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Abstract
In this paper, we define compact open subgroups of quasi-split even unitary groups for each even non-negative
integer and establish the theory of local newforms for irreducible tempered generic representations with a certain
condition on the central characters. To do this, we use the local Gan–Gross–Prasad conjecture, the local Rankin–
Selberg integrals and the local theta correspondence.
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2 H. Atobe

1. Introduction

In the 1970s, Atkin–Lehner [1] and Li [17] introduced the notion of newforms for elliptic modular
forms and showed the multiplicity one theorem. Together with their results, Casselman’s theory of
local newforms [5] is a bridge between modular forms and automorphic representations of GL2/Q.
Since then, the theory of local newforms was developed for several groups. For example, for low rank
cases, Roberts–Schmidt [22] and Lansky–Raghuram [16] established this theory for GSp4 and U(1, 1),
respectively. Casselman’s result was extended to GL𝑛 by Jacquet–Piatetski-Shapiro–Shalika [13] (see
also [12]) and by Atobe–Kondo–Yasuda [2]. For other general rank cases,

◦ Tsai [23] studied the local newforms of generic supercuspidal representations of SO2𝑛+1; and
◦ the author together with Oi and Yasuda [3] treated the case for unramified U2𝑛+1.

In this paper, for a bridge to hermitian modular forms, we try to establish the theory of local newforms
for U(𝑛, 𝑛).

Let us describe our results. Let 𝐸/𝐹 be an unramified quadratic extension of non-archimedean local
fields of characteristic 0 and of residue characteristic 𝑝 > 2. Fix a nontrivial additive character 𝜓 of F
such that 𝜓 |𝔬𝐹 = 1 but 𝜓 |𝔭−1

𝐹
≠ 1, and set 𝜓𝐸 (𝑥) = 𝜓( 𝑥+𝑥2 ) for 𝑥 ∈ 𝐸 . Consider a quasi-split unitary

group of 2𝑛 variables given by

U2𝑛 =

{
𝑔 ∈ GL2𝑛 (𝐸)

���� 𝑡𝑔 ( 0 𝑤𝑛

−𝑤𝑛 0

)
𝑔 =

(
0 𝑤𝑛

−𝑤𝑛 0

)}
with

𝑤𝑛 =
���	

1

. .
.

1


��� ∈ GL𝑛 (𝐸).

We denote by 𝑊 = 𝐸2𝑛 the vector space where U2𝑛 acts. The center of U2𝑛 is identified with 𝐸1 = {𝑥 ∈

𝐸× | 𝑁𝐸/𝐹 (𝑥) = 1}. Define a compact subgroup 𝐾𝑊
2𝑚 of U2𝑛 by 𝐾𝑊

0 = U2𝑛 ∩ GL2𝑛 (𝔬𝐸 ), and by

𝐾𝑊
2𝑚 =

���	
1 2𝑛 − 2 1

1 1 + 𝔭𝑚𝐸 𝔬𝐸 𝔬𝐸
2𝑛 − 2 𝔭𝑚𝐸 𝔬𝐸 𝔬𝐸
1 𝔭2𝑚

𝐸 𝔭𝑚𝐸 1 + 𝔭𝑚𝐸


��� ∩ U2𝑛

for 2𝑚 > 0. For an irreducible smooth representation 𝜋 of U2𝑛, we denote by 𝜋𝜓 the maximal quotient
of 𝜋 on which the subgroup

𝑍 =

⎧⎪⎪⎨⎪⎪⎩��	
1 0 𝑧
0 12𝑛−2 0
0 0 1


�� ∈ U2𝑛

������ 𝑧 ∈ 𝐹

⎫⎪⎪⎬⎪⎪⎭ � 𝐹

acts by 𝜓. This is a local analogue of the Fourier–Jacobi expansions of hermitian modular forms and is
called the Fourier–Jacobi module of 𝜋. We write 𝜋

𝐾𝑊
2𝑚

𝜓 for the image of the subspace 𝜋𝐾
𝑊
2𝑚 consisting

of 𝐾𝑊
2𝑚-fixed vectors via the canonical surjection 𝜋 � 𝜋𝜓 .

The main theorem is stated as follows. For other notations, in particular for the notion of 𝜓𝐸 -generic,
see Section 2 below.

Theorem 1.1 (Theorem 2.2). Let 𝜋 be an irreducible tempered representation of U2𝑛 with the
L-parameter 𝜙𝜋 and the central character 𝜔𝜋 . We denote by 𝑐(𝜙𝜋) the conductor of 𝜙𝜋 .
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(1) If 𝜋 is not 𝜓𝐸 -generic, then 𝜋
𝐾𝑊

2𝑚
𝜓 = 0 for any 2𝑚 ≥ 0. Conversely, if 𝜋 is 𝜓𝐸 -generic, then there

exists 2𝑚 ≥ 0 such that 𝜋𝐾
𝑊
2𝑚

𝜓 ≠ 0.

(2) Suppose that 𝜋 is 𝜓𝐸 -generic. If 2𝑚 < 𝑐(𝜙𝜋), then 𝜋
𝐾𝑊

2𝑚
𝜓 = 0. If 2𝑚 = 𝑐(𝜙𝜋) or 2𝑚 = 𝑐(𝜙𝜋)+1, then

dimC (𝜋
𝐾𝑊

2𝑚
𝜓 ) ≤ 1.

(3) Set 2𝑚 = 𝑐(𝜙𝜋) or 2𝑚 = 𝑐(𝜙𝜋) + 1. Suppose that 𝜋 is 𝜓𝐸 -generic and that 𝜔𝜋 is trivial on
𝐸1 ∩ (1 + 𝔭𝑚𝐸 ). Then 𝜋

𝐾𝑊
2𝑚

𝜓 ≠ 0.

If 2𝑚 = 𝑐(𝜙𝜋) and if 𝜔𝜋 is trivial on 𝐸1 ∩ (1 + 𝔭𝑚𝐸 ), we shall call an element in 𝜋𝐾
𝑊
2𝑚 whose image

in 𝜋𝜓 is nonzero a local newform of 𝜋.

Remark 1.2.

(1) If 𝜋𝐾𝑊
2𝑚 ≠ 0, then 𝜔𝜋 is trivial on 𝐸1 ∩ (1 + 𝔭𝑚𝐸 ) since 𝐸1 ∩ (1 + 𝔭𝑚𝐸 ) ⊂ 𝐾𝑊

2𝑚.
(2) Even if 2𝑚 = 𝑐(𝜙𝜋) or 𝑐(𝜙𝜋) + 1, the dimension of 𝜋𝐾𝑊

2𝑚 can be greater than 1. A counterexample
already appears in the case where 𝑛 = 1, which was treated by Lansky and Raghuram. See [16,
Theorem 4.2.1].

(3) As well as in [3], one might expect the existence of 𝐾𝑊
𝑚 for all integers 𝑚 ≥ 0 such that Theorem

1.1 holds. Unfortunately, we do not know how to define 𝐾𝑊
𝑚 for odd integers 𝑚 > 0 at this moment.

We expect that Theorem 1.1 has several applications such as a higher level generalization of a result
of Chenevier–Renard [7]. We will try it as a next project.

A usual method to establish the theory of local newforms is to apply the Rankin–Selberg integrals,
which are based on the multiplicity one theorem for several Gan–Gross–Prasad (GGP) pairs. For
example, Tsai [23] and Cheng [8] used the pairs (SO2𝑛+1 (𝐹), SO2𝑛 (𝐹)) and (U2𝑛+1, U2𝑛) to obtain
knowledge about newforms. In this paper, we will also use this method as well. However, in our case,
one needs the GGP pair (U2𝑛, U2𝑛−2), which is not a ‘basic’ case. More precisely, we have to consider
the restrictions of irreducible representations of U2𝑛 to the Jacobi group. Since the Jacobi group is not
reductive, several arguments in [23] would not work.

For example, to prove an analogue of Theorem 1.1 (1) in [23], Tsai used a lemma of Moy–Prasad ([23,
Lemma 3.4.1]). We do not know whether this lemma can be extended to our case. Instead of this lemma,
we use the local period integrals for the refined GGP conjecture. Using the absolutely convergence of
these integrals, the argument of Gan–Savin [11, Lemma 12.5] can show Theorem 1.1 (1). See Section
3.2 below. This is the same idea as in the previous paper [3, Theorem 4.5].

The proof of Theorem 1.1 (2) is the same as usual. Namely, it is an application of the Rankin–Selberg
integrals for U2𝑛 × GL𝑛−1 (𝐸). This theory in this case was established by Ben-Artzi–Soudry [4] and
Morimoto [21], and is recalled in Theorem 4.2. Especially, the multiplicativity of the gamma factors
is included in [21, Theorem 3.1]. Using the Rankin–Selberg integrals, we will define certain formal
power series. Lemma 4.4 is a key computation to give lower bounds of the degrees. Using the functional
equations of the Rankin–Selberg integrals, we would obtain an upper bound of the dimension of 𝜋𝐾

𝑊
2𝑚

𝜓 .
However, since the Rankin–Selberg integrals for U2𝑛 × GL𝑛−1 (𝐸) factors through 𝜋 � 𝜋𝜓 , we cannot
estimate the dimension of 𝜋𝐾𝑊

2𝑚 itself.
For the proof of Theorem 1.1 (3), the fact that we have to deal with the Jacobi group complicates the

situation. Indeed, the arguments in [23, Chapter 8] and in the previous paper [3, Theorem 4.3] might
not work. In this paper, we give a new, or rather old, idea.

Recall that the theory of newforms was initiated by Atkin–Lehner [1] and Li [17] for elliptic modular
forms of integral weights. Kohnen [14] established a similar theory to the half-integral weights case.
Moreover, he proved that the newforms of integral weights and the ones of half-integral weights are re-
lated to each other by the Shimura correspondence. Since the theta correspondence is a generalization
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4 H. Atobe

of the Shimura correspondence, the local newforms will be compatible with the local theta correspon-
dence in the future. Instead, the local theta correspondence would be useful to show the existence of the
local newforms. This is our idea.

In fact, if we let 𝜎 = 𝜃𝜓 (𝜋) be the theta lift of 𝜋 to U2𝑛+1, then 𝜎 is nonzero irreducible tempered
and generic, and its conductor and central character are the same as the ones of 𝜋. By the definition of
the theta lifting, we have a surjective U2𝑛+1 × U2𝑛-equivariant map

𝜔𝜓 → 𝜎 � 𝜋,

where 𝜔𝜓 is the Weil representation of U2𝑛+1 × U2𝑛. Let 𝐾𝑉
2𝑚 be a conjugate of the compact subgroup

of U2𝑛+1 defined in [3], where 𝑉 = 𝐸2𝑛+1 is the vector space on which U2𝑛+1 acts. Set 𝐽𝑉2𝑚 to be the
subgroup of U2𝑛+1 generated by 𝐾𝑉

2𝑚 and the central subgroup 𝐸1 ∩ (1 + 𝔭𝑚𝐸 ). Then by using a lattice

model and Waldspurger’s result (Proposition 5.3), one can show that 𝜔𝐽𝑉
2𝑚
𝜓 is generated by 𝜔

𝐽𝑉
2𝑚×𝐾𝑊

2𝑚
𝜓 as

a representation of U2𝑛. Hence, if 2𝑚 ≥ 𝑐(𝜙𝜋) and 𝜔𝜋 |𝐸1∩(1+𝔭𝑚𝐸 ) = 1, then 𝜋𝐾
𝑊
2𝑚 ≠ 0 since 𝜎𝐽𝑉

2𝑚 ≠ 0.
See Proposition 5.6 for the details.

However, it is much harder to show 𝜋
𝐾𝑊

2𝑚
𝜓 ≠ 0 when 2𝑚 = 𝑐(𝜙𝜋) or 2𝑚 = 𝑐(𝜙𝜋) + 1. Let 𝑙𝜎 : 𝜎 → C

be a nonzero Whittaker functional. Then the composition

𝜔𝜓 → 𝜎 � 𝜋
𝑙𝜎 ⊗id
−−−−→ 𝜋

factors through a twisted Jacquet module of 𝜔𝜓 along a maximal unipotent subgroup of U2𝑛+1. By the
same argument as Mao–Rallis [18, Proposition 2.3], this twisted Jacquet module is isomorphic to the
compact induction indU2𝑛

𝑁 ′
2𝑛
(𝜇), where 𝑁 ′

2𝑛 is a maximal unipotent subgroup of U2𝑛 and 𝜇 is a generic
character of 𝑁 ′

2𝑛. By Cheng’s result [8, Theorem 1.4, Lemma 7.5], 𝑙𝜎 is nonzero on the one-dimensional

subspace 𝜎𝐽𝑉
2𝑚 if 𝑙𝜎 is suitably chosen. Hence, there is 𝜙 ∈ 𝜔

𝐽𝑉
2𝑚×𝐾𝑊

2𝑚
𝜓 such that it is nonzero under the

all maps in the following diagram:

𝜔𝜓
��

��

𝜎 � 𝜋
𝑙𝜎 ⊗id �� 𝜋

indU2𝑛
𝑁 ′

2𝑛
(𝜇)

��������������

Lemma 5.7 asserts that the support of the image of 𝜙 in indU2𝑛
𝑁 ′

2𝑛
(𝜇) is small enough. It implies that

𝜋
𝐾𝑊

2𝑚
𝜓 ≠ 0 immediately. See Section 5.5 for the details. Finally, to prove Lemma 5.7, we need to change

models of the Weil representation and review the argument of Mao–Rallis [18, Proposition 2.3].
This paper is organized as follows. In Section 2, we introduce several notations and state our main

theorem. Using the local Fourier–Jacobi periods, we show Theorem 1.1 (1) in Section 3. Theorem 1.1
(2) is obtained as an application of the Rankin–Selberg integrals in Section 4. Finally, we study theta
liftings to prove Theorem 1.1 (3) in Section 5.

Notation

Let 𝐸/𝐹 be an unramified quadratic extension of non-archimedean local fields of characteristic 0 and
of residue characteristic 𝑝 > 2. The nontrivial element in Gal(𝐸/𝐹) is denoted by 𝑥 ↦→ 𝑥. Set 𝔬𝐸
(resp. 𝔬𝐹 ) to be the ring of integers of E (resp. F), and 𝔭𝐸 (resp. 𝔭𝐹 ) to be its maximal ideal. Let
𝐸1 = {𝑥 ∈ 𝐸× | 𝑥𝑥 = 1} denote the kernel of the norm map 𝑁𝐸/𝐹 : 𝐸× → 𝐹×. Fix a uniformizer 𝜛 of
F, which is also a uniformizer of E. When 𝑥 ∈ 𝐸× can be written as 𝑥 = 𝑢𝜛𝑙 for some 𝑢 ∈ 𝔬×𝐸 , we write
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ord(𝑥) = 𝑙. Set 𝑞 = |𝔬𝐹/𝔭𝐹 | so that 𝑞2 = |𝔬𝐸/𝔭𝐸 |. Let | · |𝐸 be the normalized absolute value of E so
that |𝑥 |𝐸 = 𝑞−2ord(𝑥) for 𝑥 ∈ 𝐸×.

We fix 𝛿 ∈ 𝔬×𝐸 such that 𝛿 = −𝛿, and a nontrivial additive character 𝜓 : 𝐹 → C× such that 𝜓 |𝔬𝐹 = 1
but 𝜓 |𝔭−1

𝐹
≠ 1. Set 𝜓𝐸 (𝑥) = 𝜓( 1

2 tr𝐸/𝐹 (𝑥)) = 𝜓( 𝑥+𝑥2 ) and 𝜓 𝛿
𝐸 (𝑥) = 𝜓𝐸 (𝑥/𝛿). Then 𝜓𝐸 and 𝜓 𝛿

𝐸 are
nontrivial additive characters of E such that 𝜓𝐸 |𝐹 = 𝜓 and 𝜓 𝛿

𝐸 |𝐹 = 1. The unique nontrivial quadratic
unramified character of 𝐸× is denoted by 𝜒. Namely, 𝜒 |𝔬×𝐸 = 1 and 𝜒(𝜛) = −1. In particular, if we write
𝜒 = | · |

𝑠0
𝐸 , we have 𝑞−2𝑠0 = −1.

A representation 𝜋 of a p-adic group G means a smooth representation over a complex vector space.
When K is a compact open subgroup of G, we write 𝜋𝐾 for the subspace of 𝜋 consisting of K-fixed
vectors. Let Irr(𝐺) be the set of equivalence classes of irreducible representations of G, and Irrtemp(𝐺)

be its subset consisting of tempered representations.

2. Statement of the main theorem

In this section, we define families of compact open subgroups of unitary groups, and we state our main
theorem.

2.1. Unitary groups

Let 𝑉 = 𝑉2𝑛+1 (resp. 𝑊 = 𝑊2𝑛) be a hermitian (resp. skew-hermitian) space over E of dimension 2𝑛 + 1
(resp. 2𝑛) equipped with a nondegenerate hermitian form 〈·, ·〉𝑉 (resp. skew-hermitian form 〈·, ·〉𝑊 ).
Assume that there are bases {𝑒𝑛, . . . , 𝑒1, 𝑒0, 𝑒−1, . . . , 𝑒−𝑛} of V and { 𝑓𝑛, . . . , 𝑓1, 𝑓−1, . . . , 𝑓−𝑛} of W,
respectively, such that 〈

𝑒𝑖 , 𝑒 𝑗
〉
𝑉
=
〈
𝑓𝑖 , 𝑓 𝑗

〉
𝑊

= 0

unless 𝑗 = −𝑖, and

〈𝑒0, 𝑒0〉𝑉 = 〈𝑒𝑖 , 𝑒−𝑖〉𝑉 = 〈 𝑓𝑖 , 𝑓−𝑖〉𝑊 = 1

for 1 ≤ 𝑖 ≤ 𝑛.
Using these bases, we often identify the associated unitary groups U(𝑉) and U(𝑊) with

U2𝑛+1 =
{
ℎ ∈ GL2𝑛+1 (𝐸)

��� 𝑡ℎ𝑤2𝑛+1ℎ = 𝑤2𝑛+1

}
,

U2𝑛 =
{
𝑔 ∈ GL2𝑛 (𝐸)

�� 𝑡𝑔𝐽2𝑛𝑔 = 𝐽2𝑛
}
,

respectively, where we set

𝑤𝑛 =
���	

1

. .
.

