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Total-body CT scans are useful in saving trauma patients; however, interpreting numerous images 
with varied window settings slows injury detection. We developed an algorithm for “unified total-body 
CT image with multiple organ-specific windowings (Uni-CT)”, and assessing its impact on physician 
accuracy and speed in trauma CT interpretation. From November 7, 2008, to June 19, 2020, 40 cases 
of total-body CT images for blunt trauma with multiple injuries, were collected from the emergency 
department of Osaka General Medical Center and randomly divided into two groups. In half of the 
cases, the Uni-CT algorithm using semantic segmentation assigned visibility-friendly window settings 
to each organ. Four physicians with varying levels of experience interpreted 20 cases using the 
algorithm and 20 cases in conventional settings. The performance was analyzed based on the accuracy, 
sensitivity, specificity of the target findings, and diagnosis speed. In the proposal and conventional 
groups, patients had an average of 2.6 and 2.5 targeting findings, mean ages of 51.8 and 57.7 years, 
and male proportions of 60% and 45%, respectively. The agreement rate for physicians’ diagnoses was 
κ = 0.70. Average accuracy, sensitivity, and specificity of target findings were 84.8%, 74.3%, 96.9% and 
85.5%, 81.2%, 91.5%, respectively, with no significant differences. Diagnostic speed per case averaged 
71.9 and 110.4 s in each group (p < 0.05). The Uni-CT algorithm improved the diagnostic speed of total-
body CT for trauma, maintaining accuracy comparable to that of conventional methods.
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The annual global incidence of trauma patients exceeds 100 million, with a mortality rate surpassing 10%1–3, 
emphasizing the critical nature of trauma care. The use of total-body computed tomography (CT) is beneficial 
in the evaluation of patients with severe trauma4–6. Advances in CT technology have led to faster imaging 
processes and have accelerated these trends7. However, lengthy interpretation times for total-body CT images 
delay intervention, which can result in poorer patient outcomes8. Consequently, reducing the time required for 
CT interpretation has become a crucial challenge in improving patient outcomes.

Hence, exploring interpretation protocols of total-body CT images in trauma have ensued9,10. A notable 
approach is the Focused Assessment with CT for Trauma (FACT)11, aiming to interpret total body CT findings 
of trauma within 2–3 min, focusing on observations crucial for urgent treatment decisions. The FACT includes 
the following fatal findings: extensive intracranial hematomas, aortic injuries, mediastinal hematomas, extensive 
lung contusions, hemo/pneumothorax, cardiac tamponade, hematomas in the bladder-rectal space, pelvic and 
vertebral fractures, retroperitoneal hematomas, and parenchymal organ injuries. This approach allows rapid 
intervention in potentially fatal injuries. However, similar to traditional interpretation methods, this requires 
adjusting window settings for each organ of interest, often requiring multiple references to the same slice image. 
For example, under soft-tissue conditions, the aortic arch and mediastinal hematoma are first assessed. The 
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settings are subsequently changed to lung conditions to evaluate extensive lung contusions or pneumothorax. 
The need to constantly switch settings for optimal organ visualization is a current limitation for the efficient 
interpretation of CT images12,13.

Some studies have explored windowing methods aiming to simultaneously evaluate multiple organs14–18. For 
example, window blending overlays images of lung, soft tissue, and bone window settings to evaluate chest trauma 
in a single series of images. However, these methods use superimposition techniques, inhibiting the physician’s 
ability to evaluate each organ by obscuring the distinct characteristics of each windowings14,19. To address this, 
we introduced a “unified CT image using organ-specific windowing (Uni-CT)” algorithm to automatically 
generate a single series of total-body CT images concatenating multiple images of segmented organs with organ-
specific window settings. Our algorithm utilizes semantic segmentation models to extract organs, processes their 
window settings, and then concatenates these organ-specific windowsettings images without superimposing 
multiple window settings images. Concatenated images do not lose distinct characteristics of each organ-specific 
window setting. This allows for the evaluation of total -body from a single series of images without any manual 
manipulation, enhancing the efficiency of CT interpretation. Our study also validates the effectiveness of this 
algorithm in the trauma CT interpretation of physicians.

Methods
Ethics approval
This study was approved by the Clinical Medicine Ethics Committee at Osaka General Medical Center 
(IRB:2021-070 ). The requirement for written informed consent was waived because of the retrospective nature 
and minimal risk to the study participants. This study was conducted in accordance with the principles of the 
Declaration of Helsinki. A summary of the study was posted at all participating institutions. This study was 
registered in the Japan Registry of Clinical Trials (jRCT1050230166).

