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ABSTRACT Traditional assessments of children’s health and behavioral issues primarily rely on subjective
evaluation by adult raters, which imposes major costs in time and human resource to the school system.
This pilot study investigates the utilization of millimeter-wave radar coupled with machine learning for the
objective and semi-automatic detection and classification of children’s activity levels, defined as restlessness,
within a real classroom environment. Two objectives are pursued: confirming the feasibility of restlessness
detection using millimeter-wave radar and applying standard machine learning method for restlessness
classification. The experiment involves a nine-day observational study, using two radar systems to monitor
the activities of 14 children in a primary school. Radar data analysis involves the extraction of distinctive
features for restlessness detection and classification. Results indicate the successful detection of restlessness
using millimeter-wave radar, demonstrating its potential to capture nuanced body movements in a privacy-
protected manner. Machine learning models trained on radar data achieve a classification accuracy of 100%,
outperforming other methods in terms of non-invasiveness, lack of body restraint, multi-target applications,
and privacy protection. The study’s contributions extend to children, parents, and educational practitioners,
emphasizing non-invasiveness, privacy protection, and evidence-based support. Despite limitations such
as a short monitoring duration and a small sample size, this pilot study lays the foundation for future
research in non-invasive restlessness detection using non-contact monitoring technologies. The integration
of millimeter-wave radar and machine learning offers a promising avenue for efficient and ethical trait
assessments in real-world educational environments, contributing to the advancement of child psychology
and education. This work supports efforts for non-contact monitoring of children’s activity holding promise
such as non-invasive, privacy protection, multi-targets, objective evaluation, and computer-aided screening.
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INDEX TERMS Machine learning, millimeter-wave radar, non-contact monitoring, real school environment,
restlessness.

I. INTRODUCTION
In the modern world in which school-based education is
universal or mainstream, children spend as much waking
hours in school as at home. In such societies, schools play a
key role in promoting children’s health, as well as providing
education. For example, in Japan, school-based daily health
observation system has been broadly implemented, which
has been utilized to screen for a wide range of physical
and mental health issues [1], [2]. At present, school-
based health observations, particularly for mental health and
behavioural issues, primarily rely on subjective evaluation by
schoolteachers, health professionals in schools such as school
doctors, nurses, psychologists and social workers, or children
themselves. Though effective it is, such subjective evaluation,
often based on a standardized questionnaire, poses several
major challenges to the school system.

FIGURE 1. Study concept and vision.

One of the major challenges is the time and human
re- sources required for collecting and analyzing question-
naire data, alongside many school activities happening every
day [3]. Many schools may not have sufficient time to
conduct survey, and to collate, analyze, evaluate and feedback
questionnaire data, or sufficient expertise for teachers to inter-
pret and understand the results [4]. In addition, particularly
younger children may not possess sufficient metacognitive
skills to monitor their own mental condition [5], which puts
a major limitation on self-reported measurements.

To overcome these challenges, objective measurement
of children’s mental and behavioural states is in dire
need. For example, wearable devices, which can monitor
activity levels as well as physiological states such as heart
rates, are sometimes seen as a ‘game changer’ in monitoring

children’s health at school. However, several issues such
as discomfort in wearing devices for long hours, protecting
personal information while sharing data in school, as well
as the financial cost to provide such devices to each child,
are seen as barriers for implementing such system to the
classrooms.

Recent advancements in commercial millimeter-wave
radar, known for their precision in distance and micro-
movement measurements [6], [7], present new possibilities to
overcome such limitations for wearable devices and enables
implementation of objective health monitoring system in
the classrooms. These millimeter-wave radar systems could
be deployed for applications like vital sign monitoring [8],
[9], gesture recognition [10], behavior detection [11], and
human pose estimation [12]. Leveraging the millimeter-
wave radar’s adeptness at sensing environmental changes
through electromagnetic waves, it not only captures a
diverse array of body movements but also ensures privacy
protection simultaneously [13], [14]. Given these inherent
characteristics, there is a justifiable expectation that the use
of millimeter-wave radar could introduce a novel approach to
detect children’s mental and behavioral states in real school
environments.

We conducted a proof-of-concept study to implement
millimeter-wave radar systems in a real classroom, mon-
itor children’s daily activities, and examine whether the
recorded children’s activity levels predict teacher-based
evaluation of children’s behavioural traits. We targeted a
teacher-rated behavioural rating scale, the Strength and
Difficulties Questionnaire (SDQ) [15] and its second item
(SDQ 2: Restless, overactive, cannot stay still for long)
represent overall activity levels of children evaluated by
the teachers. We investigated whether the level of body
movement measured by millimeter-wave radar systems can
predict activity levels evaluated subjectively by teachers.

