, that is, there exists 𝑥̄ ∈ ℝ𝑛 such that 𝑥𝑘 → 𝑥̄ as 𝑘 → ∞. Meanwhile, it follows 
from (a) of Lemma 3 and (B.1) that {dist(𝑥𝑘, 𝑋∗)} converges to zero. We note that ‖𝑥𝑘‖ ≤ ‖𝑥𝑘 − 𝑥𝑘‖ + ‖𝑥𝑘‖ = dist(𝑥𝑘, 𝑋∗) + ‖𝑥𝑘‖, 
namely, {𝑥𝑘} is bounded. Hence, there exist 𝑥 ∈𝑋∗ and  ⊂ ℕ such that 𝑥𝑘 → 𝑥 as  ∋ 𝑘 →∞. These facts imply that ‖𝑥̄ − 𝑥‖ ≤
12

‖𝑥𝑘 − 𝑥̄‖ + dist(𝑥𝑘, 𝑋∗) + ‖𝑥𝑘 − 𝑥‖ → 0 as  ∋ 𝑘 →∞, that is, {𝑥𝑘} converges to some global optimum 𝑥̄ = 𝑥 ∈𝑋∗.
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Hereinafter, we show that {𝑥𝑘} converges to 𝑥̄ superlinearly. Combining items (a) and (b) of Lemma 3 derives

‖𝑑𝑗+1‖ ≤𝑚2dist(𝑥𝑗+1,𝑋∗) ≤𝑚2𝑚4dist(𝑥𝑗 ,𝑋∗)
𝑝+1
2 ≤𝑚2𝑚4𝑚

− 𝑝+1
2

3 ‖𝑑𝑗‖ 𝑝+1
2 . (B.4)

Since the first inequality of (B.1) holds, it can be verified that

‖𝑑𝓁‖ ≤ 1
3𝓁−𝑗−1

‖𝑑𝑗+1‖ ∀𝓁 ∈ {𝑗 + 1, 𝑗 + 2,… , 𝑖− 1},

‖𝑑𝓁‖ ≤ 1
3𝓁−𝑗

‖𝑑𝑗‖ ∀𝓁 ∈ {𝑗 + 1, 𝑗 + 2,… , 𝑖− 1}.

By these inequalities, we obtain

‖𝑥𝑗+1 − 𝑥𝑖‖ = ‖‖‖‖‖‖
𝑖−1∑

𝓁=𝑗+1
𝑑𝓁

‖‖‖‖‖‖ ≤
𝑖−1∑

𝓁=𝑗+1
‖𝑑𝓁‖ ≤ 𝑖−1∑

𝓁=𝑗+1

1
3𝓁−𝑗−1

‖𝑑𝑗+1‖ = 3
2

(
1 − 1

3𝑖−𝑗−1

)‖𝑑𝑗+1‖ ≤ 2‖𝑑𝑗+1‖,
and

‖𝑥𝑗 − 𝑥𝑖‖ = ‖‖‖‖‖‖
𝑖−1∑
𝓁=𝑗

𝑑𝓁

‖‖‖‖‖‖ ≥ ‖𝑑𝑗‖− 𝑖−1∑
𝓁=𝑗+1

‖𝑑𝓁‖ ≥(
1 −

𝑖−1∑
𝓁=𝑗+1

1
3𝓁−𝑗

)‖𝑑𝑗‖ = 1
2

(
1 + 1

3𝑖−𝑗−1

)‖𝑑𝑗‖ ≥ 1
2
‖𝑑𝑗‖.

Hence taking the limit 𝑖 →∞ implies

‖𝑥𝑗+1 − 𝑥̄‖ ≤ 2‖𝑑𝑗+1‖, ‖𝑑𝑗‖ ≤ 2‖𝑥𝑗 − 𝑥̄‖. (B.5)

Exploiting (B.4) and (B.5) derives

‖𝑥𝑗+1 − 𝑥̄‖ ≤ 2
𝑝+3
2 𝑚2𝑚4𝑚

− 𝑝+1
2

3 ‖𝑥𝑗 − 𝑥̄‖ 𝑝+1
2 .

Therefore, from 𝑝+12 ∈ (1, 2], the sequence {𝑥𝑘} converges to 𝑥̄ superlinearly. Moreover, if 𝑝 = 3 holds, then 𝑝+12 = 2, that is, the rate 
of convergence is quadratic. □
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