Image datasets
CT images of trauma cases were collected between November 7, 2008, and June 19, 2020, at Osaka General 
Medical Center. The inclusion criteria were blunt trauma patients who underwent enhanced total-body CT 
scanning, exhibiting multiple findings such as aortic injury, mediastinal hematoma, extensive lung contusion, 
pneumothorax, cardiac tamponade, hematoma in the bladder-rectal space, pelvic and vertebral fractures, 
retroperitoneal hematoma, and parenchymal organ injury. Images with severe artifacts, missing data, or poor 
depiction were excluded. In total, 40 cases were anonymized and collected retrospectively. The images were 
captured in DICOM format using three different CT machines (Aquilion 64, Aquilion CX, and Aquilion 
PRIME; Canon Medical Systems Corporation, Otawara, Japan). Imaging commenced 90 s after contrast agent 
administration, using axial slice images with a thickness of 5 mm from neck to pelvis. The 40 cases were arranged 
chronologically and randomly divided into two groups using the Fisher-Yates shuffle method20: the first 20 cases 
formed the proposal group, and the remaining 20 constituted the conventional group.

Annotation
Annotations were based on diagnoses made by board-certified radiologists with over 10 years of clinical 
experience. Findings on aortic injury, mediastinal hematoma, extensive lung contusion, pneumo/hemothorax, 
cardiac tamponade, intra abdominal hematoma (usually a hematoma in the bladder-rectal space), pelvic and 
vertebral fractures, retroperitoneal hematoma, and parenchymal organ injury were extracted. These findings 
were categorized into five groups based on the FACT protocol for rapid total-body CT image diagnosis in 
trauma11. Aortic injury and mediastinal hematoma were categorized as group A; extensive lung contusion, 
pneumo/hemothorax, and cardiac tamponade as group B; intra abdominal hematoma as group C; pelvic/
vertebral fractures and retroperitoneal hematoma as group D; and parenchymal organ injury as group E.

Algorithm structure
The image-generation algorithm was composed of three steps. In the first step, anatomical structures are 
extracted from total-body CT images using a semantic segmentation model21. Second, the optimal window 
settings for each extracted anatomical structure were dynamically calculated and applied to window processing. 
For other regions that did not belong to the extracted structures, a fixed soft-tissue window setting was applied. 
In the last step, all organ-specific window-setting images were concatenated into a single series of images (Fig. 1).

Extraction of anatomical structures
Initially, CT data in DICOM format were converted to NIfTI format using the dicom2Nifti library (version 2.4.6). 
Subsequently, the TotalSegmentator library (version 1.5.6) was used to detect anatomical structures from the 
CT images21. This library provides a group of deep learning models for semantic segmentation of 104 different 
anatomical structures from CT images. Lower-resolution models were used to detect anatomical structures in 
the algorithm. From the initially detected 104 classes, excluding those related to the head, blood vessels, and 
muscles, we consolidated them into 23 classes: trachea, lungs, heart, esophagus, stomach, duodenum, small 
intestine, colon, liver, gallbladder, pancreas, spleen, adrenal glands, kidneys, ureters, vertebrae, clavicle, ribs, 
scapula, humerus, ilium, sacrum, and femur22 (Table 1).

The segmentation information for these 23 classes of anatomical structures was output as binary data, where 
pixels corresponding to each class were assigned a value of ‘1,’ and all other regions were assigned a value of 
‘0. ’ To smooth the boundaries of each anatomical structure, we implemented anti-aliasing processing23 using 
the resize function with linear interpolation from the OpenCV library (version 4.6.0.66). The segmentation 
information was first reduced in size by one-fourth in both dimensions using area averaging, and gradually 
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Consolidated class Original class of TotalSegmentator

adrenal adrenal_gland_left, adrenal_gland_right

clavicula clavicula_left, clavicula_right

colon colon

duodenum duodenum

esophagus esophagus

femur femur_left, femur_right

gallbladder gallbladder

heart heart_atrium_left, heart_atrium_right, heart_myocardium,
heart_ventricle_left, heart_ventricle_right

hip hip_left, hip_right

humerus humerus_left, humerus_right

kidney kidney_left, kidney_right

liver liver

lung lung_lower_lobe_left, lung_lower_lobe_right, lung_middle_lobe_right, lung_upper_lobe_left, lung_upper_lobe_right