Furthermore, we learned that machine learning (ML),
which has found extensive application in computer-aided
diagnosis for analyzing both imaging and non-imaging
data [16]. However, how to apply ML for restlessness classi-
fication using millimeter-wave radar in a realistic classroom
setting has not been previously explored. Once adequately
trained with relevant features,ML has the potential to serve as
a supplementary opinion or provide supporting information
in the school-based evaluation process, therebymitigating the
workload for teachers, school-based healthcare professionals
and children [17]. The identification of specific features
from millimeter-wave radar data, successfully validated to be
informative for classifying restlessness, holds the promise of
training ML models to develop a computer-aided screening
system for children’s activity levels.

Therefore, the objective of this pilot study is to propose
a non-invasive, multi-target monitoring approach for the
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detection and classification of children’s activity levels,
which we define as ‘restlessness’ in children within a
real classroom environment, using millimeter-wave radar.
Figure 1 visually articulates our research concept and vision.
Briefly, our study has two purposes: Purpose 1: Confirming
the feasibility of restlessness detection usingmillimeter-wave
radar in a real classroom environment. Purpose 2: Applying
standard machine learning algorithm and training machine
learning models for restlessness classification, incorporating
both subjective and objective evaluations.

To achieve these objectives, we conducted a nine-day
observational experiment in a real primary school set-
ting. During the experiment, the regular activities of the
children were recorded using two millimeter-wave radar
systems. Subsequently, the radar data underwent analysis,
and distinctive features were extracted for classification
through ML techniques. Given the millimeter-wave radar’s
capacity to measure micro-body movement, velocity, and
angle, achievable through multiple-input and multiple-output
(MIMO) antenna arrays, and the potential use of carefully
selected features for ML-based detection and classification,
this study puts forth the following hypotheses: Hypothesis 1:
Millimeter-wave radar could serve as a tool for monitoring
restlessness in daily classroom environments. Hypothesis 2:
Restlessness measured using millimeter-wave radar could be
leveraged to distinguish between children who are evaluated
to be restless by teachers, and those who are not.

To the best of our knowledge, this study represents the
first attempt to detect restlessness in children within a
real classroom environment using millimeter-wave radar.
Given the pressing need for monitoring children’s health
and behavioral conditions within school environment, this
pilot study is envisioned to make the following signifi-
cant contributions: Key contribution to children: Non-
invasive, privacy protection. By adopting a non-invasive
approach, this study prioritizes the well-being of children,
while ensuring their activities remain unrestricted. The
emphasis on privacy protection allows for self-management,
enabling children to comprehend their behavior without
concerns about privacy issues.Key contribution to parents,
teachers, and school-based professionals: Multi-targets,
objective evaluation. Providing parents and teachers with
more comprehensive information about children’s behavior
at school. The implementation of a multi-target sensing
system for restlessness measurement aims to alleviate the
burden on teachers. Objective information contributes to
evidence-based support and education for children, enhanc-
ing classroom management. Key contribution to health
monitoring within schools: Computer-aided screening.
Recognizing the time constraints and shortage of trained
specialists available for schools, the introduction of a
ML-based computer-aided screening offers the potential for
more efficient and objective behavioral monitoring. This
technology has the capacity to assist school-based profession-
als in making faster and more accurate assessments, which
would lead to early targeted intervention.

Additionally, we conducted a comparative analysis of
our proposed approach against existing ones. This compar-
ison aims to furnish readers with a more comprehensive
understanding of the advantages and limitations associated
with different methodologies. Simultaneously, with the goal
of stimulating further research within this domain, our
discussion extends to both technical and social perspectives.
By addressing technical considerations, we aim to contribute
to the refinement and enhancement of methodologies in this
field. Furthermore, our exploration of social aspects seeks
to inspire broader conversations and investigations into the
broader societal implications of employing such technologies
in real-world settings.

II. METHODS
A. SUBJECTS AND EXPERIMENT
We conducted a nine-day recording of class activities in
a primary school using millimeter-wave radar systems,
spanning fromMarch 6th to 17th, 2023, with the participation
of 14 children.

Figure 2 (a) provides an overview of the experiment.
To minimize disruption to normal school activities, children
were instructed to behave freely in regular seating patterns,
either a U pattern or a random pattern corresponding to
the school activity (Fig. 2 (b)). Two radar systems were
positioned at the back of the classroom, as illustrated in
Fig. 2 (c). Radar 1 was placed in the left corner of the
classroom, 3.6 m from the left edge of the table, 4.7 m
from the right edge of the table, and at a height of 1.78 m.
Radar 2 was positioned in the right corner, 5.1 m from
the left edge of the table, 4.5 m from the right edge
of the table, and at a height of 0.9 m. To mitigate the
environmental factors that can affect the radar performance,
we installed the radar systems on the top of the shelves
away from obstacles. From the installed radar systems,
we confirmed that the whole classroom could be covered
by the radar beam in advance. Controlled by individual
laptops through self-written programs, each radar initiated
measurements automatically every day at 08:00 a.m. and
stopped at 04:00 p.m.

Following the observation experiment, two teachers com-
pleted the SDQ, which comprises five scales related to
emotional, conduct, peer, prosocial problems, and hyperac-
tivity. In this study, we only focused on the items related
to restlessness, which is SDQ 2: restless, overactive, cannot
stay still for long. SDQ 2 is scored on a scale from 0 to 2,
where 0 indicates ‘not true’, 1 indicates ‘somewhat true’,
2 indicates ‘certainly true’. Children are labeled to be restless
if either/both teacher(s) answered 1 or 2 to this item.

