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TO THE EDITOR:
der(1;7)(q10;p10) is an unbalanced translocation recurrently found
in a variety of myeloid neoplasms, where +1q and −7q are the
common consequences [1–6]. Although it represents one of the
most frequent chromosomal abnormalities in myeloid neoplasms
among Asian populations, the molecular characteristics of der(1;7)
(q10;p10)(+) myeloid neoplasms have not been fully elucidated. In
this retrospective study, we enrolled 3,385 myeloid neoplasm
cases to identify a total of 148 cases with der(1;7)(q10;p10) on the
basis of conventional cytogenetics and/or sequencing-based copy
number analysis [7] and investigated their clinical features and
mutational profiles in comparison with those cases having −7/
del(7q) (n= 376) and 1q trisomy (+1q) (n= 54) alone, using
whole-exome sequencing (WES) and/or targeted-capture sequen-
cing. The remaining 2,808 cases were collectively analyzed as
“OTHER” cases (Supplementary Methods and Supplementary
Table 1). Through these analyses, we demonstrated that der(1;7)
(q10;p10)(+) myeloid neoplasms were characterized by unique
clinical and mutational features and therefore, represented a
distinct subset of myeloid neoplasms.

In accordance with previous reports [1, 4], there was an extreme
male predominance in der(1;7)(q10;p10)(+) cases (87.8%)
(P < 0.001) (Supplementary Table 1). der(1;7)(q10;p10) was sig-
nificantly more prevalent in Asian (54/936) than German (4/944)
myelodysplastic syndromes (MDS) cases (5.8% vs. 0.4%) (Data not
shown). Compared to −7/del(7q) and +1q, der(1;7)(q10;p10) was
more enriched (72.3%) for MDS than for acute myeloid leukemia
(AML) (23.6%) and MDS/myeloproliferative neoplasm (MPN)
(3.4%). MDS with excess blasts (MDS-EB) was less common in
der(1;7)(q10;p10)(+) MDS cases than in −7/del(7q)(+) MDS
patients, but more frequent compared to +1q cases. Secondary
AML was more enriched in der(1;7)(q10;p10)(+) AML cases
compared to non-der(1;7)(q10;p10) cases (Supplementary Fig. 1A).
der(1;7)(q10;p10)(+) MDS cases had significantly higher hemoglo-
bin levels, higher platelet counts, and lower blast counts than −7/
del(7q) MDS cases (Supplementary Fig. 1B).
der(1;7)(q10;p10)(+) MDS, together with −7/del(7q)(+) MDS,

had a significantly shorter overall survival and faster leukemic
transformation than OTHER MDS cases, and in accordance with
our previous report, [1] der(1;7)(q10;p10)(+) MDS cases tended to
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have a slightly better OS and slower leukemic progression than
−7/del(7q) MDS cases (Supplementary Fig. 1C). By contrast, +1q
MDS cases showed a trend for better OS. Compared to OTHER
MDS cases, der(1;7)(q10;p10)(+) MDS cases tended to die without
AML progression. Of note, infection-related deaths explained as
many as 45% of non-leukemic deaths among der(1;7)(q10;p10)(+)
MDS patients, whereas it explained only 13.9% and 10.8% for −7/

del(7q) and OTHER MDS cases, respectively (Supplementary
Fig. 1D). Interestingly, +1q MDS patients also showed a similar
trend with 60% of cases dying from infection-related causes.
We next conducted targeted-capture sequencing for known

driver genes and gene mutations identified through WES of 26
der(1;7)(q10;p10)(+) cases and revealed that 132 out of 148
der(1;7)(q10;p10)(+) cases (89.2%) had one or more gene

Fig. 1 Genetic characteristics of der(1;7)(q10;p10)(+) myeloid neoplasms. A Landscape of gene mutations and copy number
alterations (CNAs) in 148 der(1;7) (q10;p10)(+) myeloid neoplasm cases identified through targeted-capture sequencing. Number of genetic
mutations per case shown as bar plots at top. Genetic mutation type and disease depicted as colors. Frequency of each mutation (>1%) and
number of patients with the mutation are shown in left and right, respectively. Rows are ordered by functional categories of affected genes.
B Frequency bar plot of targeted-sequencing gene mutation and CNA for der(1;7) (q10;p10)(+) vs. −7/del(7q) vs. +1q vs. others. Type of
mutation depicted by differing colors. False discovery rate (q-values) shown by asterisks (*). Transcription factor genes in red. C Bar graph
showing the frequency of the number of transcription factor mutations per case for each group (P-values calculated by Fisher’s Exact
test). UPD uniparental disomy, TF transcription factor.
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mutations (Fig. 1A). The mean number of mutations was
significantly higher in der(1;7)(q10;p10)(+) cases (2.8/sample)
compared to other sub-groups (range, 1.7–1.9)(P < 0.001) (Supple-
mentary Fig. 1E). Most frequently mutated genes in der(1;7)
(q10;p10)(+) cases included RUNX1, EZH2, ETNK1, U2AF1, DNMT3A,
BCOR, ETV6, TET2, GATA2, MYB, IDH1, PHF6, and ASXL1, the majority
of which were more frequently mutated in der(1;7)(q10;p10)(+)
cases than in other sub-groups (Fig. 1B and Supplementary
Fig. 1F). Accounting for half of these genes, transcription factor
genes, including RUNX1, BCOR, ETV6, GATA2, MYB, and CEBPA,
represented major mutational targets in der(1;7)(q10;p10)(+)
cases (Fig. 1C). Interestingly, we observed multiple mutations
affecting single genes for some of these transcription factor genes,
including RUNX1, ETV6, MYB, and GATA2, suggesting a strong
selective pressure that favors these mutations within the der(1;7)
(q10;p10)(+) populations (Fig. 1A). Overall, 62.2% of der(1;7)
(q10;p10)(+) cases harbored at least one transcription factor
mutation, a much higher frequency than der(1;7)(q10;p10)(−)
cases (Fig. 1C). +8 and del(20q) were common in der(1;7)(q10;p10)
(+) cases. By contrast, TP53 mutations and del(5q) were rarely
seen in der(1;7)(q10;p10)(+) cases, showing a sharp contrast to the
very high frequencies of these alterations in −7/del(7q), +1q and
OTHER cases (Supplementary Fig. 1F).
Among frequent mutational targets of der(1;7)(q10;p10), two