pancreas pancreas

rib rib_left_1, rib_left_2, rib_left_3, rib_left_4, rib_left_5, rib_left_6 rib_left_7, rib_left_8, rib_left_9, rib_left_10, rib_left_11, rib_left_12, rib_right_1, 
rib_right_2, rib_right_3, rib_right_4, rib_right_5, rib_right_6, rib_right_7, rib_right_8, rib_right_9, rib_right_10, rib_right_11, rib_right_12

sacrum sacrum

scapula scapula_left, scapula_right

small_bowel small_bowel

spleen spleen

stomach stomach

trachea trachea

urinary_bladder urinary_bladder

vertebrae
vertebrae_c1, vertebrae_c2, vertebrae_c3, vertebrae_c4, vertebrae_c5, vertebrae_c6, vertebrae_c7, vertebrae_l1, vertebrae_l2, vertebrae_l3, 
vertebrae_l4, vertebrae_l5, vertebrae_t1, vertebrae_t2, vertebrae_t3, vertebrae_t4, vertebrae_t5, vertebrae_t6, vertebrae_t7, vertebrae_t8, 
vertebrae_t9, vertebrae_t10, vertebrae_t11, vertebrae_t12

- (other regions)
aorta, autochthon_left, autochthon_right, gluteus_maximus_left, gluteus_maximus_right, gluteus_medius_left, gluteus_medius_right, gluteus_
minimus_left, gluteus_minimus_right, iliac_artery_left, iliac_artery_right, iliac_vena_left, iliac_vena_right, iliopsoas_left, iliopsoas_right, 
inferior_vena_cava, portal_vein_and_splenic_vein, pulmonary_artery

Table 1.  Consolidation of Classes The TotalSegmentator output classes are compiled from the original classes 
in the right row to the left column.

 

Fig. 1.  Overview of the algorithm. The augmented visualization windowing algorithm is composed of three 
steps. First, anatomical structures were extracted using a semantic segmentation model, followed by the 
calculation of organ-specific window settings for each anatomical structure. In the final step, all the images 
were concatenated.
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enlarged to the original size in stages of 3/2, 5/3, and 8/5. This process involves converting pixel areas with values 
greater than ‘0’ back to ‘1,’ thereby reverting them to binary data. Pixels that did not belong to any of the 23 
classes after processing were defined as other regions.

Dynamic windowing processing
The anatomical structures of the 23 classes obtained were subjected to dynamic windowing processing and 
optimized for each organ. Using the NumPy library (version 1.23.3), the percentile scores were selected as 
the upper and lower limits for each class based on the distribution of their CT values. The difference between 
the upper and lower CT values was calculated as the window width (WW) and the average of these values 
was determined as the window level (WL)24. For the other regions, fixed values commonly used for soft tissue 
conditions (WW = 350 and WL = 50) were applied25. Based on these calculations, window processing was 
conducted for each class, and the results were integrated to generate 8-bit grayscale images.

Interpretation test using algorithm-processed images
The percentile settings for dynamic window processing were determined by classifying the 23 anatomical classes 
into three categories: SOFT_TISSUE, BONE, and LUNG (Table 2). The settings were based on the percentile 
scores for each category with the lower limit as the x-percentile and the upper limit as the y-percentile. For 
SOFT_TISSUE, the settings were (x, y) = (2.5, 97.5); for BONE, (x, y) = (0, 97.5); and for LUNG, (x, y) = (0, 
90). These settings were determined based on the noise characteristics of the CT data used and may require 
adjustments depending on the utilization environment.

Interpretation tests were conducted on 20 cases each from the proposal and conventional groups. Four 
physicians with varying years of experience and specialties (a 20-year board-certificated radiologist, a 27-year 
board-certificated emergency physician, a 3rd-year emergency physician, and a 4th-year internist) were selected 
for the tests. These physicians had no direct clinical involvement with the patients and were provided only with 
axial slice images of 5 mm thickness from total-body CT scans of trauma patients, without additional clinical 
information. They diagnosed the presence or absence of five groups of findings: aortic injury and mediastinal 
hematoma were categorized as group A; extensive lung contusion, pneumo/hemothorax, and cardiac tamponade 
as group B; intra abdominal hematoma as group C; pelvic/vertebral fractures and retroperitoneal hematoma as 
group D; and parenchymal organ injury as group E.