Data selection is depicted in Fig. 3. The analysis focused
on data collected when children seated in the U pattern
(as shown in Fig. 2 (b)) to ensure both radars recorded
the activities. Thus, eight children were excluded from the
analysis because they could not be recorded by the two
radar at the same time. Six children’s data were utilized
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FIGURE 2. Experiment overview, seat pattern and dimension.

for restlessness detection. Additionally, for training the ML
model, only data where radar analysis matched the SDQ
2 results were used. Consequently, data from four children
were used for restlessness classification.

Written informed consent for participation was provided
by the participants and participant’s legal guardians. All

FIGURE 3. Flowchart of data selection.

participants agreed to the privacy policy. Participation was
entirely voluntary, and students were informed of their right
to opt out at any point during the process. This study was
approved by the Ethics Committee of the Graduate School of
Engineering, Kyoto University (No. 202219).

B. RESTLESSNESS DETECTION AND CLASSIFICATION
In this study, we used the same frequency-modulated
continuous wave (FMCW) radar system as used in our
previous study (T14RE_01080108_2D, S-Takaya Electronics
Industry, Okayama, Japan) to record children’s activity [18].
This radar system is based on IWR1443 (Texas Instru-
ments), which is a self-contained and single-chip device that
simplifies the implementation of millimeter-wave sensors
in the band of 77 to 81 GHz band with up to 4 GHz
continuous chirp [19]. The parameters for the radar system
can be found in Table 1. The radar parameters such as
the output power, antenna gain, and installation position
were set to comply with the standards stated in the Radio
Radiation Protection Guidelines (RRPG) of the Ministry
of Internal Affairs and Communications of the Japanese
Government, which takes sufficiently large safety factors into
consideration. The standard values in the RRPG are on a
par with the values released by International Commission
on Non-Ionizing Radiation Protection. For these reasons, the
possibility of adverse events such as health implications is
considered sufficiently low.
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The main structure of the radar system is illustrated in
Fig. 4 (a) and (b). This radar system includes three transmit
(TX) and four receive (RX) radio frequency (RF) compo-
nents, analog and digital components including analog-to-
digital converters (ADCs), digital signal processors (DSPs),
and micro-controllers (MCUs). Because the millimeter-wave
radar transmits signals with a wavelength that is in the
millimeter range (about 4 mm), this radar system has the
ability to detect movement that are as small as a fraction of a
millimeter.

The fundamental concept in FMCW millimeter-wave
radar system is the transmission of an electromagnetic
signal that object reflects in its path. The signal used
in FMCW millimeter-wave radar has the frequency that
increases linearly with time, this is called a chirp. The chirp
is characterized by a start frequency 77 GHz, bandwidth
(B) 3.6 GHz, and chirp time 120 µs (see Fig. 4 (c) left
part) [20]. The radar system first generates a chirp, and
is transmitted by a transmit antenna, after reflecting by
an object, the chirp is captured by the receiver antenna.
A mixer combines both signals to produce an intermediate
frequency (IF) signal. An example of the process is shown in
Fig. 4 (c) upper diagram. Let 1f be the difference frequency
between receiving and transmitting signals, and slope of chirp
frequency S, then the time delay (τ ) can be mathematically
derived as:

τ =
1f
S

=
2d
c

, (1)

where d is the distance to the detected object, and c is the
speed of light.

Angle detection in FMCW millimeter-wave radar is
illustrated in Fig. 4 (d) by reference [21]. The receiver has
received the reflected signal with the phase difference 1φ,
the distance between antenna is l, wave length is λ. Then the
L in Fig. 4 (d) is L = l sin θ , because delta 1φ = (2πL)/λ,
then the angle of an object θ can calculate by:

θ = sin−1
(λ1φ

2π l

)
. (2)

Next, the complex radar image I0(t, r, θ) is calculated
following the methodology outlined in our previous study [8]
as follows:

I0(t, r, θ) = ωH(θ )s(t, r), (3)

where t , r , and θ represent time, range, and angle,
respectively. The superscript H is the complex conjugate
transposition of thematrix, andω(θ ) = [ω0, ω1, . . . ,ωK−1]T,
here, ωk (θ ) = e−jπksinθ , K = 12 is the number of elements
in the virtual array, k = 0, 1, . . . ,K − 1, where we assume
l = λ/2.

In a real classroom, there are multiple reflective surfaces
and objects that may cause multipath interference. However,
most of these objects are stationary, so the resulting clutter is
static, meaning it does not change over time. In contrast, the
echoes from the target children vary over time. To remove

TABLE 1. Parameters of T14RE FMCW Radar.

this static clutter, we use a time averaging method to obtain
the complex radar image Ic(t, r, θ) as follows:

Ic(t, r, θ) = I0(t, r, θ) −
1
Tc

∫ t

t−Tc
I0(τ, r, θ) dτ, (4)

here, TC is set to 10 s. This approach effectively reduces the
influence of stationary objects in the classroom, ensuring that
the results in this study are minimally affected by interference
from these reflective surfaces or objects.