1


��� ∈ GL𝑛 (𝐸), 𝐽2𝑛 =

(
0 𝑤𝑛

−𝑤𝑛 0

)
∈ GL2𝑛 (𝐸).

2.2. Representations of unitary groups

Let 𝑁2𝑛+1 (resp. 𝑁2𝑛) be the upper triangular unipotent subgroup of U2𝑛+1 (resp. U2𝑛). We define generic
characters of 𝑁2𝑛+1 and 𝑁2𝑛 by the same formula

𝑢 ↦→ 𝜓𝐸

(
𝑛∑
𝑘=1

𝑢𝑘,𝑘+1

)
.
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By abuse of notation, we denote these characters by 𝜓𝐸 . We say that an irreducible representation 𝜎 of
U2𝑛+1 (resp. 𝜋 of U2𝑛) is generic (resp.𝜓𝐸 -generic) if Hom𝑁2𝑛+1 (𝜎, 𝜓𝐸 ) ≠ 0 (resp. Hom𝑁2𝑛 (𝜋, 𝜓𝐸 ) ≠ 0).

For an irreducible representation 𝜋 of U2𝑛, we denote by 𝜋∨ the contragredient representation of 𝜋.
By a result in [19, Chapter 4. II. 1], we know 𝜋∨ � 𝜋𝜃 , where 𝜋𝜃 (𝑔) = 𝜋(𝜃 (𝑔)) with

𝜃 : U2𝑛 → U2𝑛, 𝑔 ↦→

(
1𝑛 0
0 −1𝑛

)
𝑔

(
1𝑛 0
0 −1𝑛

)−1
.

In particular, 𝜋 is 𝜓𝐸 -generic if and only if 𝜋∨ is 𝜓−1
𝐸 -generic.

By the local Langlands correspondence established by Mok [20], to an irreducible representation 𝜎 of
U2𝑛+1 (resp. 𝜋 of U2𝑛), one can attach a conjugate self-dual representation 𝜙𝜎 (resp. 𝜙𝜋) of𝑊𝐸×SL2(C)
of dimension 2𝑛+1 (resp. 2𝑛), where 𝑊𝐸 is the Weil group of E. We call 𝜙𝜎 (resp. 𝜙𝜋) the L-parameter
for 𝜎 (resp. 𝜋). Then we define the conductor 𝑐(𝜙𝜎) of 𝜙𝜎 by the non-negative integer satisfying

𝜀(𝑠, 𝜙𝜎 , 𝜓𝐸 ) = 𝜀(0, 𝜙𝜎 , 𝜓𝐸 )𝑞
−2𝑐 (𝜙𝜎 )𝑠 .

Similarly, the conductor 𝑐(𝜙𝜋) of 𝜙𝜋 is defined.
The center of U2𝑛+1 (resp. U2𝑛) is U1 which is identified with 𝐸1. For an irreducible representation 𝜎

(resp. 𝜋) of U2𝑛+1 (resp. U2𝑛), we denote its central character by𝜔𝜎 (resp.𝜔𝜋). If 𝜎 (resp. 𝜋) corresponds
to 𝜙𝜎 (resp. 𝜙𝜋), then the L-parameter of 𝜔𝜎 (resp. 𝜔𝜋) is given by det(𝜙𝜎) (resp. det(𝜙𝜋)).

2.3. Jacobi group

Set

v(𝑥, 𝑦; 𝑧) =
����	
1 𝑥 𝑦 𝑧 + 1

2 (𝑥𝑤𝑛−1
𝑡 𝑦 − 𝑦𝑤𝑛−1

𝑡𝑥)
0 1𝑛−1 0 𝑤𝑛−1

𝑡 𝑦
0 0 1𝑛−1 −𝑤𝑛−1

𝑡𝑥
0 0 0 1


���� ∈ U2𝑛

for 𝑥, 𝑦 ∈ 𝐸𝑛−1 and 𝑧 ∈ 𝐹. Here, 𝐸𝑛−1 is the space of row vectors. Let 𝐻𝑛−1 = {v(𝑥, 𝑦; 𝑧) | 𝑥, 𝑦 ∈

𝐸𝑛−1, 𝑧 ∈ 𝐹} � 𝐸2𝑛−2 ⊕ 𝐹 be a Heisenberg group in 4𝑛− 3 variables over F with the multiplication law

v(𝑥, 𝑦; 𝑧)v(𝑥 ′, 𝑦′; 𝑧′) = v
(
𝑥 + 𝑥 ′, 𝑦 + 𝑦′; 𝑧 + 𝑧′ +

1
2

tr𝐸/𝐹 (𝑥𝑤𝑛−1
𝑡 𝑦 − 𝑦𝑤𝑛−1

𝑡𝑥)

)
.

We write

𝑋𝑛−1 = {v(𝑥, 0; 0) | 𝑥 ∈ 𝐸𝑛−1},

𝑌𝑛−1 = {v(0, 𝑦; 0) | 𝑦 ∈ 𝐸𝑛−1},

𝑍 = {v(0, 0; 𝑧) | 𝑧 ∈ 𝐹}.

By abuse of notation, we denote the character 𝑍 � v(0, 0; 𝑧) ↦→ 𝜓(𝑧) by 𝜓.
We identify U2𝑛−2 as a subgroup of U2𝑛 by the inclusion

U2𝑛−2 � 𝑔′ ↦→
��	
1

𝑔′

1


�� ∈ U2𝑛.

Then U2𝑛−2 normalizes 𝐻𝑛−1. We call 𝐽𝑛−1 = 𝐻𝑛−1 � U2𝑛−2 the Jacobi group. Note that Z is the center
of 𝐽𝑛−1.
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For an irreducible representation 𝜋 of U2𝑛, we denote by 𝜋𝜓 the maximal quotient of 𝜋 on which
Z acts by 𝜓. We call 𝜋𝜓 the Fourier–Jacobi module of 𝜋. For a compact open subgroup K of U2𝑛,
we denote by 𝜋𝐾𝜓 the image of 𝜋𝐾 via the canonical surjection 𝜋 � 𝜋𝜓 . Note that 𝜋𝜓 is a smooth
representation of 𝐽𝑛−1 so that K does not act on 𝜋𝜓 itself.

For 𝑡 ∈ 𝐸×, if we put 𝜓 ′(𝑥) = 𝜓(𝑁𝐸/𝐹 (𝑡)𝑥) and

𝐾 ′ =
��	
𝑡

12𝑛−2

𝑡
−1


��
−1

𝐾
��	
𝑡

12𝑛−2

𝑡
−1


��,
then 𝜋(diag(𝑡, 12𝑛−2, 𝑡

−1
)) induces isomorphisms

𝜋𝐾
′ ∼
−→ 𝜋𝐾 , 𝜋𝜓′

∼
−→ 𝜋𝜓 .

Hence, we have 𝜋𝐾
′

𝜓′ � 𝜋𝐾𝜓 .

2.4. Compact subgroups

For each non-negative even integer 2𝑚 ≥ 0, we define compact subgroups 𝐾𝑉
2𝑚 ⊂ U(𝑉) � U2𝑛+1

and 𝐾𝑊
2𝑚 ⊂ U(𝑊) � U2𝑛 as follows. When 2𝑚 = 0, we set 𝐾𝑉

0 = U2𝑛+1 ∩ GL2𝑛+1 (𝔬𝐸 ) and 𝐾𝑊
0 =

U2𝑛 ∩ GL2𝑛 (𝔬𝐸 ). If 2𝑚 > 0, we set

𝐾𝑉
2𝑚 =

���	
𝑛 1 𝑛

𝑛 𝔬𝐸 𝔭𝑚𝐸 𝔬𝐸
1 𝔭𝑚𝐸 1 + 𝔭2𝑚

𝐸 𝔭𝑚𝐸
𝑛 𝔬𝐸 𝔭𝑚𝐸 𝔬𝐸


��� ∩ U2𝑛+1,

𝐾𝑊
2𝑚 =

���	
1 2𝑛 − 2 1

1 1 + 𝔭𝑚𝐸 𝔬𝐸 𝔬𝐸
2𝑛 − 2 𝔭𝑚𝐸 𝔬𝐸 𝔬𝐸
1 𝔭2𝑚

𝐸 𝔭𝑚𝐸 1 + 𝔭𝑚𝐸


��� ∩ U2𝑛.

Note that

��	
𝜛−𝑚 · 1𝑛

1
𝜛𝑚 · 1𝑛


��𝐾𝑉
2𝑚
��	
𝜛−𝑚 · 1𝑛

1
𝜛𝑚 · 1𝑛


��
−1

=
���	

𝑛 1 𝑛

𝑛 𝔬𝐸 𝔬𝐸 𝔭−2𝑚
𝐸

1 𝔭2𝑚
𝐸 1 + 𝔭2𝑚

𝐸 𝔬𝐸
𝑛 𝔭2𝑚

𝐸 𝔭2𝑚
𝐸 𝔬𝐸


��� ∩ U2𝑛+1,

which is denoted by K2𝑚,U(𝑉 ) in [3], and by 𝐾𝑛,2𝑚 in [8]. If we set 𝑡𝐾𝑊
2𝑚 = {𝑡 𝑘 | 𝑘 ∈ 𝐾𝑊

2𝑚} to be the
transpose of 𝐾𝑊

2𝑚, then

𝐾𝑊
2𝑚 =

��	
𝜛−𝑚

12𝑛−2
𝜛𝑚


��𝑡𝐾𝑊
2𝑚
��	
𝜛−𝑚

12𝑛−2
𝜛𝑚


��
−1

.
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The theory of local newforms for U2𝑛+1 is established by the author together with Oi and Yasuda [3,
Theorem 1.1] and by Cheng [8, Theorem 1.2] as follows.

Theorem 2.1. Let 𝜎 be an irreducible tempered representation of U2𝑛+1 with the L-parameter 𝜙𝜎 .

(1) If 𝜎 is not generic, then 𝜎𝐾𝑉
2𝑚 = 0 for any 2𝑚 ≥ 0.

(2) If 𝜎 is generic, then

dimC(𝜎𝐾𝑉
2𝑚 ) =

{
0 if 2𝑚 < 𝑐(𝜙𝜎),

1 if 2𝑚 = 𝑐(𝜙𝜎) or 𝑐(𝜙𝜎) + 1.

Moreover, if 2𝑚 > 𝑐(𝜙𝜎), then 𝜎𝐾𝑉
2𝑚 ≠ 0.

In this paper, we will prove an analogue of this theorem for U2𝑛 as follows.

Theorem 2.2. Let 𝜋 be an irreducible tempered representation of U2𝑛 with the L-parameter 𝜙𝜋 and the
central character 𝜔𝜋 .

(1) If 𝜋 is not 𝜓𝐸 -generic, then 𝜋
𝐾𝑊

2𝑚
𝜓 = 0 for any 2𝑚 ≥ 0. Conversely, if 𝜋 is 𝜓𝐸 -generic, then there

exists 2𝑚 ≥ 0 such that 𝜋𝐾
𝑊
2𝑚

𝜓 ≠ 0.

(2) Suppose that 𝜋 is 𝜓𝐸 -generic. If 2𝑚 < 𝑐(𝜙𝜋), then 𝜋
𝐾𝑊

2𝑚
𝜓 = 0. If 2𝑚 = 𝑐(𝜙𝜋) or 2𝑚 = 𝑐(𝜙𝜋)+1, then

dimC(𝜋
𝐾𝑊

2𝑚
𝜓 ) ≤ 1.

(3) Set 2𝑚 = 𝑐(𝜙𝜋) or 2𝑚 = 𝑐(𝜙𝜋) + 1. Suppose that 𝜋 is 𝜓𝐸 -generic and that 𝜔𝜋 is trivial on
𝐸1 ∩ (1 + 𝔭𝑚𝐸 ). Then 𝜋

𝐾𝑊
2𝑚

𝜓 ≠ 0.

When 2𝑚 = 𝑐(𝜙𝜋), we shall call an element in 𝜋𝐾
𝑊
2𝑚 whose image in 𝜋𝜓 is nonzero a local newform

of 𝜋.

3. Local Fourier–Jacobi periods

In this section, we will prove Theorem 2.2 (1). To do this, we use the local Gan–Gross–Prasad conjecture
for (U2𝑛, U2𝑛−2).

3.1. Weil representation

Let 𝑊0 be the subspace of W generated by { 𝑓𝑛−1, . . . , 𝑓1, 𝑓−1, . . . , 𝑓−𝑛+1}. We write 𝐺𝑛 = U(𝑊) and
𝐺𝑛−1 = U(𝑊0) in this section. Hence, the Jacobi group 𝐽𝑛−1 is written as 𝐽𝑛−1 = 𝐻𝑛−1 � 𝐺𝑛−1.

Recall that we have a compact subgroup 𝐾𝑊
2𝑚 of 𝐺𝑛 = U(𝑊). Note that the intersections

𝐾 𝐽 = 𝐾𝑊
2𝑚 ∩ 𝐽𝑛−1, 𝐾𝐻 = 𝐾𝑊

2𝑚 ∩ 𝐻𝑛−1, 𝐾𝑊0 = 𝐾𝑊
2𝑚 ∩ U(𝑊0)

are independent of 2𝑚. Moreover, 𝐾𝑊0 is a hyperspecial maximal compact subgroup of
𝐺𝑛−1 = U(𝑊0).
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We consider the Weil representation 𝜔𝜓 of 𝐽𝑛−1 associated to 𝜓 and 𝜒. It is realized on the Schwartz
space S (𝐸𝑛−1) as follows. For 𝜙 ∈ S (𝐸𝑛−1) and 𝜉 ∈ 𝐸𝑛−1,

𝜔𝜓 (v(𝑥, 0; 0))𝜙(𝜉) = 𝜙(𝜉 + 𝑥), 𝑥 ∈ 𝐸𝑛−1,

𝜔𝜓 (v(0, 𝑦; 0))𝜙(𝜉) = 𝜓𝐸 (2𝜉𝑤𝑛−1
𝑡 𝑦)𝜙(𝜉), 𝑦 ∈ 𝐸𝑛−1,

𝜔𝜓 (v(0, 0; 𝑧))𝜙(𝜉) = 𝜓(𝑧)𝜙(𝜉), 𝑧 ∈ 𝐹,

𝜔𝜓 (m(𝑎))𝜙(𝜉) = 𝜒(det(𝑎)) | det(𝑎) |
1
2 𝜙(𝜉𝑎), 𝑎 ∈ GL𝑛−1 (𝐸),

𝜔𝜓 (n(𝑏))𝜙(𝜉) = 𝜓𝐸

(
𝜉𝑏𝑤𝑛−1

𝑡𝜉
)
𝜙(𝜉), 𝑏 ∈ M𝑛−1 (𝐸),

𝑡 (𝑤𝑛−1𝑏) = 𝑤𝑛−1𝑏,

𝜔𝜓 (𝐽2𝑛−2)𝜙(𝜉) =
∫
𝐸𝑛−1

𝜙(𝑥)𝜓𝐸 (2𝑥 · 𝑡𝜉)𝑑𝑥,

where we set

m(𝑎) =

(
𝑎 0
0 𝑤𝑛−1

𝑡𝑎−1𝑤−1
𝑛−1

)
, n(𝑏) =

(
1 𝑏
0 1

)
∈ 𝐺𝑛−1,

and the measure 𝑑𝑥 on 𝐸𝑛−1 is the self-dual Haar measure with respect to 𝜓𝐸 . The Weil representation
𝜔𝜓 is unitary with respect to the pairing

(𝜙1, 𝜙2) =
∫
𝐸𝑛−1

𝜙1(𝜉)𝜙2(𝜉)𝑑𝜉.

Set 𝜙0 ∈ S (𝐸𝑛−1) to be the characteristic function on 𝔬𝑛−1
𝐸 . Note that 𝜙0 is fixed by 𝜔𝜓 (𝐾

𝐽 ).
Moreover, the subspace 𝜔𝐾𝐻

𝜓 is one-dimensional spanned by 𝜙0.

3.2. Proof of Theorem 2.2 (1)

Let 𝜋 ∈ Irrtemp(𝐺𝑛) and 𝜋′ ∈ Irrtemp(𝐺𝑛−1). Fix a nonzero 𝐺𝑛-invariant (resp. 𝐺𝑛−1-invariant) bilinear
pairing (·, ·)𝜋 : 𝜋 × 𝜋∨ → C (resp. (·, ·)𝜋′ : 𝜋′ × 𝜋′∨ → C). For 𝜑 ∈ 𝜋, 𝜑∨ ∈ 𝜋∨, 𝜑′ ∈ 𝜋′, 𝜑′∨ ∈ 𝜋′∨ and
𝜙, 𝜙∨ ∈ S (𝐸𝑛−1), we define the local Fourier–Jacobi period by

𝛼(𝜑, 𝜑∨, 𝜑′, 𝜑′∨, 𝜙, 𝜙∨)

=
∫
𝐺𝑛−1

∫
𝐻𝑛−1

(𝜋(ℎ𝑔)𝜑, 𝜑∨)𝜋 (𝜋
′(𝑔)𝜑′, 𝜑′∨)𝜋′ (𝜔𝜓 (ℎ𝑔)𝜙, 𝜙∨)𝑑ℎ𝑑𝑔.

Proposition 3.1. The integral 𝛼(𝜑, 𝜑∨, 𝜑′, 𝜑′∨, 𝜙, 𝜙∨) is absolutely convergent.

Proof. This is exactly the same as the symplectic-metaplectic case ([25, Proposition 2.2.1]). We omit
the details. �

Since the central character of 𝜔𝜓 is 𝜓, if 𝛼(𝜑, 𝜑∨, 𝜑′, 𝜑′∨, 𝜙, 𝜙∨) ≠ 0, then∫
𝐹
(𝜋(ℎ𝑔 · v(0, 0; 𝑧))𝜑, 𝜑∨)𝜋𝜓(𝑧)𝑑𝑧 ≠ 0

for some ℎ ∈ 𝐻𝑛−1 and 𝑔 ∈ 𝐺𝑛−1. This means that the image of 𝜑 in 𝜋𝜓 is nonzero. The converse holds
in the following sense.