Additionally, the interpretation time for each case was recorded.

Statistical analyses
All analyses were performed using R version 4.3.2. The accuracy, sensitivity, and specificity were calculated 
for each case, and the average values were computed for all cases. Fleiss’ kappa values26 were determined to 
evaluate the level of agreement among the diagnoses of the four physicians. One-sided two-sample t-tests27 were 
performed to compare the interpretation times with and without the assistance of the algorithm. Additionally, 
95% confidence intervals (CI) were obtained for these analyses.

Results
Dataset characteristics
Patients in the proposal group were in the range of 10–90 years old (average: 51.8, standard deviation: 25.3), 
whereas those in the conventional group were in the range of 19–83 years old (average: 57.7, standard deviation: 
18.7). The female percentages in proposal and conventional groups were 40.0% and 55.0%, respectively. The 
average number of positive findings per case was 2.6 for the proposal group and 2.5 for the conventional group. 
Table 3 presents a detailed breakdown of positive findings in each group.

Features of total-body CT algorithm-processed images
Applying the Uni-CT algorithm demonstrated the potential for rapidly identifying critical injuries in total-
body CT for trauma without the need to switch window settings between the lung, soft tissue, and bone (The 
processing time of the algorithm is in Supplementary Sect. 1). Nine representative axial images highlight this 
effect (Fig.  2). The processed images of the chest (Fig.  2A, B, C) show optimized ribs, vertebrae, lungs, and 
cardiovascular structures, allowing simultaneous detection of rib fractures, vertebral fractures, pneumothorax, 
and major vascular injuries. The images of the upper abdomen (Fig. 2D, E, F) show optimized ribs, lungs, liver, 
gallbladder, duodenum, pancreas, spleen, vertebrae, stomach, intestines, and major blood vessels, enabling 
simultaneous detection of rib fractures, vertebral fractures, major vascular injuries, and injuries to various 

Category

Percentile 
cutoff

ClassesLower Upper

Soft_
Tissue 2.5 97.5

adrenal, colon, duodenum, esophagus, gallbladder, heart, 
kidney, liver, pancreas, small_bowel, spleen, stomach, trachea, 
urinary

Bone 0 97.5 clavicula, femur, hip, humerus, rib, sacrum, scapula, vertebrae

Lung 0 90 lung

Table 2.  Percentile Settings for Each Anatomical Class.
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parenchymal organs. The images of the pelvis (Fig. 2G, H, I) show optimized pelvic bones, intestines, bladder, and 
blood vessels, facilitating simultaneous detection of pelvic fractures, intra-abdominal bleeding, retroperitoneal 
hemorrhage, and organ injuries.

Representative axial images of the chest (A, B, C), abdomen (D, E, F), and pelvis (G, H, I) are displayed 
accordingly. Each proposal image has corresponding conventional images. The window settings of each 
conventional image are WW: 1500 and WL:-700 for the lung condition, WW: 350 and WL: 50 for the soft tissue 
condition, and WW: 2000 and WL: 200 for the bone condition.

Diagnostic agreement of physicians
The overall agreement rate among the four physicians regarding observed findings was κ = 0.70, with κ = 0.70 for 
the proposal group and κ = 0.71 for the conventional group, indicating substantial agreement.

Fig. 2.  A series of images produced by the Uni-CT Algorithm. These nine axial images were selected to 
highlight the effect of the Uni-CT Algorithm. Each proposal image has corresponding conventional lung, soft-
tissue, and bone condition images.

 

Proposal Conventional

No. of Patients

Male 12 9

Female 8 11

Age ± SD (y) 51.8 ± 25.3 57.7 ± 18.7

Min (y) 10 19

Max (y) 90 83

No. of Labels

Label A 2 1

Label B 18 19

Label C 1 3

Label D 20 20

Label E 11 7

Table 3.  Dataset Characteristics of the proposal and Conventional Groups.
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Diagnostic accuracy of physicians in proposal and conventional groups
The average accuracy, sensitivity, and specificity of physicians in diagnosing target findings per patient were 
84.8%, 74.3%, 96.9% for the proposal group and 85.5%, 81.3%, 91.5% for the conventional group, showing no 
significant difference (The result of the bayesian statistical analysis is in Supplementary Sect. 2). Table 4 details 
the accuracy, sensitivity, and specificity of each physician per patient and for each target finding.