Finally, the power of the complex radar image is
time-averaged to obtain the radar image Ip(t, r, θ) as follows:

Ip(t, r, θ) =
1
TP

∫ t

t−TP
|Ic(τ, r, θ)|2 dτ, (5)

here, TP is set according to the monitoring period.
Figure 5 illustrates the restlessness detection processing.

After obtaining the radar image IP using Eq. 5 (angle-range
in Fig. 5 (a)), we manually select the region of interest
(ROI) and define the point with the maximum intensity value
(Fig. 5 (b)). Subsequently, we extract the coordinates (rows
and columns) and count the number of occurrences of each
coordinate and its proportion within the observation time.
An example of relatively stable activity over 400 s is shown in
Fig. 5 (c). Both the row and column coordinates of the point
with maximum intensity value almost stay in the same, with
coordinate (6, 11) occupying 94% of the monitored duration.
This indicates that, during 94% of the observation period,
the child remained in almost the same position. In contrast,
Fig. 5 (d) presents an example of restlessness. Neither the
row nor the column coordinate remains constant, and the
most frequent coordinate was (5, 10), accounting for only
25% of the entire monitored duration. This implies that the
child could not maintain the same position for more than
25% of the observation period, indicative of restlessness.
Thus, for restlessness feature extraction, we used the ratios
of the top five most frequently appeared coordinates each
day as features. Higher values indicate greater stability in the
child’s activity. Subsequently, for restlessness classification,
we employed these features, which exhibited significant
differences when compared to subjective evaluation results,
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FIGURE 4. Radar system and fundamental concept. (a) The radar system
block diagram in our study. (b) The IWR1443 millimeter-wave sensor
functional block diagram, re-write referenced [19]. (c) The chirp signal
and range detection. (d) Angle detection, considering the distance
between antenna is λ/2 = 1.9 mm, we can assume that the reflected
signal of each receiver is parallel.

to train ML models. A total of 34 ML models were trained
using 5-fold cross-validation, 70% data for training and
30% for test, employing the machine learning toolbox in
MATLAB version R2023a.

C. STATISTICAL ANALYSIS
The mean, median, and standard deviation of all features
were computed. The normality of the data was assessed
using the Shapiro-Wilk test. For the analysis of five features
across six children over nine days, one-way repeated ANOVA
(RMANOVA) was employed. If the assumption of normality
was not violated, parametric RMANOVA was conducted;
otherwise, non-parametric RMANOVA (Friedman’s repeated
ANOVA) was applied. Additionally, a test of sphericity
was performed for parametric RMANOVA. Effect size
(ω2) was calculated, with interpretations as follows: ω2

≤

0.01 indicates a trivial effect, 0.01 < ω2
≤ 0.06 suggests a

small effect, 0.06 < ω2
≤ 0.14 indicates a medium effect,

and ω2 > 0.14 implies a large effect. Post hoc testing was
conducted only when RMANOVA revealed a significant
difference, and Bonferroni correction was applied.

Independent T-test was used for features selection. The
normality of data was assessed using the Shapiro-Wilk test.
Equality of variances (Levene’s) was tested. If the assumption
of normality or variances was violated, non-parametric T-test
(Mann-Whitney) was applied, otherwise, parametric T-test
was applied. Cohen’s d and Rank biserial correlation (RB)
effect size was calculated. Cohen’s d ≤ 0.2 indicates a trivial
effect, 0.2 < Cohen’s d ≤ 0.5 suggests a small effect, 0.5 <

Cohen’s d ≤ 0.8 indicates a medium effect, and Cohen’s
d > 0.8 implies a large effect. RB ≤ 0.1 indicates a trivial
effect, 0.1 < RB ≤ 0.3 suggests a small effect, 0.3 < RB ≤

0.5 indicates a medium effect, and RB > 0.5 implies a
large effect. The significance level was set at α < 0.05.
All statistical analyses were performed using JASP (version
0.18.1.0, The Netherlands).

III. RESULTS
A. RESTLESSNESS DETECTION
After excluding the time when children sat randomly, the
total monitoring time during the U seat pattern for nine
days was 443.3 minutes for radar 1 and 434.8 minutes for
radar 2. The discrepancy in monitoring time between the
two radars resulted from some missing radar data during
the long-term monitoring. Additionally, data taken when
radar systems were obstructed by another child or teacher
standing in front of them were excluded from the analysis.
The monitoring time used for data analysis is summarized in
Table 2.