Lemma 3.2. Let 𝜑 ∈ 𝜋. Assume that the image of 𝜑 in 𝜋𝜓 is nonzero. Then there exists 𝜑∨ ∈ 𝜋∨ such that∫
𝐹
(𝜋(v(0, 0; 𝑧))𝜑, 𝜑∨)𝜋𝜓(𝑧)𝑑𝑧 ≠ 0.
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Proof. Note that by Proposition 3.1, the integral∫
𝐹
(𝜋(v(0, 0; 𝑧))𝜑, 𝜑∨)𝜋𝜓(𝑧)𝑑𝑧

converges absolutely. Suppose that this integral is equal to zero for all 𝜑∨ ∈ 𝜋∨. We will show that the
image of 𝜑 in 𝜋𝜓 is zero.

For an integer 𝑗 > 0, set

𝑇𝑗 =

⎧⎪⎪⎨⎪⎪⎩𝑡 (1 + 𝑎) =
��	
1 + 𝑎

12𝑛−2
(1 + 𝑎)−1


��
������ 𝑎 ∈ 𝔭 𝑗

𝐹

⎫⎪⎪⎬⎪⎪⎭ ⊂ U2𝑛.

Recall that 𝜓 |𝔬𝐹 = 1 but 𝜓 |𝔭−1
𝐹

≠ 1. Hence, for fixed 𝑧 ∈ 𝐹 with −𝑘 = ord(𝑧), the map

𝑇𝑗 � 𝑡 (1 + 𝑎) ↦→
𝜓((1 + 𝑎)2𝑧)

𝜓(𝑧)
∈ C×

is a character if 𝑘 ≤ 2 𝑗 . Moreover, it is trivial if 𝑘 ≤ 𝑗 . Hence,

𝑞− 𝑗
∫
𝔭 𝑗
𝐹

𝜓((1 + 𝑎)2𝑧)𝑑𝑎 =

{
𝜓(𝑧) if 𝑘 ≤ 𝑗 ,

0 if 𝑗 < 𝑘 ≤ 2 𝑗 .

Since 𝜋 is smooth, there is an integer 𝑗 > 0 such that 𝜑 is 𝑇𝑗 -fixed. To show that the image of 𝜑 in
𝜋𝜓 is zero, it suffices to prove that ∫

𝔭− 𝑗
𝐹

𝜋(v(0, 0; 𝑧)𝜑)𝜓(𝑧)𝑑𝑧 = 0.

This is equivalent to saying that ∫
𝔭− 𝑗
𝐹

(𝜋(v(0, 0; 𝑧))𝜑, 𝜑∨)𝜋𝜓(𝑧)𝑑𝑧 = 0 (†)

for all 𝜑∨ ∈ 𝜋∨. We claim that we may assume that 𝜑∨ is 𝑇𝑗 -fixed. Indeed, if 𝑧 ∈ 𝔭− 𝑗𝐹 , since 𝑘 =
−ord(𝑧) ≤ 𝑗 , we have∫

𝔭− 𝑗
𝐹

(𝜋(v(0, 0; 𝑧))𝜑, 𝜑∨)𝜋𝜓(𝑧)𝑑𝑧 =
∫
𝔭− 𝑗
𝐹

(𝜋(v(0, 0; 𝑧))𝜑, 𝜑∨)𝜋

(
𝑞− 𝑗

∫
𝔭 𝑗
𝐹

𝜓((1 + 𝑎)2𝑧)𝑑𝑎

)
𝑑𝑧

= 𝑞− 𝑗
∫
𝔭− 𝑗
𝐹

∫
𝔭 𝑗
𝐹

(𝜋(𝑡 (1 + 𝑎)−1v(0, 0; 𝑧)𝑡 (1 + 𝑎))𝜑, 𝜑∨)𝜋𝜓(𝑧)𝑑𝑎𝑑𝑧

= 𝑞− 𝑗
∫
𝔭− 𝑗
𝐹

∫
𝔭 𝑗
𝐹

(𝜋(v(0, 0; 𝑧))𝜑, 𝜋∨(𝑡 (1 + 𝑎))𝜑∨)𝜋𝜓(𝑧)𝑑𝑎𝑑𝑧.

Hence, (†) holds for 𝜑∨ if it holds for

𝑞− 𝑗
∫
𝔭 𝑗
𝐹

𝜋∨(𝑡 (1 + 𝑎))𝜑∨𝑑𝑎

which is 𝑇𝑗 -fixed.
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Now assume that 𝜑∨ is 𝑇𝑗 -fixed. Then we claim that∫
𝔭− 𝑗
𝐹

(𝜋(v(0, 0; 𝑧))𝜑, 𝜑∨)𝜋𝜓(𝑧)𝑑𝑧 =
∫
𝐹
(𝜋(v(0, 0; 𝑧))𝜑, 𝜑∨)𝜋𝜓(𝑧)𝑑𝑧,

and hence, the left-hand side is zero by assumption. Indeed, for 𝑘 > 𝑗 > 0, since 𝑘 ≥ 2 so that
𝑘 − 1 < 𝑘 ≤ 2(𝑘 − 1), we have∫

𝔭−𝑘𝐹 \𝔭−𝑘+1
𝐹

(𝜋(v(0, 0; 𝑧))𝜑, 𝜑∨)𝜋𝜓(𝑧)𝑑𝑧

= 𝑞−𝑘+1
∫
𝔭−𝑘𝐹 \𝔭−𝑘+1

𝐹

∫
𝔭𝑘−1
𝐹

(𝜋(𝑡 (1 + 𝑎)−1v(0, 0; 𝑧)𝑡 (1 + 𝑎))𝜑, 𝜑∨)𝜋𝜓(𝑧)𝑑𝑎𝑑𝑧

=
∫
𝔭−𝑘𝐹 \𝔭−𝑘+1

𝐹

(𝜋(v(0, 0; 𝑧))𝜑, 𝜑∨)𝜋

(
𝑞−𝑘+1

∫
𝔭𝑘−1
𝐹

𝜓((1 + 𝑎)2𝑧)𝑑𝑎

)
𝑑𝑧

= 0.

This completes the proof of the lemma. �

Now, we prove Theorem 2.2 (1).

Proof of Theorem 2.2 (1). Let 𝜋 be an irreducible tempered representation of 𝐺𝑛 = U2𝑛. Suppose that
𝜋
𝐾𝑊

2𝑚
𝜓 ≠ 0 for some 2𝑚 ≥ 0. We will show that 𝜋 must be 𝜓𝐸 -generic.

Fix 𝜑 ∈ 𝜋𝐾
𝑊
2𝑚 such that the image of 𝜋𝜓 is nonzero. By Lemma 3.2, one can find 𝜑∨ ∈ 𝜋∨ such that∫

𝐹
(𝜋(v(0, 0; 𝑧))𝜑, 𝜑∨)𝜋𝜓(𝑧)𝑑𝑧 ≠ 0.

Since Z is the center of 𝐻𝑛−1, we may assume that 𝜑∨ is fixed by 𝐾𝐻 . Hence, the matrix coefficient
𝐻𝑛−1 � ℎ ↦→ (𝜋(ℎ)𝜑, 𝜑∨)𝜋 is bi-𝐾𝐻 -invariant. Since 𝜔𝜓 is the unique irreducible representation of
𝐻𝑛−1 whose central character is 𝜓, there are 𝜙, 𝜙∨ ∈ S (𝐸𝑛−1) such that∫

𝐻𝑛−1

(𝜋(ℎ)𝜑, 𝜑∨)𝜋 (𝜔𝜓 (ℎ)𝜙, 𝜙∨)𝑑ℎ ≠ 0.

We may also assume that both 𝜙 and 𝜙∨ are fixed by 𝐾𝐻 . Since 𝜔𝐾𝐻

𝜓 = C𝜙0, we can take 𝜙 = 𝜙∨ = 𝜙0.
Hence, ∫

𝐻𝑛−1

(𝜋(ℎ)𝜑, 𝜑∨)𝜋 (𝜔𝜓 (ℎ)𝜙0, 𝜙0)𝑑ℎ ≠ 0.

Now by applying the same argument as [11, Lemma 12.5] to the integral on 𝐺𝑛−1, one can find
𝜋′ ∈ Irrtemp(𝐺𝑛−1) and (𝜑′, 𝜑′∨) ∈ 𝜋′ × 𝜋′∨ such that

𝛼(𝜑, 𝜑∨, 𝜑′, 𝜑′∨, 𝜙0, 𝜙0) ≠ 0.

We may assume that 𝜑′ is fixed by 𝐾𝑊0 since so are 𝜑 and 𝜙0. This means that 𝜋′ is unramified. By the
local Gan–Gross–Prasad conjecture ([9, Conjecture 17.3, Theorem 19.1]), whose basic case is proven
by Gan–Ichino [10, Theorem 1.3], we can deduce that 𝜋 is 𝜓𝐸 -generic.

Conversely, if 𝜋 is 𝜓𝐸 -generic, by the local Gan–Gross–Prasad conjecture, one can find an irreducible
tempered unramified representation 𝜋′ of 𝐺𝑛−1 such that Hom𝐽𝑛−1 (𝜋 ⊗ 𝜋′ ⊗ 𝜔𝜓,C) ≠ 0. Since 𝜋′ and
𝜔𝜓 are irreducible as representations of 𝐺𝑛−1 and 𝐻𝑛−1, respectively, for any nonzero unramified vector
𝜑′

0 ∈ 𝜋′ and for any nonzero element L ∈ Hom𝐽𝑛−1 (𝜋 ⊗ 𝜋′ ⊗ 𝜔𝜓 ,C), one can take 𝜑 ∈ 𝜋 such that
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L(𝜑 ⊗ 𝜑′
0 ⊗ 𝜙0) ≠ 0. We may assume that 𝜑 is fixed by 𝐾 𝐽 . Since 𝜋 is smooth, 𝜑 is fixed by 𝐾𝑊

2𝑚 for

2𝑚 � 0. In this case, 𝜑 gives a nonzero element in 𝜋
𝐾𝑊

2𝑚
𝜓 .

This completes the proof of Theorem 2.2 (1). �

Recall in [9, Corollary 16.3] that for 𝜋 ∈ Irr(𝐺𝑛) and 𝜋′ ∈ Irr(𝐺𝑛−1), we have

dimC Hom𝐽𝑛−1 (𝜋 ⊗ 𝜋′ ⊗ 𝜔𝜓 ,C) ≤ 1.

It is worth to state the following result which was obtained by the above argument.

Proposition 3.3. Let 𝜋 be an irreducible tempered representation of 𝐺𝑛. Suppose that there is 𝜑 ∈ 𝜋𝐾
𝑊
2𝑚

whose image in 𝜋𝜓 is nonzero for some 2𝑚 ≥ 0. Then there exists an irreducible tempered unramified
representation 𝜋′ of 𝐺𝑛−1 together with an unramified vector 𝜑′

0 ∈ 𝜋′ such that L(𝜑 ⊗ 𝜑′
0 ⊗ 𝜙0) ≠ 0 for

any nonzero L ∈ Hom𝐽𝑛−1 (𝜋 ⊗ 𝜋′ ⊗ 𝜔𝜓 ,C).

4. Uniqueness

In this section, we will prove Theorem 2.2 (2). As usual, this is an application of Rankin–Selberg
integrals.

4.1. Rankin–Selberg integrals

Let 𝜏 be an irreducible generic representation of GL𝑛−1(𝐸) which is realized on the Whittaker space
W (𝜏, 𝜓−1

𝐸 ) with respect to the inverse of 𝜓𝐸 . For 𝑠 ∈ C, we consider the normalized parabolically
induced representation

Ind𝐺𝑛−1
𝑄𝑛−1

(
𝜏 | det |𝑠−

1
2

)
of 𝐺𝑛−1, where 𝑄𝑛−1 = 𝑀𝑛−1𝑈𝑛−1 denotes the standard Siegel parabolic subgroup so that

𝑀𝑛−1 = {m(𝑎) | 𝑎 ∈ GL𝑛−1(𝐸)},

𝑈𝑛−1 = {n(𝑏) | 𝑏 ∈ M𝑛−1 (𝐸),
𝑡 (𝑤𝑛−1𝑏) = 𝑤𝑛−1𝑏}.

We realize it on the space 𝑉𝐺𝑛−1
𝑄𝑛−1

(W (𝜏, 𝜓−1
𝐸 ), 𝑠) of smooth functions 𝑓𝑠 : 𝐺𝑛−1 × GL𝑛−1 (𝐸) → C such

that

◦ 𝑓𝑠 (n(𝑏)m(𝑎)𝑔, 𝑎′) = | det 𝑎 |𝑠+
𝑛
2 −1

𝐸 𝑓𝑠 (𝑔, 𝑎
′𝑎) for 𝑔 ∈ 𝐺𝑛−1, 𝑎, 𝑎′ ∈ GL𝑛−1 (𝐸) and n(𝑏) ∈ 𝑈𝑛−1;

◦ the function 𝑎 ↦→ 𝑓𝑠 (𝑔, 𝑎) belongs to W (𝜏, 𝜓−1
𝐸 ) for any 𝑔 ∈ 𝐺𝑛−1.

Define a new representation 𝜏∗ by 𝜏∗(𝑎) = 𝜏(𝑎∗), where 𝑎∗ = 𝑤𝑛−1
𝑡𝑎−1𝑤−1

𝑛−1. Note that 𝜏∗ � 𝜏∨, where
𝜏(𝑎) = 𝜏(𝑎). As in [21, Section 2.3], one can define a normalized intertwining operator

𝑀∗(𝜏, 𝑠) : 𝑉𝐺𝑛−1
𝑄𝑛−1

(W (𝜏, 𝜓−1
𝐸 ), 𝑠) → 𝑉𝐺𝑛−1

𝑄𝑛−1
(W (𝜏∗, 𝜓−1

𝐸 ), 1 − 𝑠).

Let 𝜋 be an irreducible 𝜓𝐸 -generic representation of 𝐺𝑛 realized on the Whittaker space W (𝜋, 𝜓𝐸 ).
For 𝑊 ∈ W (𝜋, 𝜓𝐸 ), 𝑓𝑠 ∈ 𝑉𝐺𝑛−1

𝑄𝑛−1
(W (𝜏, 𝜓−1

𝐸 ), 𝑠) and 𝜙 ∈ S (𝐸𝑛−1), we define the Rankin–Selberg
integral L(𝑊, 𝑓𝑠 , 𝜙) by∫

𝑁𝑛−1\𝐺𝑛−1

∫
𝐸𝑛−1

𝑊 (𝑤1,𝑛−1v(𝑥, 0; 0)𝑔) 𝑓𝑠 (𝑔, 1𝑛−1)𝜔𝜓 (𝑔)𝜙(𝑥)𝑑𝑥𝑑𝑔,
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where we set

𝑤1,𝑛−1 =
����	

1𝑛−1
1

1
1𝑛−1


���� ∈ 𝐺𝑛.

Remark 4.1. Note that

𝑊 (𝑤1,𝑛−1v(𝑥, 0; 0)𝑔 · v(0, 0; 𝑧)) = 𝜓(𝑧)𝑊 (𝑤1,𝑛−1v(𝑥, 0; 0)𝑔)

for 𝑊 ∈ W (𝜋, 𝜓𝐸 ). Hence, the restriction map 𝑊 ↦→ 𝑊 (𝑤1,𝑛−1v(𝑥, 0; 0)𝑔) factors through 𝜋 � 𝜋𝜓 . In
particular, if 𝜋 is 𝜓𝐸 -generic, then 𝜋𝜓 is nonzero.
Theorem 4.2. Keep the notations.

(1) The integral L(𝑊, 𝑓𝑠 , 𝜙) converges absolutely for Re(𝑠) � 0. It is a rational function in 𝑞−𝑠 so that
it admits a meromorphic continuation to the whole s-plane.

(2) Let 𝐼 (𝜋 × 𝜏 × 𝜒) be the fractional ideal of C[𝑞−𝑠 , 𝑞𝑠] generated by L(𝑊, 𝑓𝑠 , 𝜙) for 𝑊 ∈ W (𝜋, 𝜓𝐸 ),
𝑓𝑠 ∈ 𝑉𝐺𝑛−1

𝑄𝑛−1
(W (𝜏, 𝜓−1

𝐸 ), 𝑠) and 𝜙 ∈ S (𝐸𝑛−1). Then there is a unique polynomial 𝑃(𝑋) ∈ C[𝑋] with
𝑃(0) = 1 such that 𝐼 (𝜋 × 𝜏 × 𝜒) = (𝑃(𝑞−𝑠)−1). We define the L-function attached to 𝜋 × 𝜏 and 𝜒 by

𝐿(𝑠, 𝜋 × 𝜏, 𝜒) = 𝑃(𝑞−𝑠)−1.

(3) There is a meromorphic function Γ(𝑠, 𝜋 × 𝜏, 𝜓) such that

L(𝑊, 𝑀∗(𝜏, 𝑠) 𝑓𝑠 , 𝜙) = 𝜔𝜋 (−1)𝑛−1𝜔𝜏 (−1)𝑛Γ(𝑠, 𝜋 × 𝜏, 𝜒, 𝜓)L(𝑊, 𝑓𝑠 , 𝜙)

for any 𝑊 ∈ W (𝜋, 𝜓𝐸 ), 𝑓𝑠 ∈ 𝑉𝐺𝑛−1
𝑄𝑛−1

(W (𝜏, 𝜓−1
𝐸 ), 𝑠) and 𝜙 ∈ S (𝐸𝑛−1). We call Γ(𝑠, 𝜋 × 𝜏, 𝜒, 𝜓) the

gamma factor attached to 𝜋 × 𝜏, 𝜒 and 𝜓.
(4) The gamma factor Γ(𝑠, 𝜋×𝜏, 𝜒, 𝜓) satisfies several properties (including the multiplicativity), which

determine Γ(𝑠, 𝜋 × 𝜏, 𝜒, 𝜓) uniquely.
(5) Define the 𝜀-factor attached to 𝜋 × 𝜏, 𝜒 and 𝜓 by

𝜀(𝑠, 𝜋 × 𝜏, 𝜒, 𝜓) = Γ(𝑠, 𝜋 × 𝜏, 𝜒, 𝜓)
𝐿(𝑠, 𝜋 × 𝜏, 𝜒)

𝐿(1 − 𝑠, 𝜋∨ × 𝜏∨, 𝜒)
.