Diagnostic speed of physicians in proposal and conventional groups
The average diagnostic speed per patient was 71.9 s for the proposal group and 110.4 s for the conventional 
group (p < 0.05), marking a 34.9% reduction in diagnosis time for the proposal group (The result of the bayesian 
statistical analysis is in Supplementary Sect. 2). The diagnostic speeds for each physician per patient in each 
group are presented in Table 4.

Discussion
This is the first study to propose and implement a Uni-CT algorithm to automatically generate a single series 
of total-body CT images by concatenating multiple images of segmented organs using organ-specific window 
settings. Our algorithm enables the simultaneous visualization of each organ in an optimal window setting in 
a single series of images without the necessity of alternating window settings. Previous research attempted to 
reduce the complexity of manual switching conditions by superimposing multiple window-setting images14–18. 
Consequently, an ambiguously superimposed image loses the distinct characteristics of each window setting and 
fails to display an optimal image for each organ. In contrast, our algorithm extracted organ structures, applied 
organ-specific window settings, and concatenated them into a single series of images without superimposing 
multiple window settings. These concatenated images retained the distinct characteristics of each organ-specific 
window setting. In addition, particularly in emergency situations where lung, bone, and soft tissue conditions 
are typically observed with fixed window settings9–11, our automated optimization for each organ may enhance 
comprehension compared to images cycled among fixed conditions for the lung, bone, and soft tissue. Thus, 
our approach streamlines diagnosis without the need to switch conditions and also enables the recognition of 
interrelations between image findings visible only under optimal conditions for each organ.

Furthermore, this study is the first to examine the effect of the Uni-CT algorithm on the accuracy and speed 
of diagnoses in total-body CT scans of trauma, quantitatively assessing the influence of this window setting 
on trauma CT diagnosis. These findings suggested that employing the multiple organ windowing algorithm 
in diagnosing total-body CT images for trauma can significantly reduce diagnosis time by 35% without 
compromising diagnostic accuracy. The algorithm was evaluated in trauma patients, necessitating comprehensive 
whole body organ assessment, especially when expediting diagnosis time is critical. The reduction in diagnosis 
time for trauma, which necessitates the evaluation of whole-body organs, suggests the potential to decrease 
diagnosis times for other internal diseases as well, potentially alleviating the workload of radiologists in routine 
image diagnostics.

In addition, leveraging this algorithm for the preprocessing of CT images for training can considerably 
enhance the accuracy of AI models. Previous imaging diagnosis models, often trained on images under a single 

Proposal* Conventional*

Physician 1

Accuracy 88.0 (95.0/90.0/100.0/90.0/65.0) 90.0 (100.0/80.0/95.0/95.0/80.0)

Sensitivity 78.3 (50.0/88.9/100.0/90.0/36.4) 84.2 (100.0/78.9/66.7/95.0/57.1)

Specificity 100.0 (100.0/100.0/100.0/NA/100.0) 98.3 (100.0/100.0/100.0/NA/92.3)

Diagnostic speed (s) 46.2 66.9

Physician 2

Accuracy 87.0 (95.0/85.0/100.0/100.0/55.0) 86.0 (100.0/75.0/90.0/85.0/80.0)

Sensitivity 80.8 (50.0/83.3/100.0/100.0/36.4) 77.5 (100.0/73.7/33.3/85.0/71.4)

Specificity 95.8 (100.0/100.0/100.0/NA/77.8) 95.8 (100.0/100.0/100.0/NA/84.6)

Diagnostic speed (s) 57.1 96.5

Physician 3

Accuracy 78.0 (90.00/90.0/100.0/50.0/60.0) 81.0 (100.0/75.0/90.0/75.0/65.0)

Sensitivity 56.7 (0.0/88.9/100.0/50.0/27.3) 72.5 (100.0/73.7/33.3/75.0/57.1)

Specificity 100.0 (100.0/100.0/100.0/NA/100.0) 92.5 (100.0/100.0/100.0/NA/69.2)

Diagnostic speed (s) 60.1 110.4

Physician 4

Accuracy 86.0 (90.0/95.0/90.0/95.0/60.0) 85.0 (90.0/85.0/65.0/100.0/85.0)

Sensitivity 81.7 (0.0/94.4/0.0/95.0/54.5) 90.8 (100.0/84.2/66.7/100.0/85.7)

Specificity 91.7 (100.0/100.0/94.7/NA/66.7) 79.2 (89.5/100.0/64.7/NA/84.6)

Diagnostic speed (s) 124.1 167.6

Table 4.  Details of Diagnostic Accuracy and Speed of Each Physician * Data in parentheses are Label A/Label 
B/Label C/Label D/Label E.
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condition28–32, lacked representation of nontarget organs with appropriate windowing. Using this algorithm 
could expand training to include indirect findings among surrounding organs, thereby enhancing the learning 
scope and accuracy of the model.