Figure 6 illustrates the results of five features for
radar 1 and radar 2. The p-values of the Shapiro-Wilk test
for radar 1 features 3 and 4, and radar 2 features 1 and
4 did not show significant differences (all p > 0.05), thus
parametric RMANOVAwas performed for these features (see
Table 6 in Appendix A). Other features were tested using
the Friedman test (see Table 7 in Appendix A). In summary,
the results suggest that C1 had the longest time staying still
among the children. C5 showed a lower still index value
compared to C2, C3, and C4 did, indicating more frequent
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FIGURE 5. Data processing. (a) Example of radar image, horizontal axis represents angle (◦), vertical axis represents range (m). (b) Example of ROI
for one child. Red square represents the chosen ROI, red circle represent the maximum intensity point in the ROI. (c) Example of rest for 400 s.
(d) Example of restlessness for 400 s. Blue line with circle markers represents the number of row where maximum intensity point appears, red line
with triangle makers represents the number of column where maximum intensity point appears. Bar and pie charts illustrate the number of
occurrences of each coordinate and its proportion during 400 s.

body movements. Details of the restlessness detection can be
found in Tables 5–10 in Appendix A.

The results of the subjective evaluation of restlessness are
presented in Table 3. According to the SDQ 2 results, C1,

C3, and C5 were labeled to be resting, C2, C4, and C6
were labeled to be restless. Radar results confirmed that C2
showed more active characteristics than C1; however, C5
showed more active characteristics than C4 from radar image
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TABLE 2. Result of monitoring time.

FIGURE 6. Results of restlessness detection. Horizontal axis represents
children, vertical axis represents still index (%).

analysis, which is the opposite to the subjective evaluation.
Therefore, for restlessness classification, only the data that

TABLE 3. SDQ2 item results.

FIGURE 7. Results of ten features for restlessness classification.
Horizontal axis represents features, vertical axis represents still index
(%). Red box represents Rest group, red box represents Restless group.

aligns with both radar and questionnaire results were used.
This means that C1 and C3 were labeled as group ‘rest’, C2
and C6 were labeled as group ‘restlessness’.

B. RESTLESSNESS CLASSIFICATION
The pair samples T-test was conducted to analyze 10 features
from rest and restless groups, aiming to select suitable
features for ML. Fig. 7 illustrates the chosen features for
ML- based classification. Features 3, 4 and 5 of radar 1, and
all features of radar 2 showed significant differences. Details
about features selection can be found in Appendix B from
Table 11 to Table 15.

Fig. 8 illustrates the selection of features and the classi-
fication accuracy of ML using different features. Because
there were eight features from two radar systems that showed
significant difference, we calculated the ANOVA p-value for
these features, and use −log(p) to rank importance of each
feature. As shown in Fig. 8 (a), feature 2, 1 and 3 from
radar 2 showed the highest importance, followed by feature
4 from radar 2, features 3 and 5 from radar 1. Thus, we used
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FIGURE 8. Results of restlessness classification using machine learning
models. (a) Features selection, (b) Machine learning training and test
accuracy.

the features from top 2 to top 8 (total 7 feature pattern, 8F
indicates top 8, 7F indicates top 7, and so forth) to train
the ML models. Among the tested ML models, two of them
showed the highest accuracy of 100% in classifying rest and
restlessness (see Fig. 8 (b)).

We compared the accuracy of our method to other
ML methods for classifying restless, referencing [22].
We selected the highest accuracy from different methods in
each study, including MRI (Magnetic Resonance Imaging),
EEG (Electroencephalogram), ECG (Electrocardiogram),
MEG (Magnetoencephalography), questionnaire, game
simulation, accelerometer, actigraphy, pupillometric, and
Twitter (a total of 83 studies). The results are summarized
in Table 4. In addition to accuracy, we compared these
models using four other indices: non-invasive, body restraint,

multi-target, and privacy protection. Generally, our method
achieves a classification accuracy of 100% and outperforms
other methods when considering non-invasiveness, lack of
body restraint, potential for multi-target applications, and
privacy protection.

IV. DISCUSSION
This pilot study aimed to explore the feasibility of utilizing
millimeter-wave radar for the detection and classification of
restlessness in children within a real classroom environment.
The experiment, conducted over nine days in a primary
school setting, involved two millimeter-wave radar systems
to monitor the regular activities of 14 children. The collected
radar data underwent analysis, and distinctive features were
extracted for restlessness detection and classification through
ML techniques.

The study’s initial objective, confirming the feasibility
of restlessness detection using millimeter-wave radar in a
real classroom environment, yielded encouraging results. The
radar’s precision in capturing distance and micro-movement
measurements proved instrumental in monitoring the diverse
array of body movements exhibited by children. Notably,
the privacy protection aspect inherent in millimeter-wave
radar technology ensures a balance between data rich-
ness and ethical considerations in sensitive environments.
Restlessness, as measured by teacher-rated questionnaire,
was successfully detected through the radar’s capability to
sense environmental changes. The inherent capacity of the
radar to capture nuanced body movements addresses the
limitations associated with traditional wearable actigraphy
devices, offering valuable insights into real-life scenarios.