Then it satisfies that

𝜀(1 − 𝑠, 𝜋 × 𝜏∗, 𝜒, 𝜓)𝜀(𝑠, 𝜋 × 𝜏, 𝜒, 𝜓) = 1.

In particular, 𝜀(𝑠, 𝜋 × 𝜏, 𝜒, 𝜓) ∈ C×(𝑞−𝑠)Z.

Proof. (1) is [4, Proposition 6.4]. By [4, Proposition 6.5], we see that 1 ∈ 𝐼 (𝜋 × 𝜏 × 𝜒), which implies
(2). The assertion (3) follows from the multiplicity one theorem proven in [9, Corollary 16.3]. (4) is
proven by Morimoto [21, Theorem 3.1]. Since 𝑀∗(𝜏∗, 1− 𝑠) ◦𝑀∗(𝜏, 𝑠) = id, using 𝜔𝜏∗ (−1) = 𝜔𝜏 (−1),
we have

L(𝑊, 𝑓𝑠 , 𝜙) = L(𝑊, 𝑀∗(𝜏∗, 1 − 𝑠) ◦ 𝑀∗(𝜏, 𝑠) 𝑓𝑠 , 𝜙)

= 𝜔𝜋 (−1)𝑛−1𝜔𝜏∗ (−1)𝑛Γ(1 − 𝑠, 𝜋 × 𝜏∗, 𝜒, 𝜓)L(𝑊, 𝑀∗(𝜏, 𝑠) 𝑓𝑠 , 𝜙)

= Γ(1 − 𝑠, 𝜋 × 𝜏∗, 𝜒, 𝜓)Γ(𝑠, 𝜋 × 𝜏, 𝜒, 𝜓)L(𝑊, 𝑓𝑠 , 𝜙)

for any W, 𝑓𝑠 and 𝜙. It means that

Γ(1 − 𝑠, 𝜋 × 𝜏∗, 𝜒, 𝜓)Γ(𝑠, 𝜋 × 𝜏, 𝜒, 𝜓) = 1,
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which is equivalent to saying that

𝜀(1 − 𝑠, 𝜋 × 𝜏∗, 𝜒, 𝜓)𝜀(𝑠, 𝜋 × 𝜏, 𝜒, 𝜓) = 1.

Hence, 𝜀(𝑠, 𝜋 × 𝜏, 𝜒, 𝜓) ∈ C[𝑞−𝑠 , 𝑞𝑠]× = C×(𝑞−𝑠)Z. �

4.2. Unramified representations

In this subsection, we consider the Rankin–Selberg integrals when 𝜏 varies over irreducible unramified
representations of GL𝑛−1 (𝐸).

Recall that 𝐾𝑊0 = 𝐾𝑊
0 ∩ 𝐺𝑛−1. It is a hyperspecial maximal compact subgroup of 𝐺𝑛−1, and the

Iwasawa decomposition 𝐺𝑛−1 = 𝑄𝑛−1𝐾
𝑊0 holds.

Irreducible unramified representations of GL𝑛−1 (𝐸) are parametrized by the Satake parameters
𝑥 = (𝑥1, . . . , 𝑥𝑛−1) ∈ (C×)𝑛−1/𝑆𝑛−1. We write the unramified representation associated to 𝑥 by 𝜏𝑥 . Then
for almost all 𝑥, since 𝜏𝑥 is generic, there exists a unique function 𝑓𝑠 (𝑥) ∈ 𝑉𝐺𝑛−1

𝑄𝑛−1
(W (𝜏𝑥 , 𝜓

−1
𝐸 ), 𝑠) such

that
◦ 𝑓𝑠 (𝑔𝑘, 𝑎; 𝑥) = 𝑓𝑠 (𝑔, 𝑎; 𝑥) for any 𝑔 ∈ 𝐺𝑛−1, 𝑘 ∈ 𝐾𝑊0 and 𝑎 ∈ GL𝑛−1 (𝐸); and
◦ the function 𝑊 (𝑎; 𝑥) = 𝑓𝑠 (12(𝑛−1) , 𝑎; 𝑥) is right GL𝑛−1(𝔬𝐸 )-invariant with 𝑊 (1𝑛−1; 𝑥) = 1.
Lemma 4.3. For 𝑥 = (𝑥1, . . . , 𝑥𝑛−1), we write 𝑥−1 = (𝑥−1

1 , . . . , 𝑥−1
𝑛−1). Then we have

𝑀∗(𝜏𝑥 , 𝑠) 𝑓𝑠 (𝑥)∏𝑛−1
𝑖=1 (1 − 𝑞−𝑠𝑥𝑖)

∏
1≤𝑖< 𝑗≤𝑛−1 (1 − 𝑞−2𝑠𝑥𝑖𝑥 𝑗 )

=
𝑓1−𝑠 (𝑥

−1)∏𝑛−1
𝑖=1 (1 − 𝑞−(1−𝑠)𝑥−1

𝑖 )
∏

1≤𝑖< 𝑗≤𝑛−1 (1 − 𝑞−2(1−𝑠)𝑥−1
𝑖 𝑥−1

𝑗 )
.

Proof. The assertion follows from [4, Theorem 8.1] and [21, Theorem 3.1]. �

Let 𝜋 be an irreducible 𝜓𝐸 -generic tempered representation of 𝐺𝑛 with L-parameter 𝜙𝜋 . Then by
the uniqueness of the gamma factor (Theorem 4.2 (4)), we have

Γ(𝑠, 𝜋 × 𝜏𝑥 , 𝜒, 𝜓) =
𝑛−1∏
𝑖=1

𝜀(𝑠 + 𝑠𝑖 + 𝑠0, 𝜙𝜋 , 𝜓𝐸 )
𝐿(1 − 𝑠 − 𝑠𝑖 − 𝑠0, 𝜙

∨
𝜋)

𝐿(𝑠 + 𝑠𝑖 + 𝑠0, 𝜙𝜋)

for almost all 𝑥 = (𝑥1, . . . , 𝑥𝑛−1), where 𝑠0, 𝑠1, . . . , 𝑠𝑛−1 ∈ C are such that 𝑞−2𝑠0 = −1 and 𝑥𝑖 = 𝑞−2𝑠𝑖

for 1 ≤ 𝑖 ≤ 𝑛 − 1. Since 𝜙𝜋 is tempered, two meromorphic functions
∏𝑛−1

𝑖=1 𝐿(1 − 𝑠 − 𝑠𝑖 − 𝑠0, 𝜙
∨
𝜋) and∏𝑛−1

𝑖=1 𝐿(𝑠 + 𝑠𝑖 + 𝑠0, 𝜙𝜋) have no common pole for almost all 𝑥. In particular, in this case, we have

𝐿(𝑠, 𝜋 × 𝜏𝑥 , 𝜒) =
𝑛−1∏
𝑖=1

𝐿(𝑠 + 𝑠𝑖 + 𝑠0, 𝜙𝜋),

𝜀(𝑠, 𝜋 × 𝜏𝑥 , 𝜒, 𝜓) =
𝑛−1∏
𝑖=1

𝜀(𝑠 + 𝑠𝑖 + 𝑠0, 𝜙𝜋 , 𝜓𝐸 ).

If we write 𝐿(𝑠, 𝜙𝜋) = 𝑃𝜋 (𝑞
−2𝑠) and 𝜀(𝑠, 𝜙𝜋 , 𝜓𝐸 ) = 𝜀𝑞𝑐 (𝜙𝜋 ) (1−2𝑠) , then

𝐿(𝑠, 𝜋 × 𝜏𝑥 , 𝜒) =
𝑛−1∏
𝑖=1

𝑃𝜋 (−𝑥𝑖𝑞
−2𝑠),

𝜀(𝑠, 𝜋 × 𝜏𝑥 , 𝜒, 𝜓) = 𝜀𝑛−1 (−𝑞1−2𝑠)𝑐 (𝜙𝜋 ) (𝑛−1)
𝑛−1∏
𝑖=1

𝑥
𝑐 (𝜙𝜋 )

𝑖 .
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4.3. Proof of Theorem 2.2 (2)

The symmetric group 𝑆𝑛−1 acts on C[𝑋±1
1 , . . . , 𝑋±1

𝑛−1] canonically. Set

T = C[𝑋±1
1 , . . . , 𝑋±1

𝑛−1]
𝑆𝑛−1 .

Note that

T = C[𝑇1, . . . , 𝑇𝑛−2, 𝑇𝑛−1, 𝑇
−1
𝑛−1]

with

𝑇𝑖 =
∑

𝜎∈𝑆𝑛−1

𝑋𝜎 (1) · · · 𝑋𝜎 (𝑖) .

The degree with respect to 𝑇𝑛−1 gives a Z-grading on T ; that is, T = ⊕𝑑∈ZT𝑑 with

T𝑑 = C[𝑇1, . . . , 𝑇𝑛−2]𝑇
𝑑
𝑛−1.

Write 𝑋 = (𝑋1, . . . , 𝑋𝑛−1) and 𝑞1−2𝑠𝑋 = (𝑞1−2𝑠𝑋1, . . . , 𝑞
1−2𝑠𝑋𝑛−1). There is a function

𝑊 (𝑋) : GL𝑛−1 (𝐸) → T

such that 𝑊 (𝑋) |𝑋=𝑥 = 𝑊 (𝑥) for almost all 𝑥 ∈ (C×)𝑛−1. Similarly, we consider the function
𝑓𝑠 (𝑋) : 𝐺𝑛−1 × GL𝑛−1 (𝐸) → T so that 𝑓𝑠 (𝑋) |𝑋=𝑥 = 𝑓𝑠 (𝑥) for almost all 𝑥 ∈ (C×)𝑛−1. In particular,
𝑓𝑠 (12(𝑛−1) , 𝑎; 𝑋) = 𝑊 (𝑎; 𝑞1−2𝑠𝑋).

We regard L(𝑊, 𝑓1/2(𝑋), 𝜙0) as a formal power series of 𝑋±1
1 , . . . , 𝑋±1

𝑛−1, or an element of
C[𝑇1, . . . , 𝑇𝑛−2] [[𝑇

±1
𝑛−1]]. For 𝜆 = (𝜆1, . . . , 𝜆𝑛−1) ∈ Z

𝑛−1, we set |𝜆 | = 𝜆1 + · · · + 𝜆𝑛−1. The following is
a key lemma.

Lemma 4.4. Let 𝑊 ∈ W (𝜋, 𝜓𝐸 )
𝐾𝑊

2𝑚 . Write

L(𝑊, 𝑓1/2(𝑋), 𝜙0) =
∑

𝜆∈Z𝑛−1

𝑎𝜆 (𝑊)𝑋𝜆1
1 · · · 𝑋𝜆𝑛−1

𝑛−1 =
∑
𝑑∈Z

L𝑑 (𝑊)𝑇𝑑
𝑛−1

with 𝑎𝜆 (𝑊) ∈ C and L𝑑 (𝑊) ∈ C[𝑇1, . . . , 𝑇𝑛−2]. Then

◦ 𝑎𝜆 (𝑊) = 0 unless |𝜆 | ≥ −(𝑛 − 1)𝑚; and
◦ L𝑑 (𝑊) = 0 unless 𝑑 ≥ −𝑚.

Proof. For row vectors 𝑥, 𝑢 ∈ 𝐸𝑛−1 and 𝑎 ∈ GL𝑛−1 (𝐸), we put 𝑘 (𝑥, 𝑎, 𝑢) to be the matrix

(𝑤1,𝑛−1v(𝑥, 0; 0)m(𝑎))−1
����	

1𝑛−1
𝑡𝑢 0 0

0 1 0 0
0 0 1 −𝑢𝑤𝑛−1
0 0 0 1𝑛−1


����𝑤1,𝑛−1v(𝑥, 0; 0)m(𝑎).

By an easy calculation, 𝑘 (𝑥, 𝑎, 𝑢) is equal to

����	
1 − 𝑥𝑡𝑢 −𝑥𝑡𝑢𝑥𝑎 0 0
𝑎−1𝑡𝑢 1𝑛−1 + 𝑎−1𝑡𝑢𝑥𝑎 0 0

0 0 1𝑛−1 − 𝑤𝑛−1
𝑡𝑎𝑡𝑥𝑢𝑡𝑎−1𝑤𝑛−1 𝑤𝑛−1

𝑡𝑎𝑡𝑥𝑢𝑡𝑥

0 0 −𝑢𝑡𝑎−1𝑤𝑛−1 1 + 𝑢𝑡𝑥


����.
In particular, if 𝑥𝑎 ∈ 𝔬𝑛−1

𝐸 and 𝑢𝑡𝑎−1 ∈ (𝔭𝑚𝐸 )
𝑛−1, then 𝑥𝑡𝑢 ∈ 𝔭𝑚𝐸 so that 𝑘 (𝑥, 𝑎, 𝑢) ∈ 𝐾𝑊

2𝑚.
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As functions on 𝑔 ∈ 𝐺𝑛−1, all of 𝑊 (𝑤1,𝑛−1v(𝑥, 0; 0)𝑔), 𝑓𝑠 (𝑔, 1𝑛−1; 𝑋) and 𝜔𝜓 (𝑔)𝜙0 are right 𝐾𝑊0 -
invariant. Hence, by the integral formula with respect to the Iwasawa decomposition, we can write
L(𝑊, 𝑓𝑠 (𝑋), 𝜙0) as∫

𝑇𝑛−1

∫
𝐸𝑛−1

𝑊 (𝑤1,𝑛−1v(𝑥, 0; 0)𝑡) 𝑓𝑠 (𝑡, 1𝑛−1; 𝑋)𝜔𝜓 (𝑡)𝜙0(𝑥)𝛿
−1
𝐵𝑛−1

(𝑡)𝑑𝑥𝑑𝑡,

where 𝐵𝑛−1 = 𝑇𝑛−1𝑁𝑛−1 is the upper triangular Borel subgroup of 𝐺𝑛−1 with the diagonal torus
𝑇𝑛−1. Write 𝑡 = m(𝑎) with 𝑎 = diag(𝑎1, . . . , 𝑎𝑛−1) being a diagonal matrix in GL𝑛−1 (𝐸). Then
𝜔𝜓 (m(𝑎))𝜙0(𝑥) ≠ 0 ⇐⇒ 𝑥𝑎 ∈ 𝔬𝑛−1

𝐸 . In this case, if 𝑊 (𝑤1,𝑛−1v(𝑥, 0; 0)m(𝑎)) ≠ 0, then for
𝑢 = (𝑢1, . . . , 𝑢𝑛−1) ∈ 𝐸𝑛−1 such that 𝑢𝑡𝑎−1 ∈ (𝔭𝑚𝐸 )

𝑛−1, we have

0 ≠ 𝑊 (𝑤1,𝑛−1v(𝑥, 0; 0)m(𝑎))

= 𝑊 (𝑤1,𝑛−1v(𝑥, 0; 0)m(𝑎) · 𝑘 (𝑥, 𝑎, 𝑢))

= 𝑊
����	
����	

1𝑛−1
𝑡𝑢 0 0

0 1 0 0
0 0 1 −𝑢𝑤𝑛−1
0 0 0 1𝑛−1


����𝑤1,𝑛−1v(𝑥, 0; 0)m(𝑎)

����

= 𝜓𝐸 (𝑢𝑛−1)𝑊 (𝑤1,𝑛−1v(𝑥, 0; 0)m(𝑎)).

This shows that

𝑢𝑛−1 ∈ 𝔭ord(𝑎𝑛−1)+𝑚
𝐸 =⇒ 𝜓𝐸 (𝑢𝑛−1) = 1.

This means that ord(𝑎𝑛−1) + 𝑚 ≥ 0.
Recall that 𝑓𝑠 (m(𝑎), 1𝑛−1; 𝑋) = 𝛿

1
2
𝑄𝑛−1

(m(𝑎))𝑊 (𝑎; 𝑞1−2𝑠𝑋). By a similar (and well-known) argu-
ment, if 𝑊 (𝑎; 𝑞1−2𝑠𝑋) ≠ 0, then ord(𝑎1) ≥ · · · ≥ ord(𝑎𝑛−1). Hence, we conclude that if

𝑊 (𝑤1,𝑛−1v(𝑥, 0; 0)m(𝑎))𝑊 (𝑎; 𝑋)𝜔𝜓 (m(𝑎))𝜙0(𝑥) ≠ 0,

then

ord(𝑎1) ≥ · · · ≥ ord(𝑎𝑛−1) ≥ −𝑚

so that

ord(det(𝑎)) =
𝑛−1∑
𝑖=1

ord(𝑎𝑖) ≥ −(𝑛 − 1)𝑚.

Since the Casselman–Shalika formula [6] tells us that

𝑊 (𝑎; 𝑋) ∈
����	

⊕
𝜆∈Z𝑛−1

|𝜆 |=ord(det(𝑎))

C𝑋𝜆1
1 · · · 𝑋𝜆𝑛−1

𝑛−1


���� ∩ C[𝑇1, . . . , 𝑇𝑛−2]𝑇
ord(𝑎𝑛−1)
𝑛−1 ,

we obtain the assertions. �

For 𝑊 ∈ W (𝜋, 𝜓𝐸 )
𝐾𝑊

2𝑚 , we define Ψ(𝑊 ; 𝑋) by

Ψ(𝑊 ; 𝑋) =
∏𝑛−1

𝑖=1 𝑃𝜋 (−𝑞
−1𝑋𝑖)L(𝑊, 𝑓1/2(𝑋), 𝜙0)∏𝑛−1

𝑖=1 (1 − 𝑞−1𝑋𝑖)
∏

1≤𝑖< 𝑗≤𝑛−1 (1 − 𝑞−2𝑋𝑖𝑋 𝑗 )
.
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Proposition 4.5. If 2𝑚 < 𝑐(𝜙𝜋), then Ψ(𝑊 ; 𝑋) = 0 for 𝑊 ∈ W (𝜋, 𝜓𝐸 )
𝐾𝑊

2𝑚 . If 2𝑚 = 𝑐(𝜙𝜋) or
2𝑚 = 𝑐(𝜙𝜋) + 1, then

dimC
{
Ψ(𝑊 ; 𝑋)

��� 𝑊 ∈ W (𝜋, 𝜓𝐸 )
𝐾𝑊

2𝑚

}
≤ 1.