Advantages of dynamic windowing
The algorithm developed in this study incorporates dynamic windowing, enabling the generation of optimal 
images under various conditions, including different CT equipment, viewer characteristics, and in the presence 
of artifacts. This flexibility in settings could also be applied to imaging various non-traumatic diseases.

Effect of Uni-CT algorithm on typical injuries
Blunt chest trauma often involves concurrent rib fractures, a pneumo/hemothorax, and extensive lung contusions. 
The algorithm enables simultaneous detection of these injuries, potentially increasing diagnostic speed and 
use of indirect signs such as fractures to diagnose pneumo/hemothorax or extensive lung contusions. Blunt 
abdominal trauma frequently presents as rib fractures, pneumo/hemothorax, lung contusions, and parenchymal 
organ injuries. The algorithm enables the simultaneous detection of these findings, revealing the direction and 
extent of the applied force in cases such as splenic and left renal injuries concurrent with left pelvic fractures. 
Blunt pelvic trauma often involves pelvic fractures, vertebral fractures, and retroperitoneal hematomas. This 
algorithm allows simultaneous detection of these injuries, aiding in identifying hematomas using indirect signs 
of fracture patterns (Fig. 3). Uni-CT applied total-body CT images of these cases are shown at the following URL: ​
h​t​t​p​s​:​​​/​​/​d​r​i​v​​e​.​g​o​o​g​l​​e​.​c​​​o​m​/​d​r​i​​​v​e​/​f​o​​l​d​​e​r​s​/​​1​2​6​u​5​​K​O​f​M​7​h​​A​B​t​N​W​3​​s​0​X​h​​G​​e​3​_​8​T​t​​t​​a​k​S​k​​?​t​h​s​=​t​r​u​e.

Limitations
In this study, we used image data from a single Japanese facility. The applicability of our algorithm remains 
unvalidated across different countries with varying ethnic groups, demographics, and CT equipment 
manufacturers. Further data collection and tuning of percentile scores under diverse conditions are necessary. 
When implementing the Uni-CT algorithm in a clinical setting, it is essential to consider its processing time. In 
this study, as noted in Sect. 2 of the appendix, output results can be obtained in tens of seconds even on a standard 
commercially available laptop GPU machine. It will be necessary to set up an environment with a higher-spec 
GPU machine to ensure faster output and a stress-free user experience feasible for clinical application. In the 
Uni-CT algorithm, anatomical structures were first extracted, and window settings were subsequently calculated 
for each structure. Therefore, the miss extractions lead to incorrect window settings calculations, resulting in 
incorrect output images. Enhancing semantic segmentation model accuracy for anatomical structure extraction 
is imperative. Cases with strong artifacts33 were excluded, and the effectiveness of the algorithm in such cases 
remained untested. Future studies should consider cases with strong artifacts. The study focused only on patients 

Fig. 3.  CT images of typical blunt trauma injuries processed by the Uni-CT algorithm. The Uni-CT algorithm 
enables the simultaneous detection of multiple findings, revealing the direction and extent of the applied force.
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with blunt trauma, excluding the efficacy of the algorithm in penetrating trauma injuries. Further investigation is 
required in this area. The study used venous-phase CT images, and the evaluation of arterial-phase information 
was not possible. Future studies should consider incorporating different imaging phases. The study focused 
solely on verifying the findings necessitating urgent intervention, leaving the effectiveness of the algorithm for 
minor injuries unclear. Further trials with fewer severe cases are warranted.

Conclusion
To improve the efficiency of interpretation of total-body CT for trauma, we introduced a novel “unified CT 
image using an organ-specific windowing (Uni-CT)” algorithm. This enabled the diagnosis of critical findings 
in a single series of images. The algorithm suggests potential for significantly enhancing diagnostic speed for 
critical injuries in total-body CT for trauma without compromising the accuracy of physician diagnoses.

Data availability
Anonymized data will be available. The corresponding author will provide the data with respect to the data-shar-
ing policy in the protocol and ethical approval of the study.
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