The second objective, applying standard machine learning
algorithm and training machine learning models for rest-
lessness classification, marked a significant advancement in
the study. The utilization of specific features derived from
millimeter-wave radar data demonstrated promising results
in distinguishing between resting and restless individuals.
The selected features, such as the ratios of the top five
most frequently appeared coordinates, played a crucial role
in achieving a classification accuracy of 100% through ML
models. A comparative analysis of our proposed radar system
and ML outcomes against existing literature shows the
advantages and limitations of different methodologies. The
non-invasive, multi-target, and privacy-protected features of
our method position it favorably against other approaches,
contributing to both technical advancements and societal
considerations.

To the best of our knowledge, this study represents
the first and only instance where FMCW millimeter-wave
radar technology has been employed for the detection of
restlessness. In contrast to traditional approaches that rely
on vital signal monitoring [23], [24], [25], which necessitate
the attachment of sensors to the body, rendering prolonged
monitoring uncomfortable, our proposed approach utilizing
millimeter-wave radar presents a promising non-invasive and
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TABLE 4. Restlessness classification summary.

nonrestrictive solution, offering a user-friendly alternative for
long-term monitoring applications. The study by Lee et al.
[13] proposed a novel assessment of hyperactivity in young
individuals with Attention Deficit Hyperactivity Disorder
(ADHD) using impulse-radio ultra-wideband (IR-UWB)
radar technology. Their findings indicated that the average
activity function differed between children with and without
hyperactivity, with those exhibiting hyperactive behavior
displaying elevated activity levels, corroborating our observa-
tions. However, it is noteworthy that their research endeavor
involved a relatively brief monitoring period of 22 minutes,
substantially shorter than the duration of our study, which
spanned over 400 minutes. Our nine-day real classroom
environment experiment has yielded valuable data pertaining
to the daily activity patterns of children, facilitating a
deeper understanding of their behavioral dynamics. It is
common to establish a baseline activity level prior to the
commencement of the experiment, as it serves as a crucial
reference point for the data. However, in the context of
real-world school environment monitoring, implementing
such a baseline measurement presents considerable chal-
lenges, as it is imperative to minimize disruptions to the
normal flow of school activities. Conversely, in the present
study, we detected children’s restlessness through the lens
of the ratio of still time rather than relying solely on
activity level. Consequently, the necessity for a baseline
measurement is rendered less critical within the parameters
of our methodological approach.

With the increasing adoption of millimeter-wave radar in
various technological and biomedical engineering appli-
cations, the health implications and biological effects
on humans have garnered considerable attention from
researchers. Generally, the biological effects of millimeter-
waves on living organisms can be categorized into thermal
and non-thermal effects [34]. Specifically, the biothermal
effect is related to the substantial presence of water molecules
in organisms, such as skin and corneal tissues [35]. Given
thatmillimeter-waves are classified as non-ionizing radiation,
implying that they lack sufficient energy to ionize atoms or

molecules, and considering that the children were seated at a
minimum distance of 2 m from the radar during the study, it is
reasonable to conclude that the millimeter-wave radar did
not exert any detectable thermal effects. Yaekashiwa et al.
found no observable changes in human skin fibroblast cells
after exposure to millimeter-wave radiation in the frequency
range of 70-300 GHz [36], further substantiating the absence
of biogenetic damage caused by the non-thermal effects of
millimeter-waves. Moreover, millimeter-wave radar technol-
ogy has been widely employed in applications aimed at
enhancing children’s safety and well-being, including pres-
ence detection systems to prevent incidents of children being
left unattended in vehicles and succumbing to heatstroke [37],
monitoring of children’s sleep stages [38], and detection of
vital signs in children [39]. There may be concerns regarding
the potential impact of excessive monitoring on children’s
emotional well-being, such as feelings of being overly
controlled or a violation of privacy [40], [41]. However, to the
best of our knowledge, there is no direct evidence indicating
that the use of millimeter-wave radar affects children’s
psychological or mental health. On the contrary, recent
studies suggest that millimeter-wave radar holds significant
potential as an effective tool for monitoring mental stress [42]
and recognizing emotions [43].

The proposed approach to measure childre’s restlessness
is designed to be minimally affected by a fast movement,
as the activity levels are evaluated based on time variations in
echo intensity rather than Doppler frequency. Using Doppler
frequency would require target velocities to remain below
the Nyquist velocity, which is determined by the sampling
frequency. However, this limitation does not apply to our
approach. Nevertheless, our method involves incoherent
averaging, as shown in Eq. 5. If a target moves beyond
the spatial resolution within the averaging period Tp, the
resulting radar image Ip(t, r, θ) will become less focused,
which would negatively impact the accuracy of the approach.
Basically, the radar’s spatial resolution is defined in both
range (distance) and angular (azimuth) directions. As shown
in Table 1, the range resolution is 44.7 mm, and the angular
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resolution is 8.5 degrees. For example, at a distance of 3.0 m,
the spatial resolution determined by the angular resolution
equates to approximately 445 mm. Therefore, at 3.0 m, the
combined spatial resolution is about 445 mm by 45 mm.
If the distance between two children exceeds this spatial
resolution, the radar echoes can be separated, allowing the
system to distinguish between them. However, if the children
are closer than the spatial resolution, the echoes will merge,
and our approach will be unable to accurately estimate
their individual activity levels. Developing a technique that
maintains robustness even with fast-moving targets is a topic
of great interest, which we hope to explore in future research.
Moreover, since distinguishing between closely located
children is challenging at the current spatial resolution, future
work could aim to improve radar resolution. Developing
these enhancements would increase the system’s applicability
in crowded settings, making it more robust in real-world
classroom scenarios.