Proof. Since 𝑃𝜋 (𝑋) is a polynomial of X with 𝑃𝜋 (0) = 1, and since (1 − 𝑞−1𝑋𝑖)
−1 =

∑∞
𝑘=0(𝑞

−1𝑋𝑖)
𝑘

and (1 − 𝑞−2𝑋𝑖𝑋 𝑗 )
−1 =

∑∞
𝑘=0(𝑞

−2𝑋𝑖𝑋 𝑗 )
𝑘 , if we write

Ψ(𝑊 ; 𝑋) =
∑

𝜆∈Z𝑛−1

𝛼𝜆 (𝑊)𝑋𝜆1
1 · · · 𝑋𝜆𝑛−1

𝑛−1 =
∑
𝑑∈Z

Ψ𝑑 (𝑊 ; 𝑋)𝑇𝑑
𝑛−1

with 𝛼𝜆 (𝑊) ∈ C and Ψ𝑑 (𝑊 ; 𝑋) ∈ C[𝑇1, . . . , 𝑇𝑛−2], by Lemma 4.4, we see that

◦ 𝛼𝜆 (𝑊) = 0 unless |𝜆 | ≥ −(𝑛 − 1)𝑚; and
◦ Ψ𝑑 (𝑊 ; 𝑋) = 0 unless 𝑑 ≥ −𝑚.

Write 𝑋−1 = (𝑋−1
1 , . . . , 𝑋−1

𝑛−1). By the functional equation (Theorem 4.2 (3), (5)) together with
Lemma 4.3, we see that

𝑇
−𝑐 (𝜙𝜋 )

𝑛−1 Ψ(𝑊 ; 𝑋−1) = 𝜀0Ψ(𝑊 ; 𝑋) (*)

with

𝜀0 = ((−1)𝑐 (𝜙𝜋 )𝜀 · 𝜔𝜋 (−1))𝑛−1.

The left-hand side and the right-hand side of (∗) belong to⊕
𝑑≤𝑚−𝑐 (𝜙𝜋 )

C[𝑇1, . . . , 𝑇𝑛−2]𝑇
𝑑
𝑛−1,

⊕
𝑑≥−𝑚

C[𝑇1, . . . , 𝑇𝑛−2]𝑇
𝑑
𝑛−1,

respectively. Hence, if Ψ𝑑 (𝑊 ; 𝑋) ≠ 0, then −𝑚 ≤ 𝑑 ≤ 𝑚 − 𝑐(𝜙𝜋) so that 2𝑚 ≥ 𝑐(𝜙𝜋). A similar
argument shows that if 𝛼𝜆(𝑊) ≠ 0, then

−(𝑛 − 1)𝑚 ≤ |𝜆 | ≤ (𝑛 − 1) (𝑚 − 𝑐(𝜙𝜋)).

Now we assume that 2𝑚 = 𝑐(𝜙𝜋). Then Ψ𝑑 (𝑊 ; 𝑋) = 0 unless 𝑑 = −𝑚. Hence,

𝑇𝑚
𝑛−1Ψ(𝑊 ; 𝑋) ∈ C[𝑇1, . . . , 𝑇𝑛−2] ⊂ C[𝑋1, . . . , 𝑋𝑛−1] .

This implies that 𝛼𝜆 (𝑊) = 0 unless 𝜆𝑖 ≥ −𝑚 for any 1 ≤ 𝑖 ≤ 𝑛 − 1. However, since 𝛼𝜆 (𝑊) = 0 unless
|𝜆 | = −(𝑛 − 1)𝑚, we see that 𝛼𝜆 (𝑊) = 0 unless 𝜆1 = · · · = 𝜆𝑛−1 = −𝑚. This means that

Ψ(𝑊 ; 𝑋) ∈ C𝑇−𝑚
𝑛−1

so that

dimC
{
Ψ(𝑊 ; 𝑋)

��� 𝑊 ∈ W (𝜋, 𝜓𝐸 )
𝐾𝑊

𝑐 (𝜙𝜋 )

}
≤ 1.

Next, we assume that 2𝑚 = 𝑐(𝜙𝜋) + 1. Then Ψ𝑑 (𝑊 ; 𝑋) = 0 unless 𝑑 = −𝑚,−𝑚 + 1, and 𝛼𝜆 (𝑊) = 0
unless |𝜆 | = −(𝑛 − 1)𝑚,−(𝑛 − 1) (𝑚 − 1). In particular, Ψ−𝑚+1(𝑊 ; 𝑋) is a scalar so that

Ψ−𝑚+1(𝑊 ; 𝑋−1) = Ψ−𝑚+1(𝑊 ; 𝑋).
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By the functional equation (∗), we have

Ψ−𝑚+1(𝑊 ; 𝑋−1) = 𝜀0Ψ−𝑚(𝑊 ; 𝑋),
Ψ−𝑚(𝑊 ; 𝑋−1) = 𝜀0Ψ−𝑚+1(𝑊 ; 𝑋).

Hence, Ψ−𝑚(𝑊 ; 𝑋) is also a scalar. Therefore,

Ψ(𝑊 ; 𝑋) ∈ C(𝑇−𝑚
𝑛−1 + 𝜀0𝑇

−𝑚+1
𝑛−1 )

so that

dimC
{
Ψ(𝑊 ; 𝑋)

��� 𝑊 ∈ W (𝜋, 𝜓𝐸 )
𝐾𝑊

𝑐 (𝜙𝜋 )+1
}
≤ 1.

This completes the proof. �

By Proposition 3.3, we see that W (𝜋, 𝜓𝐸 )
𝐾𝑊

2𝑚 � 𝑊 ↦→ Ψ(𝑊 ; 𝑋) gives an injective linear map

Ψ : 𝜋
𝐾𝑊

2𝑚
𝜓 ↩→ T .

Hence, by Proposition 4.5, we have

◦ 𝜋
𝐾𝑊

2𝑚
𝜓 = 0 if 2𝑚 < 𝑐(𝜙𝜋); and

◦ dimC(𝜋
𝐾𝑊

2𝑚
𝜓 ) ≤ 1 if 2𝑚 = 𝑐(𝜙𝜋) or 2𝑚 = 𝑐(𝜙𝜋) + 1.

This completes the proof of Theorem 2.2 (2).

5. Existence

In this section, we will prove Theorem 2.2 (3). To do this, we will use the theta correspondence for
(U(𝑉), U(𝑊)).

5.1. Theta correspondence

Recall that 𝑉 = 𝑉2𝑛+1 (resp. 𝑊 = 𝑊2𝑛) is a hermitian (resp. skew-hermitian) space over E of dimension
2𝑛 + 1 (resp. 2𝑛). ThenW = 𝑉 ⊗𝐸 𝑊 forms a symplectic space of dimension 4𝑛(2𝑛 + 1) equipped with
the symplectic form

〈𝑣 ⊗ 𝑤, 𝑣′ ⊗ 𝑤′〉 = tr𝐸/𝐹 (〈𝑣, 𝑣
′〉𝑉 · 〈𝑤, 𝑤′〉𝑊 ).

Here, U(𝑉), U(𝑊) and Sp(W) act on V, W andW, respectively, all from the left. We have a canonical
map U(𝑉) × U(𝑊) → Sp(W).

Recall that 𝜒 is the unique nontrivial quadratic unramified character of 𝐸×. Note that 𝜒 |𝐹× is equal
to the quadratic character corresponding to 𝐸/𝐹. Let S̃p(W) be the metaplectic C×-cover. Using the
pair (𝜒𝑉 , 𝜒𝑊 ) = (𝜒2𝑛+1, 𝜒2𝑛), we have Kudla’s splitting [15]

U(𝑉) × U(𝑊) → S̃p(W).

Let 𝜔𝜓 be the Weil representation of S̃p(W) associated to the additive character 𝜓. By the pullback,
we obtain the Weil representation 𝜔𝜓,𝑉 ,𝑊 of U(𝑉) × U(𝑊). For an irreducible representation 𝜋 of
U(𝑊), it is known that the maximal 𝜋-isotypic quotient of 𝜔𝜓,𝑉 ,𝑊 is of the form

Θ𝜓 (𝜋) � 𝜋
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for a smooth representation Θ𝜓 (𝜋) of U(𝑉) of finite length. The Howe duality conjecture, proven by
Waldspurger [24], asserts that if Θ𝜓 (𝜋) is nonzero, then it has a unique irreducible quotient 𝜃𝜓 (𝜋). We
call 𝜃𝜓 (𝜋) the theta lift of 𝜋.

The following is a special case of Prasad’s conjecture, which was proven by Gan–Ichino [10]. See
also Theorem 4.4 in that paper.

Theorem 5.1. Let 𝜋 be an irreducible 𝜓𝐸 -generic representation of U(𝑊) with L-parameter 𝜙𝜋 . Then
Θ𝜓 (𝜋) is always nonzero. Moreover, 𝜎 = 𝜃𝜓 (𝜋) is generic, and its L-parameter is given by

𝜙𝜎 = 𝜙𝜋 𝜒 ⊕ 1,

where 𝜙𝜋 𝜒 = 𝜙𝜋 ⊗ 𝜒.

In particular, if 𝜎 = 𝜃𝜓 (𝜋), then we have 𝑐(𝜙𝜎) = 𝑐(𝜙𝜋) and 𝜔𝜎 = 𝜔𝜋 . Moreover, if 𝜋 is tempered,
then so is 𝜎, so that we have 𝜎𝐾𝑉

2𝑚 ≠ 0 for 2𝑚 = 𝑐(𝜙𝜋) or 2𝑚 = 𝑐(𝜙𝜋) + 1 by Theorem 2.1.

5.2. Lattice model

First, we will show that 𝜋𝐾𝑊
2𝑚 ≠ 0. To do this, we use a lattice model S = S (𝐴) of the Weil representation

𝜔𝜓 of S̃p(W). In this subsection, we recall this model.
Let W be a symplectic space over F of dimension 2𝑁 equipped with a symplectic form 〈·, ·〉. The

group law of the Heisenberg group 𝐻 (W) =W ⊕ 𝐹 is given by

(𝑤1, 𝑡1) · (𝑤2, 𝑡2) =

(
𝑤1 + 𝑤2, 𝑡1 + 𝑡2 +

1
2
〈𝑤1, 𝑤2〉

)
,

whose center is {0}⊕𝐹 � 𝐹. By the Stone–von Neumann theorem, there is a unique (up to isomorphism)
irreducible admissible representation (𝜌𝜓 ,S) of 𝐻 (W) whose central character is 𝜓. The symplectic
group Sp(W) acts on 𝐻 (W) by 𝑔 · (𝑤, 𝑡) = (𝑔𝑤, 𝑡). By the uniqueness, for 𝑔 ∈ Sp(W), we have
𝑀𝑔 ∈ Aut(S) such that

𝑀𝑔 ◦ 𝜌𝜓 (ℎ) ◦ 𝑀−1
𝑔 = 𝜌𝜓 (𝑔ℎ) for ℎ ∈ 𝐻 (W). (★)

By Schur’s lemma, such 𝑀𝑔 is determined uniquely up to a nonzero scalar. Define the metaplectic
C×-cover S̃p(W) of Sp(W) by

S̃p(W) = {(𝑔, 𝑀𝑔) ∈ Sp(W) × Aut(S) | 𝑀𝑔 satisfies (★)}.

We have an exact sequence

1 −−−−−−→ C×
𝛼

−−−−−−→ S̃p(W)
𝛽

−−−−−−→ Sp(W) −−−−−−→ 1

given by 𝛼(𝑧) = (1W, 𝑧 · idS ) and 𝛽(𝑔, 𝑀𝑔) = 𝑔. The Weil representation 𝜔𝜓 of S̃p(W) on the space S
is defined by

𝜔𝜓 (𝑔, 𝑀𝑔) = 𝑀𝑔 .

Now we shall give a realization of the space S . Let A be a lattice ofW (i.e., a free 𝔬𝐹 -submodule of
rank 2𝑁). The dual lattice 𝐴∗ is defined by

𝐴∗ = {𝑤 ∈ W | 〈𝑤, 𝑎〉 ∈ 𝔬𝐹 for any𝑎 ∈ 𝐴}.
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Suppose that A is self-dual (i.e., 𝐴∗ = 𝐴). LetS (𝐴) be the space of locally constant, compactly supported
functions 𝜙 : 𝐻 (W) → C such that

𝜙((𝑎, 𝑡) · ℎ) = 𝜓(𝑡)𝜙(ℎ)

for (𝑎, 𝑡) ∈ 𝐴 ⊕ 𝐹 and ℎ ∈ 𝐻 (W). The group 𝐻 (W) acts on S (𝐴) by the right translation 𝜌𝜓 .
It is known that the representation (𝜌𝜓 ,S (𝐴)) of 𝐻 (W) is irreducible with the central character 𝜓.
This gives a realization (𝜔𝜓 ,S (𝐴)) of the Weil representation which is called a lattice model. Since
(𝑎, 0) · (𝑤, 0) = (𝑎 +𝑤, 1

2 〈𝑎, 𝑤〉), by the restriction toW ⊕ {0}, we can identify S (𝐴) with the space of
locally constant, compactly supported functions 𝜙 : W→ C such that

𝜙(𝑎 + 𝑤) = 𝜓

(
−

1
2
〈𝑎, 𝑤〉

)
𝜙(𝑤)

for 𝑎 ∈ 𝐴 and 𝑤 ∈ W.
For 𝑔 ∈ Sp(W), we define 𝑀 [𝑔] ∈ Aut(S (𝐴)) by

(𝑀 [𝑔]𝜙) (𝑤) =
∫
𝐴
𝜓

(
1
2
〈𝑎, 𝑤〉

)
𝜙(𝑔−1 · (𝑎 + 𝑤))𝑑𝑎

for 𝜙 ∈ S (𝐴) and 𝑤 ∈ W. Here, 𝑑𝑎 is the Haar measure on A normalized so that vol(𝐴) = 1. It is easy
to check that (𝑔, 𝑀 [𝑔]) ∈ S̃p(W).

Let 𝐾𝐴 be the stabilizer of A in Sp(W). Then we have

(𝑀 [𝑘]𝜙) (𝑤) = 𝜙(𝑘−1 · 𝑤)

for 𝑘 ∈ 𝐾𝐴, 𝜙 ∈ S (𝐴), and 𝑤 ∈ W. The map 𝑘 ↦→ (𝑘, 𝑀 [𝑘]) gives a splitting 𝐾𝐴 → S̃p(W). If we
identify 𝐾𝐴 with the image, the restriction of the Weil representation (𝜔𝜓 ,S (𝐴)) to 𝐾𝐴 is given by
𝜔𝜓 (𝑘)𝜙(𝑤) = 𝜙(𝑘−1 · 𝑤).

5.3. Families of lattices

Take bases {𝑒𝑛, . . . , 𝑒1, 𝑒0, 𝑒−1, . . . , 𝑒−𝑛} of V and { 𝑓𝑛, . . . , 𝑓1, 𝑓−1, . . . , 𝑓−𝑛} of W, respectively, as in
§2.1. Set

Γ𝑉 =

(
𝑛⊕
𝑖=1

𝔬𝐸𝑒𝑖

)
⊕ 𝔬𝐸𝑒0 ⊕

(
𝑛⊕
𝑖=1

𝔬𝐸𝑒−𝑖

)
,

Γ𝑊 =

(
𝑛⊕
𝑖=1

𝔬𝐸 𝑓𝑖

)
⊕

(
𝑛⊕
𝑖=1

𝔬𝐸 𝑓−𝑖

)
.

Then Γ𝑉 and Γ𝑊 are self-dual lattices (i.e., Γ∗
𝑉 = Γ𝑉 and Γ∗

𝑊 = Γ𝑊 ).
In this subsection, for two 𝔬𝐸 -modules Γ1 and Γ2, we denote by Γ1 ⊗ Γ2 the tensor product of 𝔬𝐸 -

modules. We put

𝐴 = Γ𝑉 ⊗ Γ𝑊 .

This is a self-dual lattice ofW = 𝑉 ⊗𝐹 𝑊 , (i.e., 𝐴∗ = 𝐴). We will consider the lattice model (𝜔𝜓 ,S (𝐴))
of the Weil representation of S̃p(W).
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Fix a non-negative even integer 2𝑚 ≥ 0. We consider lattices

𝑀2𝑚 =

(
𝑛⊕
𝑖=1

𝔬𝐸𝑒𝑖

)
⊕ 𝔭𝑚𝐸 𝑒0 ⊕

(
𝑛⊕
𝑖=1

𝔬𝐸𝑒−𝑖

)
,

𝑁2𝑚 =

(
𝑛⊕
𝑖=1

𝔬𝐸 𝑓𝑖

)
⊕

(
𝑛−1⊕
𝑖=1

𝔬𝐸 𝑓−𝑖

)
⊕ 𝔭𝑚𝐸 𝑓−𝑛

of V and W, respectively. Then 𝑀2𝑚 ⊂ Γ𝑉 and 𝑁2𝑚 ⊂ Γ𝑊 . Moreover, the dual lattices are given by

𝑀∗
2𝑚 =

(
𝑛⊕
𝑖=1

𝔬𝐸𝑒𝑖

)
⊕ 𝔭−𝑚𝐸 𝑒0 ⊕

(
𝑛⊕
𝑖=1

𝔬𝐸𝑒−𝑖

)
,

𝑁∗
2𝑚 = 𝔭−𝑚𝐸 𝑓𝑛 ⊕

(
𝑛−1⊕
𝑖=1

𝔬𝐸 𝑓𝑖

)
⊕

(
𝑛⊕
𝑖=1

𝔬𝐸 𝑓−𝑖

)
.