A pertinent concern in this pilot study involves the
dynamic and spontaneous nature of children’s activities
and the potential implications of deploying millimeter-wave
radar technology within a lively classroom setting. Ethical,
Legal, and Social Issues (ELSI) are paramount in research
that involves monitoring children’s behavior. To address
these concerns, we provided comprehensive explanations
and obtained informed consent from both children, parents
teachers, and school management prior to the experiment.
Additionally, during the post-interview phase, we collected
feedback on the radar measurement process from teachers,
parents, and the students themselves, capturing a range of
perspectives, both positive and negative. We did not include
this result in the main manuscript because it is beyond the
scope of the study. However, readers can find the interview
results in Appendix C. Importantly, our interview results
indicate no evidence that the technology or experimental
process adversely affected students’ natural behaviors within
the school environment. As we consider scaling up our
study, we recognize the necessity of further addressing ELSI
concerns. This includes ensuring that students have the right
to opt out of the measurement and guaranteeing that the
information collected is not utilized for personal evaluation
purposes, such as academic grading or internal assessments.
Upholding these ethical standards is essential to preserving
the integrity of childhood experiences and ensuring that
technological interventions do not compromise children’s
health or freedom.

In this pilot study, we employed standard machine
learning models to assess the feasibility of using features
derived frommillimeter-wave radar for classifying children’s
restlessness. Our primary goal was to evaluate whether these
radar-derived features could effectively support classification
tasks. By applying standard machine learning models,
we confirmed that these features provided an acceptable level
of accuracy for this initial classification purpose. From our
literature review, we found that among the various machine
learning modes, SVM is one of the most popular methods,

and applying SVM for restlessness classification has shown
high accuracy (often > 90%, as shown in Table 4). This
is reasonable, as SVM has been proven to be a powerful
supervised learning algorithm used for classification tasks
across various domains [44]. Among the different types of
SVM, most researchers have employed either linear SVM
( [27] and ours) or kernel SVM ( [26], [31]). The main
difference between linear SVM and kernel SVM lies in how
they handle the data and the type of decision boundaries
they can create. Linear SVM assumes that the data can be
divided by a 2-D straight line or a hyperplane in higher
dimensions, making it suitable for linear separable data.
On the other hand, kernel SVM extends this concept by
applying a kernel function (such as polynomial or radial basis
function (RBF)) to map the data into higher dimensional
space. This transformation allows kernel SVM to create
complex decision boundaries, making it suitable for handling
non-linearly separable data.

In this study, our aim was to investigate the utility of
standard machine learning models in the novel context of
radar-based restlessness classification—rather than to inno-
vate in machine learning algorithms themselves. Our study’s
novelty lies in its application context—integrating machine
learning with radar data to tackle classroom restlessness
detection, which has unique practical challenges. However,
we acknowledge that these standard models may not reflect
the most recent advancements in machine learning, and
our study’s optimizations were limited to feature selection
and cross-validation. Emerging state-of-the-art methods,
such as meta-learning models [45], CNN-LSTM multimodal
foundation models [46], graph neural networks [47], and
transformer-based architectures [48], [49], offer significant
potential to enhance classification performance in future
applications. These advanced approaches are particularly
relevant, as they can better capture complex spatial-temporal
relationships, process multimodal data more effectively,
and may yield additional insights and improved accuracy.
In future research, we aim to explore the applicability of these
advanced models to radar-based restlessness classification.
For instance, meta-learning approaches could enable rapid
adaptation to new patterns in radar data through one-shot or
few-shot learning capabilities [45]. CNN-LSTMmodels may
provide a robust framework for handling multimodal features
and complex scenes [46]. Likewise, graph neural networks
and transformer-based architectures have shown promise
for capturing intricate spatial and temporal dependencies in
radar data [47], [48], [49]. Integrating these models into our
framework could improve resilience against environmental
interference, enhance accuracy, and deepen understanding of
behavioral patterns in radar-based monitoring.

The study’s contributions extend beyond technical
advancements to address practical implications for various
stakeholders. For children, the non-invasive nature of the
approach prioritizes their well-being and ensures unrestricted
activities, while the emphasis on privacy protection fos-
ters a sense of autonomy. Parents, teachers, and school
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policymakers stand to benefit from the implementation
of a multi-target system for restlessness measurement.
The objective information provided by millimeter-wave
radar contributes to evidence-based support and educa-
tion for children, which would complement health and
behavioural monitoring traditionally conducted by teachers
and school-based health professionals. Additionally, the ML-
based computer-aided screening offers potential efficiency in
clinical assessments, addressing the global shortage of trained
specialists.