Recall that in Section 2.4, we defined compact subgroups 𝐾𝑉
2𝑚 and 𝐾𝑊

2𝑚 of U(𝑉) and U(𝑊), respec-
tively. The following lemma is easy to check.

Lemma 5.2. We have

𝐾𝑉
2𝑚 = {ℎ ∈ U(𝑉) | (ℎ − 1) · 𝑀∗

2𝑚 ⊂ 𝑀2𝑚},

𝐾𝑊
2𝑚 = {𝑔 ∈ U(𝑊) | (𝑔 − 1) · 𝑁∗

2𝑚 ⊂ 𝑁2𝑚}.

In particular, 𝐾𝑉
2𝑚 × 𝐾𝑊

2𝑚 is contained in 𝐾𝐴 under the canonical map U(𝑉) × U(𝑊) → Sp(W).

Let S (𝐴)𝑀2𝑚 be the subspace of S (𝐴) consisting of functions 𝜙 : W → C such that Supp(𝜙) ⊂

𝑀∗
2𝑚 ⊗ Γ𝑊 . We will use the following result proven by Waldspurger.

Proposition 5.3 [24, Corollary III.2]. Let 𝐽𝑉2𝑚 be a compact subgroup of U(𝑉). Suppose that

◦ 𝐽𝑉2𝑚 ⊃ 𝐾𝑉
2𝑚;

◦ S (𝐴)𝑀2𝑚 is stable by 𝐽𝑉2𝑚;
◦ (S (𝐴)𝑀2𝑚 )

𝐽𝑉
𝑚 ≠ {0}.

Then S (𝐴)𝐽𝑉
2𝑚 is generated by (S (𝐴)𝑀2𝑚 )

𝐽𝑉
2𝑚 as a representation of U(𝑊).

We will apply this proposition to the compact subgroup 𝐽𝑉2𝑚 generated by 𝐾𝑉
2𝑚 and 𝐸1 ∩ (1 + 𝔭𝑚𝐸 ),

where the latter is regarded as a subgroup of the center of U(𝑉). Namely, 𝐽𝑉0 = 𝐾𝑉
0 , and

𝐽𝑉2𝑚 =
���	

𝑛 1 𝑛

𝑛 𝔬𝐸 𝔭𝑚𝐸 𝔬𝐸
1 𝔭𝑚𝐸 1 + 𝔭𝑚𝐸 𝔭𝑚𝐸
𝑛 𝔬𝐸 𝔭𝑚𝐸 𝔬𝐸


��� ∩ U2𝑛+1

for 2𝑚 > 0. It is clear that 𝐽𝑉2𝑚 ⊃ 𝐾𝑉
2𝑚.

We check the second and third conditions in Proposition 5.3.

Lemma 5.4. The space S (𝐴)𝑀2𝑚 is stable by 𝐽𝑉2𝑚 and fixed by 𝐾𝑉
2𝑚. Moreover, (S (𝐴)𝑀2𝑚 )

𝐽𝑉
2𝑚 ≠ {0}.

Proof. For 𝑡 ∈ 𝔭−𝑚𝐸 and 𝑤 ∈ Γ𝑊 , define 𝜙𝑡 ,𝑤 ∈ S (𝐴) so that Supp(𝜙𝑡 ,𝑤 ) = 𝐴 + 𝑡𝑒0 ⊗ 𝑤 and
𝜙𝑡 ,𝑤 (𝑡𝑒0 ⊗ 𝑤) = 1. Then S (𝐴)𝑀2𝑚 is equal to the C-span of{

𝜙𝑡 ,𝑤
�� 𝑡 ∈ 𝔭−𝑚𝐸 , 𝑤 ∈ Γ𝑊

}
.
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For 𝑘 ∈ 𝐽𝑉2𝑚, write 𝑘𝑒0 =
∑𝑛
𝑖=−𝑛 𝑘𝑖𝑒𝑖 . Then

𝑘𝑖 ∈

{
𝔭𝑚𝐸 if 𝑖 ≠ 0,
1 + 𝔭𝑚𝐸 if 𝑖 = 0.

In particular, we see that (𝑘 − 1)𝑡𝑒0 ⊗ 𝑤 ∈ 𝐴. Hence,

Supp(𝜔𝜓 (𝑘)𝜙𝑡 ,𝑤 ) = 𝑘 (𝐴 + 𝑡𝑒0 ⊗ 𝑤)

= 𝐴 + (𝑘 − 1)𝑡𝑒0 ⊗ 𝑤 + 𝑡𝑒0 ⊗ 𝑤

= 𝐴 + 𝑡𝑒0 ⊗ 𝑤 = Supp(𝜙𝑡 ,𝑤 ).

Moreover,

𝜔𝜓 (𝑘)𝜙𝑡 ,𝑤 (𝑡𝑒0 ⊗ 𝑤) = 𝜔𝜓 (𝑘)𝜙𝑡 ,𝑤 (𝑘𝑡𝑒0 ⊗ 𝑤 − (𝑘 − 1)𝑡𝑒0 ⊗ 𝑤)

= 𝜓

(
1
2
〈(𝑘 − 1)𝑡𝑒0 ⊗ 𝑤, 𝑘𝑡𝑒0 ⊗ 𝑤〉

)
𝜔𝜓 (𝑘)𝜙𝑡 ,𝑤 (𝑘𝑡𝑒0 ⊗ 𝑤)

= 𝜓𝐸
(
〈(𝑘 − 1)𝑡𝑒0, 𝑘𝑡𝑒0〉𝑉 · 〈𝑤, 𝑤〉𝑊

)
𝜙𝑡 ,𝑤 (𝑡𝑒0 ⊗ 𝑤)

= 𝜓𝐸
(
𝑁𝐸/𝐹 (𝑡) (〈𝑘𝑒0, 𝑘𝑒0〉𝑉 − 〈𝑒0, 𝑘𝑒0〉𝑉 ) · 〈𝑤, 𝑤〉𝑊

)
= 𝜓𝐸

(
𝑁𝐸/𝐹 (𝑡) (1 − 𝑘0)〈𝑤, 𝑤〉𝑊

)
.

Hence, for 𝑡 ∈ 𝔭−𝑚𝐸 , 𝑤 ∈ Γ𝑊 and 𝑘 ∈ 𝐽𝑉2𝑚, there exists 𝑐 ∈ C× such that 𝜔𝜓 (𝑘)𝜙𝑡 ,𝑤 = 𝑐𝜙𝑡 ,𝑤 . This
shows that S (𝐴)𝑀2𝑚 is stable by 𝐽𝑉2𝑚. Moreover, if 𝑘0 ∈ 𝔭2𝑚

𝐸 or 〈𝑤, 𝑤〉𝑊 = 0, then 𝑐 = 1. Hence, we
have (S (𝐴)𝑀2𝑚 )

𝐾𝑉
2𝑚 = S (𝐴)𝑀2𝑚 and (S (𝐴)𝑀2𝑚 )

𝐽𝑉
2𝑚 ≠ {0}. �

Therefore, by Proposition 5.3, we see that S (𝐴)𝐽𝑉
2𝑚 is generated by (S (𝐴)𝑀2𝑚)

𝐽𝑉
2𝑚 as a representation

of U(𝑊). If 2𝑚 > 0, then S (𝐴)𝑀2𝑚 ⊃ S (𝐴)𝑀2𝑚−2 . Let S (𝐴)𝑀2𝑚\𝑀2𝑚−2 be the subspace spanned by{
𝜙𝑡 ,𝑤

�� ord(𝑡) = −𝑚, 𝑤 ∈ Γ𝑊 \𝜛Γ𝑊
}
.

Then we have

S (𝐴)𝑀2𝑚 = S (𝐴)𝑀2𝑚−2 ⊕ S (𝐴)𝑀2𝑚\𝑀2𝑚−2 .

Lemma 5.5. Suppose that 2𝑚 > 0. The image (S (𝐴)𝑀2𝑚)
𝐽𝑉

2𝑚 under the projection S (𝐴)𝑀2𝑚 �
S (𝐴)𝑀2𝑚\𝑀2𝑚−2 is equal to the one of the subspace spanned by{

𝜔𝜓 (𝑘
′)𝜙𝑡 , 𝑓𝑛

�� ord(𝑡) = −𝑚, 𝑘 ′ ∈ 𝐾𝑊
0
}
.

Moreover, 𝜙𝑡 , 𝑓𝑛 is fixed by 𝐾𝑊
2𝑚, and 𝜙𝑡 , 𝑓−𝑛 is fixed by 𝑡𝐾𝑊

2𝑚.

Proof. As we have seen in the proof of Lemma 5.4, 𝑘 ∈ 𝐽𝑉2𝑚 acts on 𝜙𝑡 ,𝑤 by the character

𝐽𝑉2𝑚
�� �� 1 + 𝔭𝑚𝐸

�� C×,

𝑘
� �� 𝑘0

� �� 𝜓𝐸

(
𝑁𝐸/𝐹 (𝑡) (1 − 𝑘0)〈𝑤, 𝑤〉𝑊

)
.
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Hence, the image in question is equal to the one of the subspace spanned by 𝜙𝑡 ,𝑤 with ord(𝑡) = −𝑚 and
𝑤 ∈ Γ𝑊 \𝜛Γ𝑊 such that 〈𝑤, 𝑤〉𝑊 ∈ 𝔭𝑚𝐸 . It means that

〈𝑤, 𝑤〉𝑊 ≡ 〈 𝑓𝑛, 𝑓𝑛〉𝑊 mod 𝔭𝑚𝐸 .

Note that

𝐾𝑊
0 = {𝑔 ∈ U(𝑉) | 𝑔Γ𝑊 = Γ𝑊 }

is a hyperspecial maximal compact subgroup of U(𝑊). Hence, there exists 𝑘 ′ ∈ 𝐾𝑊
0 such that 𝑤 ≡

𝑘 ′ · 𝑓𝑛 mod 𝜛𝑚Γ𝑊 . In particular, we have

𝑡𝑒0 ⊗ 𝑤 − 𝑡𝑒0 ⊗ 𝑘 ′ · 𝑓𝑛 ∈ 𝐴.

Hence, we can find 𝑐 ∈ C× such that 𝜙𝑡 ,𝑤 = 𝑐𝜙𝑡 ,𝑘′ · 𝑓𝑛 = 𝑐 · 𝜔𝜓 (𝑘
′)𝜙𝑡 , 𝑓𝑛 . This shows the first assertion.

Fix 𝑘 ′ ∈ 𝐾𝑊
2𝑚. Since (𝑘 ′ − 1) 𝑓𝑛 ∈ 𝜛𝑚Γ𝑊 , we have (𝑘 ′ − 1) (𝑡𝑒0 ⊗ 𝑓𝑛) ∈ 𝐴 for 𝑡 ∈ 𝔭−𝑚𝐸 . Hence,

Supp(𝜔𝜓 (𝑘
′)𝜙𝑡 , 𝑓𝑛 ) = Supp(𝜙𝑡 , 𝑓𝑛 ). Moreover,

𝜔𝜓 (𝑘
′)𝜙𝑡 , 𝑓𝑛 (𝑡𝑒0 ⊗ 𝑓𝑛) = 𝜔𝜓 (𝑘

′)𝜙𝑡 , 𝑓𝑛 (𝑘
′(𝑡𝑒0 ⊗ 𝑓𝑛) − (𝑘 ′ − 1) (𝑡𝑒0 ⊗ 𝑓𝑛))

= 𝜓

(
1
2
〈(𝑘 ′ − 1) (𝑡𝑒0 ⊗ 𝑓𝑛), 𝑘

′(𝑡𝑒0 ⊗ 𝑓𝑛)〉

)
𝜔𝜓 (𝑘

′)𝜙𝑡 , 𝑓𝑛 (𝑘
′(𝑡𝑒0 ⊗ 𝑓𝑛))

= 𝜓𝐸
(
𝑁𝐸/𝐹 (𝑡)〈(𝑘

′ − 1) 𝑓𝑛, 𝑘 ′ 𝑓𝑛〉𝑊
)
.

Since 〈(𝑘 ′ − 1) 𝑓𝑛, 𝑘 ′ 𝑓𝑛〉𝑊 = 〈− 𝑓𝑛, 𝑘
′ 𝑓𝑛〉𝑊 ∈ 𝔭2𝑚

𝐸 , we have 𝜔𝜓 (𝑘
′)𝜙𝑡 , 𝑓𝑛 (𝑡𝑒0 ⊗ 𝑓𝑛) = 1. Therefore,

we conclude that 𝜔𝜓 (𝑘
′)𝜙𝑡 , 𝑓𝑛 = 𝜙𝑡 , 𝑓𝑛 for 𝑘 ′ ∈ 𝐾𝑊

2𝑚. By a similar calculation, one can prove that
𝜔𝜓 (𝑘

′)𝜙𝑡 , 𝑓−𝑛 = 𝜙𝑡 , 𝑓−𝑛 for 𝑘 ′ ∈ 𝑡𝐾𝑊
2𝑚. This completes the proof. �

5.4. Existence of 𝐾𝑊
2𝑚-fixed vectors

Let 𝜋 be an irreducible 𝜓𝐸 -generic tempered representation of U(𝑊) with the L-parameter 𝜙𝜋 and
the central character 𝜔𝜋 . Consider its theta lift 𝜎 = 𝜃𝜓 (𝜋). It is an irreducible generic tempered
representation of U(𝑉) with L-parameter 𝜙𝜎 = 𝜙𝜋 𝜒⊕1. In particular, 𝑐(𝜙𝜎) = 𝑐(𝜙𝜋) so that 𝜎𝐾𝑉

2𝑚 ≠ 0
for 2𝑚 ≥ 𝑐(𝜙𝜋) by Theorem 2.1. Since 𝜔𝜎 = 𝜔𝜋 , we see that 𝜎𝐽𝑉

2𝑚 ≠ 0 if 2𝑚 ≥ 𝑐(𝜙𝜋) and 𝜔𝜋 |1+𝔭𝑚𝐸 = 1.
Set 𝜔𝜓 = 𝜔𝜓,𝑉 ,𝑊 . By the definition of theta lifts, we have a U(𝑉)×U(𝑊)-equivariant surjective map

Φ : 𝜔𝜓 � 𝜎 � 𝜋.

Proposition 5.6. Set 2𝑚 = 𝑐(𝜙𝜋) or 2𝑚 = 𝑐(𝜙𝜋) + 1. Suppose that 2𝑚 > 0 and that 𝜔𝜋 is trivial on
1 + 𝔭𝑚𝐸 . For any sign 𝜖 ∈ {±1}, there exists 𝑡 ∈ 𝔭−𝑚𝐸 such that Φ(𝜙𝑡 , 𝑓𝜖 𝑛 ) ≠ 0. In particular, 𝜋𝐾𝑊

2𝑚 ≠ 0.

Proof. We realize 𝜔𝜓 on the lattice model S (𝐴). Since Σ ↦→ Σ𝐽𝑉
2𝑚 is an exact functor on the category

of smooth representations Σ of U(𝑉), we obtain a U(𝑊)-equivariant surjective map

Φ : S (𝐴)𝐽𝑉
2𝑚 � 𝜎𝐽𝑉

2𝑚 � 𝜋.

By Proposition 5.3 together with Lemma 5.4, its restriction to (S (𝐴)𝑀2𝑚)
𝐽𝑉

2𝑚 is still nonzero. Since
𝜎𝐾𝑉

2𝑚−2 = 0, this map factors through the restriction of the projection S (𝐴)𝑀2𝑚 � S (𝐴)𝑀2𝑚\𝑀2𝑚−2 .
Hence, by Lemma 5.5, there exists 𝑡 ∈ 𝐸× with ord(𝑡) = −𝑚 such that Φ(𝜙𝑡 , 𝑓𝑛 ) ≠ 0. Since 𝜙𝑡 , 𝑓𝑛 is fixed
by 𝐽𝑉2𝑚 ×𝐾𝑊

2𝑚, we have Φ(𝜙𝑡 , 𝑓𝑛 ) ∈ 𝜎𝐽𝑉
2𝑚 � 𝜋𝐾

𝑊
2𝑚 so that 𝜋𝐾𝑊

2𝑚 ≠ 0. By the same argument, one can show
that Φ(𝜙𝑡 , 𝑓−𝑛 ) ≠ 0 for some 𝑡 ∈ 𝔭−𝑚𝐸 . �
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5.5. Proof of Theorem 2.2 (3)

The goal of the rest of this section is to show that 𝜋𝐾
𝑊
2𝑚

𝜓 ≠ 0 if 2𝑚 = 𝑐(𝜙𝜋) or 2𝑚 = 𝑐(𝜙𝜋) + 1 and if 𝜔𝜋

is trivial on 1 + 𝔭𝑚𝐸 . If 2𝑚 = 𝑐(𝜙𝜋) = 0, then 𝜋 is unramified (with respect to the hyperspecial maximal

compact subgroup 𝐾𝑊
0 ), and the Casselman–Shalika formula [6] shows that 𝜋𝐾

𝑊
0

𝜓 ≠ 0. See Remark 4.1.
Hence, we may assume that 𝑐(𝜙𝜋) > 0 so that 2𝑚 > 0.

We need further notations. Set

𝑋 =
𝑛⊕
𝑖=1

𝐸𝑒𝑖 , 𝑉0 = 𝐸𝑒0, 𝑋∗ =
𝑛⊕
𝑖=1

𝐸𝑒−𝑖 .