This pilot study acknowledges several limitations that
should be considered for a comprehensive understanding of
its findings. First, the study focused on a limited set of
school activities during the observed days. As restlessness
could manifest under wider range of school activities which
may not be limited to the recorded period of time during
the school days, future research could explore restlessness
during various class activities. This would provide a more
nuanced understanding of how contextual factors influence
children’s activity levels. Second, the small sample size
of six children analyzed for restlessness detection and the
further reduction to only four children for ML model training
due to matching with subjective evaluation results pose
challenges to the generalizability of the findings. Overfitting
is a critical issue in machine learning, particularly with small
sample sizes, as models can become overly specialized to
the training data, limiting model generalizability. To mitigate
this risk, we employed several robust strategies: (1) We
implemented a 5-fold cross-validation during the training
process, a widely accepted technique that helps prevent
overfitting by iteratively partitioning the data into training
and validation subsets, thereby ensuring the model is
evaluated on unseen data. (2) As illustrated in Fig. 8 (b)
on the manuscript, we have reported not only the training
accuracy but also the testing accuracy. This crucial step
allows for the direct assessment of potential overfitting,
as a significant lower testing accuracy compared to training
would be indicative of overfitting. (3) Feature selection was
performed to identify and retrain only the most informative
predictors for the classification. This technique commonly
referred to as removing features in machine learning, reduces
model complexity and acts as a regularization strategy,
mitigating overfitting tendencies. Collectively, these rigorous
measures provided robust safeguard against overfitting,
despite the limited sample size. While we acknowledge the
inherent challenges posed by small datasets, we believe
that our proposed methodology has thoughtfully addressed
and controlled overfitting problem. Nevertheless, caution
is warranted in interpreting the results, and future studies
with larger and more diverse participant groups are crucial
to validate and extend the conclusions drawn from this
pilot study. It is also important to notice that in the real
classroom, there were multiple reflective surfaces causing
multipath interference. Because of such multipath effects,
the radar signal contains artifacts that do not correspond
to the actual target children, even we removed the static

clutter in the radar signal processing. Despite this, our results
indicate that the radar-based measurement has a potential
to evaluate children’s activity levels when considering the
non-invasiveness, lack of body restraint, potential for multi-
target applications, and privacy protection. Our next step
is to develop a signal processing method to suppress such
multipath effect to improve the performance of our approach.

The variation in SDQ results between two teachers
highlights a potential source of bias, possibly influenced
by differences in cultural background. One teacher, a local
Japanese national, is responsible for overseeing the entire
class, while the other teacher is an English instructor
from an overseas region. Since both teachers spend a
significant amount of time interacting with the children on
a daily basis, it was presumed that they possessed sufficient
familiarity with the children to accurately rate the SDQ
questionnaire. To address the potential bias in subjective
evaluations between teachers, we adopted an approach where
children were labeled as ‘‘restless’’ if either or both teachers
answered 1 (somewhat true) or 2 (certainly true) on the
SDQ 2. This method was designed to minimize bias by
avoiding reliance on just one teacher’s evaluation. While
this helps to control bias, we recognize that it is difficult
to completely eliminate bias in any subjective assessment.
As such, future research should aim for a larger and more
diverse survey, incorporating additional perspectives, such
as parental input during at-home evaluations. This would
help further reduce bias and enhance the robustness of
the restlessness assessments. The study’s analysis focused
solely on the range direction of radar data, limiting the
examination of special movements such as head movements
and potential classmate influences. Future research could
explore improvements in radar parameters and algorithms to
address these limitations and provide a more comprehensive
understanding of children’s activities.

Despite these limitations, this pilot study serves as
a pioneering exploration of a non-invasive approach to
monitoring children’s school activity using millimeter-wave
radar technology. The study anticipates the continued devel-
opment of this technology, emphasizing its potential for
non-invasive mental health measurements in real classroom
environments. Moreover, given that the trait of restless-
ness overlaps with clinical definition of a developmental
condition, Attention Deficit and Hyperactivity Disorder,
similar technology could be utilized for screening such
clinical conditions within the school environment. However,
note that several major barriers exist on such screening,
such as ethical issues on screening children’s trait within
school environment, ownership of children’s data, legal
and ethical issues on child protection, as well as tech-
nological challenges requiring for further refinement of
recording and analyzing methodologies [50]. Future research
endeavors should address technical challenges, including
random body movement and the development of robust algo-
rithms for vital signal analysis from millimeter-wave radar
systems.
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V. CONCLUSION
In conclusion, this pilot study demonstrates the potential
of millimeter-wave radar and ML in revolutionizing the
assessment and classification of restlessness in children.
The integration of advanced technology not only addresses
the limitations of traditional methods but also introduces a
novel, efficient, and ethical approach to restlessness detection
in real-world educational settings. As technology continues
to advance, further research in this domain is warranted
to refine methodologies, enhance accuracy, and explore
the broader societal implications of implementing such
innovative technologies in the field of child psychology and
education.
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