Hence,𝑉 = 𝑋⊕𝑉0⊕𝑋∗. For 𝑎 ∈ GL(𝑋), 𝑏 ∈ Hom(𝑉0, 𝑋) and 𝑐 ∈ Hom(𝑋∗, 𝑋), we define 𝑎∗ ∈ GL(𝑋∗),
𝑏∗ ∈ Hom(𝑋∗, 𝑉0) and 𝑐∗ ∈ Hom(𝑋∗, 𝑋) so that

〈𝑎𝑥, 𝑥 ′〉𝑉 = 〈𝑥, 𝑎∗𝑥 ′〉𝑉 , 〈𝑏𝑒0, 𝑥
′〉𝑉 = 〈𝑒0, 𝑏

∗𝑥 ′〉𝑉 , 〈𝑐𝑥 ′, 𝑥 ′′〉𝑉 = 〈𝑥 ′, 𝑐∗𝑥 ′′〉𝑉

for 𝑥 ∈ 𝑋 and 𝑥 ′, 𝑥 ′′ ∈ 𝑋∗. For 𝑎 ∈ GL(𝑋), 𝑏 ∈ Hom(𝑉0, 𝑋) and

𝑐 ∈ Herm(𝑋∗, 𝑋) = {𝑐 ∈ Hom(𝑋∗, 𝑋) | 𝑐∗ = −𝑐},

we put

m𝑋 (𝑎) =
��	
𝑎

1𝑉0

(𝑎∗)−1


��,
n1(𝑏) =

��	
1𝑋 𝑏 − 1

2𝑏𝑏
∗

1𝑉0 𝑏∗

1𝑋∗


��,
n2 (𝑐) =

��	
1𝑋 𝑐

1𝑉0

1𝑋∗


��.
These are elements in U(𝑉).

Similarly, set

𝑌 =
𝑛⊕
𝑖=1

𝐸 𝑓𝑖 , 𝑌 ∗ =
𝑛⊕
𝑖=1

𝐸 𝑓−𝑖

so that 𝑊 = 𝑌 ⊕𝑌 ∗. For 𝑎 ∈ GL(𝑌 ) and 𝑐 ∈ Hom(𝑌 ∗, 𝑌 ), we define 𝑎∗ ∈ GL(𝑋∗) and 𝑐∗ ∈ Hom(𝑌 ∗, 𝑌 )
so that

〈𝑎𝑦, 𝑦′〉𝑊 = 〈𝑦, 𝑎∗𝑦′〉𝑊 , 〈𝑐𝑦′, 𝑦′′〉𝑊 = 〈𝑦′, 𝑐∗𝑦′′〉𝑊

for 𝑦 ∈ 𝑌 and 𝑦′, 𝑦′′ ∈ 𝑌 ∗. For 𝑎 ∈ GL(𝑌 ) and

𝑐 ∈ Herm(𝑌 ∗, 𝑌 ) = {𝑐 ∈ Hom(𝑌 ∗, 𝑌 ) | 𝑐∗ = −𝑐},

we put

m𝑌 (𝑎) =

(
𝑎
(𝑎∗)−1

)
, n(𝑐) =

(
1𝑌 𝑐

1𝑌 ∗

)
.

These are elements in U(𝑊).
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Define 𝑎𝛿 ∈ GL(𝑋) by

𝑎𝛿 : 𝑒𝑖 ↦→ 𝛿−𝑖𝑒𝑖

for −𝑛 ≤ 𝑖 ≤ 𝑛. If we fix a nonzero Whittaker functional 𝑙𝜎 ∈ Hom𝑁2𝑛+1 (𝜎, 𝜓𝐸 ) for 𝜎, then 𝑙 ′𝜎 =
𝑙𝜎 ◦ 𝜎(m𝑋 (𝑎𝛿)) is a nonzero Whittaker functional with respect to the character 𝜓 𝛿

𝐸 : 𝑁2𝑛+1 → C×

given by

𝜓 𝛿
𝐸 (𝑢) = 𝜓𝐸

(
𝛿−1

𝑛∑
𝑖=1

〈𝑢𝑒𝑖−1, 𝑒−𝑖〉𝑉

)
.

This is the generic character considered in [8].
Now we fix 𝑡 ∈ 𝐸× with ord(𝑡) = −𝑚 such that Φ(𝜙𝑡 , 𝑓−𝑛 ) ≠ 0. This belongs to 𝜎𝐽𝑉

2𝑚 � 𝜋. Note that
m𝑋 (𝑡 · 1𝑋 )𝐾𝑉

2𝑚m𝑋 (𝑡 · 1𝑋 )−1 is the compact group 𝐾𝑛,2𝑚 considered in [8]. In particular, the Whittaker
functional

𝑙 ′𝜎,𝑡 = 𝑙 ′𝜎 ◦ 𝜎(m𝑋 (𝑡 · 1𝑋 )) = 𝑙𝜎 ◦ 𝜎(m𝑋 (𝑎𝛿 𝑡))

with respect to

𝜓 𝛿
𝐸,𝑡 : 𝑁2𝑛+1 � 𝑢 ↦→ 𝜓 𝛿

𝐸 (m𝑋 (𝑡 · 1𝑋 ) · 𝑢 · m𝑋 (𝑡 · 1𝑋 )−1) ∈ C×

is nonzero on 𝜎𝐾𝑉
2𝑚 by [8, Theorem 1.4, Lemma 7.5]. Therefore, the image 𝜙𝑡 , 𝑓−𝑛 under the composition

of 𝑁2𝑛+1 × U(𝑊)-equivariant maps

𝜔𝜓
Φ �� 𝜎 � 𝜋

𝑙′𝜎,𝑡 ⊗id
�� 𝜓 𝛿

𝐸,𝑡 � 𝜋

is nonzero.
By the same argument as the proof of [18, Proposition 2.3], one can prove that the maximal quotient

of 𝜔𝜓 on which 𝑁2𝑛+1 acts by 𝜓 𝛿
𝐸,𝑡 is isomorphic to the compact induction indU(𝑊 )

𝑁 ′
2𝑛

(𝜇), where 𝑁 ′
2𝑛 is

the unipotent radical of the Borel subgroup of U(𝑊) stabilizing the flag

𝐸 𝑓1 ⊂ 𝐸 𝑓1 ⊕ 𝐸 𝑓2 ⊂ · · · ⊂ 𝐸 𝑓1 ⊕ · · · ⊕ 𝐸 𝑓𝑛 = 𝑌,

and 𝜇 is a character of 𝑁 ′
2𝑛 given by

𝜇(𝑢) = 𝜓𝐸

(
𝑛∑
𝑖=1

〈𝑢 𝑓𝑖+1, 𝑓−𝑖〉 + 𝑁𝐸/𝐹 (𝑡)〈𝑢 𝑓−𝑛, 𝑓−𝑛〉

)
.

Here, we note that 𝑁 ′
2𝑛 differs from 𝑁2𝑛 defined in Section 2.2.

Hence, the map

𝜔𝜓
Φ �� 𝜎 � 𝜋

𝑙′𝜎,𝑡 ⊗id
�� 𝜓 𝛿

𝐸,𝑡 � 𝜋

factors through 𝜔𝜓 → indU(𝑊 )

𝑁 ′
2𝑛

(𝜇). Namely, we have a nonzero U(𝑊)-equivariant map

indU(𝑊 )

𝑁 ′
2𝑛

(𝜇) → 𝜋.

The following is a key lemma, which will be proven in Section 5.7 below.
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Lemma 5.7. Let 𝐹𝑡 , 𝑓−𝑛 ∈ indU(𝑊 )

𝑁 ′
2𝑛

(𝜇) be the image of 𝜙𝑡 , 𝑓−𝑛 ∈ S (𝐴). Then 𝐹𝑡 , 𝑓−𝑛 is right 𝑡𝐾𝑊
2𝑚-invariant

and

Supp(𝐹𝑡 , 𝑓−𝑛 ) = 𝑁 ′
2𝑛 ·

𝑡𝐾𝑊
2𝑚.

Note that having a U(𝑊)-equivariant map

indU(𝑊 )

𝑁 ′
2𝑛

(𝜇) → 𝜋

is equivalent to giving a U(𝑊)-equivariant map

𝜋∨ → IndU(𝑊 )

𝑁 ′
2𝑛

(𝜇−1).

These are related as follows. Suppose that indU(𝑊 )

𝑁 ′
2𝑛

(𝜇) � 𝐹 ↦→ 𝑣 ∈ 𝜋 corresponds to 𝜋∨ � 𝑣′ ↦→ 𝑊 ∈

IndU(𝑊 )

𝑁 ′
2𝑛

(𝜇−1). Then

(𝑣, 𝑣′)𝜋 =
∫
𝑁 ′

2𝑛\U(𝑊 )

𝐹 (𝑔)𝑊 (𝑔)𝑑𝑔.

By Lemma 5.7, there exists 𝐹 ∈ indU(𝑊 )

𝑁 ′
2𝑛

(𝜇) such that

◦ its image v in 𝜋 is nonzero;
◦ 𝐹 is right 𝑡𝐾𝑊

2𝑚-invariant;
◦ Supp(𝐹) = 𝑁 ′

2𝑛 ·
𝑡𝐾𝑊

2𝑚.

Hence, 𝑣 ∈ 𝜋
𝑡𝐾𝑊

2𝑚 . One can take 𝑣′ ∈ (𝜋∨)
𝑡𝐾𝑊

2𝑚 such that (𝑣, 𝑣′)𝜋 ≠ 0. Let 𝑊 ∈ IndU(𝑊 )

𝑁 ′
2𝑛

(𝜇−1) be the
image of 𝑣′. Then W is right 𝑡𝐾𝑊

2𝑚-invariant, and

0 ≠ (𝑣, 𝑣′)𝜋 =
∫
𝑁 ′

2𝑛\U(𝑊 )

𝐹 (𝑔)𝑊 (𝑔)𝑑𝑔 = 𝑐𝐹 (1)𝑊 (1)

for some constant 𝑐 > 0. Hence, 𝑊 (1) ≠ 0. Moreover, since v(0, 0; 𝑧) ∈ 𝑁 ′
2𝑛, we have

𝑊 (v(0, 0; 𝑧)) = 𝜇−1(v(0, 0; 𝑧))𝑊 (1) = 𝜓−1(𝑁𝐸/𝐹 (𝑡)𝑧)𝑊 (1)

for 𝑧 ∈ 𝐹. Therefore, via 𝑣′ ↦→ 𝑊 ↦→ 𝑊 (1), we conclude that

(𝜋∨)
𝑡𝐾𝑊

2𝑚
𝜓′−1 ≠ 0,

where we put 𝜓 ′(𝑧) = 𝜓(𝑁𝐸/𝐹 (𝑡)𝑧). Since

𝑡𝐾𝑊
2𝑚 =

��	
𝑡

12𝑛−2

𝑡
−1


��
−1

𝐾𝑊
2𝑚
��	
𝑡

12𝑛−2

𝑡
−1


��,
as in Section 2.3, we have

(𝜋∨)
𝐾𝑊

2𝑚
𝜓−1 � (𝜋∨)

𝑡𝐾𝑊
2𝑚

𝜓′−1 ≠ 0.
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Since 𝜋 is 𝜓𝐸 -generic if and only if 𝜋∨ is 𝜓−1
𝐸 -generic, by replacing 𝜋 and 𝜓 with 𝜋∨ and 𝜓−1,

respectively, we conclude that

𝜋
𝐾𝑊

2𝑚
𝜓 ≠ 0.

Therefore, Theorem 2.2 (3) is reduced to proving Lemma 5.7.

5.6. Mixed model

To show Lemma 5.7, we review the argument in the proof of [18, Proposition 2.3]. For this, we use
another model of the Weil representation 𝜔𝜓 = 𝜔𝜓,𝑉 ,𝑊 of U(𝑉) × U(𝑊). It is known that the Weil
representation 𝜔𝜓 can be realized on the space S (𝑋∗ ⊗𝑊) ⊗S (𝑉0 ⊗𝑌 ∗), which is called a mixed model.
See, for example, [10, Section 7.4]. Let us recall some formulas for the action of U(𝑉) × U(𝑊) on this
space.

For 𝜑1 ⊗ 𝜑2 ∈ S (𝑋∗ ⊗𝑊) ⊗ S (𝑉0 ⊗ 𝑌 ∗) and (𝑥, 𝑦) ∈ (𝑋∗ ⊗𝑊) × (𝑉0 ⊗ 𝑌 ∗),

𝜔𝜓 (𝑔) (𝜑1 ⊗ 𝜑2) (𝑥, 𝑦) = 𝜑1(𝑔
−1𝑥) · 𝜔0

𝜓 (𝑔)𝜑2(𝑦), 𝑔 ∈ U(𝑊),

𝜔𝜓 (ℎ0) (𝜑1 ⊗ 𝜑2) (𝑥, 𝑦) = 𝜑1(𝑥) · 𝜔
0
𝜓 (ℎ0)𝜑2(𝑦), ℎ0 ∈ U(𝑉0),

𝜔𝜓 (m𝑋 (𝑎)) (𝜑1 ⊗ 𝜑2) (𝑥, 𝑦) = 𝜒𝑊 (det 𝑎) | det 𝑎 |𝑛𝜑1(𝑎
∗𝑥) · 𝜑2(𝑦), 𝑎 ∈ GL(𝑋),

𝜔𝜓 (n1 (𝑏)) (𝜑1 ⊗ 𝜑2) (𝑥, 𝑦) = 𝜑1(𝑥) · 𝜌
0
𝜓 (𝑏

∗𝑥, 0)𝜑2(𝑦), 𝑏 ∈ Hom(𝑉0, 𝑋),

𝜔𝜓 (n2 (𝑐)) (𝜑1 ⊗ 𝜑2) (𝑥, 𝑦) = 𝜓

(
1
2
〈𝑐𝑥, 𝑥〉

)
𝜑1 (𝑥) · 𝜑2(𝑦), 𝑐 ∈ Herm(𝑋∗, 𝑋).

Here, S (𝑉0 ⊗ 𝑌 ∗) is regarded as the Schrödinger model of

◦ the irreducible representation 𝜌0
𝜓 of the Heisenberg group 𝐻 (𝑉0 ⊗𝑊) on S (𝑉0 ⊗𝑌 ∗) with the central

character 𝜓; and
◦ the Weil representation 𝜔0

𝜓 of U(𝑉0) × U(𝑊).

Hence, for 𝜑2 ∈ S (𝑉0 ⊗ 𝑌 ∗) and 𝑦 ∈ 𝑉0 ⊗ 𝑌 ∗, we have

𝜌0
𝜓 ((𝑦+ + 𝑦−, 𝑡))𝜑2(𝑦) = 𝜓

(
𝑡 + 〈𝑦, 𝑦+〉 +

1
2
〈𝑦−, 𝑦+〉

)
𝜑2 (𝑦 + 𝑦−)

for 𝑦+ ∈ 𝑉0 ⊗ 𝑌 and 𝑦− ∈ 𝑉0 ⊗ 𝑌 ∗, and

𝜔0
𝜓 (m𝑌 (𝑎))𝜑2(𝑦) = 𝜒(det 𝑎) | det 𝑎 |

1
2 𝜑(𝑎∗𝑦), 𝑎 ∈ GL(𝑌 ),

𝜔0
𝜓 (n(𝑐))𝜑2(𝑦) = 𝜓

(
1
2
〈𝑐𝑦, 𝑦〉

)
𝜑2(𝑦) 𝑐 ∈ Herm(𝑌 ∗, 𝑌 ).

Moreover, 𝜔0
𝜓 (𝐽2𝑛)𝜑2 is given by a Fourier transform of 𝜑2. For more precision, see [10, Section 7.4].

For 𝜑1 ⊗ 𝜑2 ∈ S (𝑋∗ ⊗𝑊) ⊗ S (𝑉0 ⊗ 𝑌 ∗), define

𝐹𝜑1⊗𝜑2 (𝑔) = 𝜑1 (𝑔
−1𝑥0) · 𝜔

0
𝜓 (𝑔)𝜑2(𝑦0),

where we set

𝑥0 =
𝑛∑
𝑖=1

1
2𝛿

𝑒−𝑖 ⊗ 𝑓𝑛+1−𝑖 , 𝑦0 = 𝑡𝑒0 ⊗ 𝑓−𝑛.

Let 𝑄2𝑛 = 𝑀2𝑛,𝑆𝑁2𝑛,𝑆 be the Siegel parabolic subgroup of U(𝑊) stabilizing Y, where 𝑀2𝑛,𝑆 =
{m𝑌 (𝑎) | 𝑎 ∈ GL(𝑌 )} is its Levi subgroup, and 𝑁2𝑛,𝑆 is its unipotent radical. Note that 𝑁2𝑛,𝑆 ⊂ 𝑁 ′

2𝑛.
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We regard 𝜇 as a character of 𝑁2𝑛,𝑆 by the restriction. For 𝑢 ∈ 𝑁2𝑛,𝑆 , since 𝑢−1𝑥0 = 𝑥0 and

𝜓

(
1
2
〈𝑢𝑦0, 𝑦0〉

)
= 𝜓𝐸

(
〈𝑡𝑒0, 𝑡𝑒0〉𝑉 〈𝑢 𝑓−𝑛, 𝑓−𝑛〉𝑊

)
= 𝜓𝐸

(
𝑁𝐸/𝐹 (𝑡)〈𝑢 𝑓−𝑛, 𝑓−𝑛〉𝑊

)
= 𝜇(𝑢),

we see that 𝐹𝜑1⊗𝜑2 (𝑔) ∈ indU(𝑊 )

𝑁2𝑛,𝑆
(𝜇). Note that n2 (𝑐) acts trivially on 𝐹𝜑1⊗𝜑2 for 𝑐 ∈ Herm(𝑋∗, 𝑋)

since Y is totally isotropic. However, for 𝑏 ∈ Hom(𝑉0, 𝑋), since n1 (𝑏) commutes with 𝑔 ∈ U(𝑊), we
see that

𝐹𝜔𝜓 (n1 (𝑏)) (𝜑1⊗𝜑2) (𝑔) = 𝜔𝜓 (𝑔) ◦ 𝜔𝜓 (n1 (𝑏)) (𝜑1 ⊗ 𝜑2) (𝑥0, 𝑦0)

= 𝜔𝜓 (n1 (𝑏)) ◦ 𝜔𝜓 (𝑔) (𝜑1 ⊗ 𝜑2) (𝑥0, 𝑦0)

= 𝜌0
𝜓 (𝑏

∗𝑥0, 0) ◦ 𝜔𝜓 (𝑔) (𝜑1 ⊗ 𝜑2) (𝑥0, 𝑦0)

= 𝜓(〈𝑦0, 𝑏
∗𝑥0〉)𝜔𝜓 (𝑔) (𝜑1 ⊗ 𝜑2) (𝑥0, 𝑦0).

Since 𝛿 = −𝛿 and 〈 𝑓−𝑛, 𝑓𝑛〉𝑊 = −1, we have

𝜓(〈𝑦0, 𝑏
∗𝑥0〉) = 𝜓𝐸

(
𝑛∑
𝑖=1

〈
𝑡𝑒0, 𝑏

∗𝛿−1𝑒−𝑖
〉
𝑉
〈 𝑓−𝑛, 𝑓𝑛+𝑖−1〉𝑊

)
= 𝜓𝐸 (𝛿

−1𝑡〈𝑏𝑒0, 𝑒−1〉𝑉 ) = 𝜓 𝛿
𝐸,𝑡 (n1 (𝑏)).

Hence, n1 (𝑏) acts on 𝐹𝜑1⊗𝜑2 by 𝜓 𝛿
𝐸,𝑡 .

Define a map

indU(𝑊 )

𝑁2𝑛,𝑆
(𝜇) → indU(𝑊 )

𝑁 ′
2𝑛

(𝜇)

by

𝐹 ↦→ 𝐹 (𝑔) =
∫
𝑁2𝑛,𝑆\𝑁

′
2𝑛

𝐹 (𝑢𝑔)𝜇(𝑢)−1𝑑𝑢.

Then by the same argument as in [18, Proposition 2.3], one can prove that the map 𝜑1 ⊗ 𝜑2 ↦→ 𝐹𝜑1⊗𝜑2

realizes an isomorphism between the maximal quotient of 𝜔𝜓 on which 𝑁2𝑛+1 acts by 𝜓 𝛿
𝐸,𝑡 and

indU(𝑊 )

𝑁 ′
2𝑛

(𝜇).

5.7. Proof of Lemma 5.7

In this subsection, we prove Lemma 5.7. To do this, we relate two models of the Weil representation.
Let 𝜑0

1 ∈ S (𝑋∗ ⊗𝑊) and 𝜑0
2 ∈ S (𝑉0 ⊗ 𝑌 ∗) be the characteristic functions of(

𝑛⊕
𝑖=1

𝔬𝐸𝑒−𝑖

)
⊗

(
𝑛⊕
𝑖=1

𝔬𝐸 𝑓𝑖 ⊕
𝑛⊕
𝑖=1

𝔬𝐸 𝑓−𝑖

)
, 𝔬𝐸𝑒0 ⊗

(
𝑛⊕
𝑖=1

𝔬𝐸 𝑓−𝑖

)
,

respectively. Then the action 𝜌 = 𝜌𝜓 of the Heisenberg group 𝐻 (W) on 𝜑0
1 ⊗ 𝜑0

2 satisfies that

𝜌(𝑎, 𝑡) (𝜑0
1 ⊗ 𝜑0

2) = 𝜓(𝑡) · 𝜑0
1 ⊗ 𝜑0

2
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for (𝑎, 𝑡) ∈ 𝐴 ⊕ 𝐹. Moreover, the lattice model S (𝐴) and the mixed model S (𝑋∗ ⊗ 𝑊) ⊗ S (𝑉0 ⊗ 𝑌 ∗)

are related by the isomorphism

S (𝐴) ∼
−→ S (𝑋∗ ⊗𝑊) ⊗ S (𝑉0 ⊗ 𝑌 ∗),

𝜙 ↦→

∫
(𝐴⊕𝐹 )\𝐻 (W)

𝜙(ℎ)𝜌(ℎ)−1(𝜑0
1 ⊗ 𝜑0

2) (𝑥, 𝑦)𝑑ℎ.

In particular, 𝜙𝑡 , 𝑓−𝑛 ∈ S (𝐴) corresponds to

𝜌(𝑡𝑒0 ⊗ 𝑓−𝑛, 0)−1(𝜑0
1 ⊗ 𝜑0

2) (𝑥, 𝑦) = 𝜑0
1(𝑥) · 𝜌

0
𝜓 (𝑡𝑒0 ⊗ 𝑓−𝑛, 0)−1𝜑0

2(𝑦)

in S (𝑋∗ ⊗𝑊) ⊗ S (𝑉0 ⊗ 𝑌 ∗) since Supp(𝜙𝑡 , 𝑓−𝑛 ) = (𝐴 + 𝑡𝑒0 ⊗ 𝑓−𝑛) ⊕ 𝐹. Therefore, under the map

S (𝐴) → indU(𝑊 )

𝑁 ′
2𝑛

(𝜇)

obtained above, the image of 𝜙𝑡 , 𝑓−𝑛 is 𝐹𝜌(𝑡𝑒0⊗ 𝑓−𝑛 ,0)−1 (𝜑0
1 ⊗𝜑

0
2 )

.
Now we prove Lemma 5.7.

Proof of Lemma 5.7. First, we consider 𝐹𝜌(𝑡𝑒0⊗ 𝑓−𝑛 ,0)−1 (𝜑0
1 ⊗𝜑

0
2 )

. Note that it is left 𝑁2𝑛,𝑆-invariant and
right 𝑡𝐾𝑊

2𝑚-invariant. We claim that if

𝐹𝜌(𝑡𝑒0⊗ 𝑓−𝑛 ,0)−1 (𝜑0
1 ⊗𝜑

0
2 )
(𝑔) ≠ 0,

then

𝑔 ∈ 𝑁2𝑛,𝑆 · m𝑌 (𝑎) ·
𝑡𝐾𝑊

2𝑚

for some 𝑎 ∈ GL(𝑌 ) � GL𝑛 (𝐸) such that 𝑎−1 ∈ M𝑛 (𝔬𝐸 ) and

𝑎∗ 𝑓−𝑛 − 𝑓−𝑛 ∈

𝑛⊕
𝑖=1

𝔭𝑚𝐸 𝑓−𝑖 .

By the Iwasawa decomposition, we have U(𝑊) = 𝑄2𝑛𝐾
𝑊
0 . Let 𝐾𝑆 and 𝐾𝑀 be subgroups of 𝐾𝑊

0
defined by

𝐾𝑆 =

( 𝑛 𝑛

𝑛 𝔬𝐸 𝔬𝐸
𝑛 𝔭𝐸 𝔬𝐸

)
∩ U2𝑛, 𝐾𝑀 =

���	
1 2𝑛 − 2 1

1 𝔬𝐸 𝔬𝐸 𝔬𝐸
2𝑛 − 2 𝔭𝐸 𝔬𝐸 𝔬𝐸
1 𝔭𝐸 𝔭𝐸 𝔬𝐸


��� ∩ U2𝑛.

By the Bruhat decomposition for a finite unitary group over 𝔬𝐹/𝔭𝐹 , we have

𝐾𝑊
0 = 𝐾𝑆𝐾𝑀 ∪ 𝐾𝑆𝐽

−1
2𝑛𝐾𝑀

= (𝐾𝑆 ∩𝑄2𝑛)𝐾𝑀 ∪ (𝐾𝑆 ∩𝑄2𝑛)𝐽
−1
2𝑛𝐾𝑀 .

Since 𝐽2𝑛 ∈ 𝐾𝑊
0 and 𝐽−1

2𝑛𝐾𝑀 𝐽2𝑛 = 𝑡𝐾𝑀 , by the multiplication of 𝐽2𝑛 from the right, we have

𝐾𝑊
0 = (𝐾𝑆 ∩𝑄2𝑛)𝐽2𝑛

𝑡𝐾𝑀 ∪ (𝐾𝑆 ∩𝑄2𝑛)
𝑡𝐾𝑀 .
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Hence,

U(𝑊) = 𝑄2𝑛𝐽2𝑛
𝑡𝐾𝑀 ∪𝑄2𝑛

𝑡𝐾𝑀

= 𝑁2𝑛,𝑆𝑀2𝑛,𝑆𝐽2𝑛
𝑡𝐾𝑀 ∪ 𝑁2𝑛,𝑆𝑀2𝑛,𝑆

𝑡𝐾𝑀 .

Therefore, we may assume that 𝑔 = m𝑌 (𝑎)𝐽2𝑛𝑘 or 𝑔 = m𝑌 (𝑎)𝑘 for some 𝑎 ∈ GL(𝑌 ) and 𝑘 ∈ 𝑡𝐾𝑀 .
Assume that 𝑔 = m𝑌 (𝑎)𝐽2𝑛𝑘 is in the former case. Since 𝜑0

1 and 𝜑0
2 are fixed by 𝐾𝑊

0 , and since
𝜔0
𝜓 (𝑔) ◦ 𝜌0

𝜓 (ℎ) ◦ 𝜔0
𝜓 (𝑔)

−1 = 𝜌0
𝜓 (𝑔ℎ), we have

𝐹𝜌(𝑡𝑒0⊗ 𝑓−𝑛 ,0)−1 (𝜑0
1 ⊗𝜑

0
2 )
(𝑔) = 𝜔𝜓 (𝑔) ◦ 𝜌(𝑡𝑒0 ⊗ 𝑓−𝑛, 0)−1(𝜑0

1 ⊗ 𝜑0
2) (𝑥0, 𝑦0)

= 𝜑1(𝑔
−1𝑥0) · 𝜔

0
𝜓 (𝑔)𝜌

0
𝜓 (𝑡𝑒0 ⊗ 𝑓−𝑛, 0)−1𝜑0

2(𝑦0)

= 𝜑1(𝑎
−1𝑥0) · 𝜔

0
𝜓 (m𝑌 (𝑎))𝜌

0
𝜓 (𝑡𝑒0 ⊗ 𝐽2𝑛𝑘 𝑓−𝑛, 0)−1𝜑0

2 (𝑦0).

Note that 𝜑1 (𝑎
−1𝑥0) ≠ 0 if and only if 𝑎−1 ∈ M𝑛 (𝔬𝐸 ). However, since 𝑘 ∈ 𝑡𝐾𝑀 , if we write 𝐽2𝑛𝑘 𝑓−𝑛 =

𝑦 + 𝑦∗ with 𝑦 ∈ 𝑌 and 𝑦∗ ∈ 𝑌 ∗, then 𝑦∗ ∈ ⊕𝑛
𝑖=1𝔭𝐸 𝑓−𝑖 . Up to a nonzero constant, 𝜔0

𝜓 (m𝑌 (𝑎))𝜌
0
𝜓 (𝑡𝑒0 ⊗

𝐽2𝑛𝑘 𝑓−𝑛, 0)−1𝜑0
2 (𝑦0) is equal to

𝜑0
2 (𝑡𝑒0 ⊗ (𝑎∗ 𝑓−𝑛 − 𝑦∗)).

If this is nonzero, then we must have 𝑡 (𝑎∗ 𝑓−𝑛 − 𝑦∗) ∈ ⊕𝑛
𝑖=1𝔬𝐸 𝑓−𝑖 . When 𝑎−1 ∈ M𝑛 (𝔬𝐸 ), this implies that

𝑓−𝑛 ∈ (𝑎∗)−1𝑦∗ +
𝑛⊕
𝑖=1

𝔭𝑚𝐸 𝑓−𝑖 ⊂
𝑛⊕
𝑖=1

𝔭𝐸 𝑓−𝑖 .

This is impossible. Hence, we have 𝐹𝜌(𝑡𝑒0⊗ 𝑓−𝑛 ,0)−1 (𝜑0
1 ⊗𝜑

0
2 )
(𝑔) = 0.

Next, we assume that 𝑔 = m𝑌 (𝑎)𝑘 is in the latter case. By the Iwahori decomposition, we may further
assume that 𝑘 𝑓−𝑛 = 𝑓−𝑛. Then

𝐹𝜌(𝑡𝑒0⊗ 𝑓−𝑛 ,0)−1 (𝜑0
1 ⊗𝜑

0
2 )
(𝑔) = 𝜔𝜓 (𝑔) ◦ 𝜌(𝑡𝑒0 ⊗ 𝑓−𝑛, 0)−1(𝜑0

1 ⊗ 𝜑0
2) (𝑥0, 𝑦0)

= 𝜑1(𝑔
−1𝑥0) · 𝜔

0
𝜓 (𝑔)𝜌

0
𝜓 (𝑡𝑒0 ⊗ 𝑓−𝑛)

−1𝜑0
2 (𝑦0)

= 𝜑1(𝑎
−1𝑥0) · 𝜔

0
𝜓 (m𝑌 (𝑎))𝜌

0
𝜓 (𝑡𝑒0 ⊗ 𝑘 𝑓−𝑛)

−1𝜑0
2 (𝑦0)

= 𝜑1(𝑎
−1𝑥0) · 𝜔

0
𝜓 (m𝑌 (𝑎))𝜌

0
𝜓 (𝑡𝑒0 ⊗ 𝑓−𝑛)

−1𝜑0
2(𝑦0).

Up to a nonzero constant, it is equal to

𝜑1(𝑎
−1𝑥0) · 𝜑

0
2 (𝑡𝑒0 ⊗ (𝑎∗ 𝑓−𝑛 − 𝑓−𝑛)).

If this is nonzero, then 𝑎−1 ∈ M𝑛 (𝔬𝐸 ) and

𝑎∗ 𝑓−𝑛 − 𝑓−𝑛 ∈

𝑛⊕
𝑖=1

𝔭𝑚𝐸 𝑓−𝑖 .

This proves the claim.
Now we consider 𝐹𝜌(𝑡𝑒0⊗ 𝑓−𝑛 ,0)−1 (𝜑0

1 ⊗𝜑
0
2 )

. Note that it is left 𝑁 ′
2𝑛-invariant and right 𝑡𝐾𝑊

2𝑚-invariant.
Suppose that 𝐹𝜌(𝑡𝑒0⊗ 𝑓−𝑛 ,0)−1 (𝜑0

1 ⊗𝜑
0
2 )
(𝑔) ≠ 0. By the claim, we may assume that 𝑔 = m𝑌 (𝑎) with

𝑎 ∈ GL(𝑌 ) satisfying the conditions in the claim. By the Iwasawa decomposition, we may further
assume that 𝑎 = 𝑎𝑑𝑎0 such that
◦
〈
𝑎𝑑 𝑓𝑖 , 𝑓− 𝑗

〉
𝑊

= 𝜛𝜆𝑖𝛿𝑖, 𝑗 for some 𝜆𝑖 ∈ Z;
◦ 𝑎0 ∈ GL𝑛 (𝔬𝐸 ) via GL(𝑌 ) � GL𝑛 (𝐸).
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Since 𝑎−1 ∈ M𝑛 (𝔬𝐸 ), we have 𝜆𝑖 ≤ 0 for 1 ≤ 𝑖 ≤ 𝑛. Note that

𝑎∗ 𝑓−𝑛 − 𝑓−𝑛 = 𝑎∗0𝑎
∗
𝑑 𝑓−𝑛 − 𝑓−𝑛 = 𝑎∗0𝜛

𝜆𝑛 𝑓−𝑛 − 𝑓−𝑛.

Since this is in ⊕𝑛
𝑖=1𝔭

𝑚
𝐸 𝑓−𝑖 , we have 𝜆𝑛 = 0 and m𝑌 (𝑎0) ∈

𝑡𝐾𝑊
2𝑚. Hence, we may assume that 𝑎0 = 1𝑋

(i.e., 𝑔 = m𝑌 (𝑎𝑑)). For 2 ≤ 𝑖 ≤ 𝑛 and 𝑥 ∈ 𝔬𝐸 , define 𝑢𝑖 ∈ 𝑁 ′
2𝑛 so that

𝑢𝑖 𝑓 𝑗 − 𝑓 𝑗 =

{
𝑥 · 𝑓𝑖−1 if 𝑗 = 𝑖,

0 if 𝑗 ≠ 𝑖.

Then 𝑢𝑖 ∈
𝑡𝐾𝑊

2𝑚. Hence,

0 ≠ 𝐹𝜌(𝑡𝑒0⊗ 𝑓−𝑛 ,0)−1 (𝜑0
1 ⊗𝜑

0
2 )
(m𝑌 (𝑎𝑑))

= 𝐹𝜌(𝑡𝑒0⊗ 𝑓−𝑛 ,0)−1 (𝜑0
1 ⊗𝜑

0
2 )
(m𝑌 (𝑎𝑑)𝑢𝑖)

= 𝜇(m𝑌 (𝑎𝑑)𝑢𝑖m𝑌 (𝑎𝑑)
−1)𝐹𝜌(𝑡𝑒0⊗ 𝑓−𝑛 ,0)−1 (𝜑0

1 ⊗𝜑
0
2 )
(m𝑌 (𝑎𝑑))

so that 𝜇(m𝑌 (𝑎𝑑)𝑢𝑖m𝑌 (𝑎𝑑)
−1) = 1 for any 𝑥 ∈ 𝔬𝐸 . Note that

𝜇(m𝑌 (𝑎𝑑)𝑢𝑖m𝑌 (𝑎𝑑)
−1) = 𝜓𝐸 (

〈
m𝑌 (𝑎𝑑)𝑢𝑖m𝑌 (𝑎𝑑)

−1 𝑓𝑖 , 𝑓−𝑖+1
〉
)

= 𝜓𝐸 (𝜛
𝜆𝑖−1−𝜆𝑖𝑥).

Hence, 𝜓𝐸 (𝜛
𝜆𝑖−1−𝜆𝑖𝑥) = 1 for any 𝑥 ∈ 𝔬𝐸 . This implies that 𝜆𝑖−1 ≥ 𝜆𝑖 . In conclusion, we have

0 ≥ 𝜆1 ≥ · · · ≥ 𝜆𝑛−1 ≥ 𝜆𝑛 = 0

so that 𝜆1 = · · · = 𝜆𝑛 = 0. This means that 𝑎𝑑 = 1𝑋 . This completes the proof of Lemma 5.7. �
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