genes, MYB and ETNK1, were rarely mutated in OTHER and −7/
del(7q) sub-groups, and therefore, are highly characteristic of
der(1;7)(q10;p10)(+) cases. Interestingly, MYB mutations were also
common in +1q cases (Fig. 1B). MYB is a proto-oncogene
originally identified as the v-Myb oncogene within the genome
of avian myeloblastosis virus and E26 virus [8]. Most variants were
protein-truncating, and widely distributed along the entire coding

sequence and, therefore, lead to a loss of function (Fig. 2A). MYB
mutations were found in 13.1% of MDS and 11.4% of AML cases
with der(1;7)(q10;p10)(+), but rarely detected in der(1;7)(q10;p10)
(−) cases (Fig. 2B). There were no significant differences in
complete blood counts between patients with and without MYB
mutations (Supplementary Fig. 2A). Mutation profiles did not
substantially differ between MYB-mutated (mut) and MYB-wild
type (wt) cases. MYB-mut cases showed a shorter OS than MYB-wt
cases, although not statistically significant. ETNK1 was another
gene uniquely mutated in der(1;7)(q10;p10)(+) cases. We found
frequent ETNK1 mutations in 18% of der(1;7)(q10;p10)(+) cases,
which showed a prominent mutational hotspot affecting N244.
Mutations were highly specific to MDS cases (24.3%) with only
2.9% in AML cases, which was comparable to der(1;7)(q10;p10)(−)
MDS (2.6%) and MDS/MPN (3.3%) cases (Fig. 2A, B). As was the
case with atypical chronic myeloid leukemia [9], ETNK1 mutations
significantly co-occurred with SETBP1 mutations in der(1;7)
(q10;p10)(+) myeloid neoplasms (P= 0.042) (Fig. 2C). By contrast,
+8 tended to be mutually exclusive with ETNK1 mutations
(P= 0.0078) (Fig. 2C). Notably, ETNK1-mut der(1;7)(q10;p10)(+)
cases presented with eosinophilia (mean: 6.2% vs. 14.8%)
(P= 0.025) (Supplementary Fig. 2A). ETNK1-mutated MDS cases
showed a poorer prognosis than ETNK1-wt cases.
Next, we examined gene expression profiles using RNA-

sequencing of 10 der(1;7)(q10;p10)(+), 20 −7/del(7q), and 62
OTHER MDS patients. As expected, we confirmed the effect of
allelic dosage: elevated and decreased expression across the
genes on 1q and 7q, respectively, while the effect was highly
variable for individual genes. For example, we noted a consistent
reduction of gene expression of EZH2 and CUX1, which are two
major tumor suppressors and frequent targets of mutations and
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focal deletions on 7q in a variety of myeloid neoplasms, while
elevated expression was observed for several oncogenes on 1q,
such as AKT3, BCL9, NCSTN, LAMC1, MDM4, and RIT1 (Supplemen-
tary Fig. 2B). Thus, deregulation of these tumor suppressors and
oncogenes could explain the pathogenesis of der(1;7)(q10;p10)(+)
MDS. Of particular interest among these is MDM4 because MDM4
is a negative regulator of p53 functions and the lack of TP53
mutation was another unique feature in der(1;7)(q10;p10)(+)
cases. Elevated MDM4 expression caused by 1q gain has been
implicated in the paucity of TP53 mutations in +1q cases in other
tumors [10–12]. In line with these reports, down-regulated
expression of p53 signaling pathway genes observed in TP53-
mutated MDS with and without −7/del(7q), was also demon-
strated in der(1;7)(q10;p10)(+) cases (Fig. 2D). TP53 mutations
were also frequent in cases with +1q alone, however, TP53-
mutations tended to show a larger mutant cell fraction than that
of +1q, suggesting that the +1q clone evolved from within the
pre-existing TP53-mutant clone (Data not shown), implying a
distinct pathogenesis between der(1;7)(q10;p10) and +1q alone.
Finally, to investigate the evolution of der(1;7)(q10;p10)(+)

clones, we inferred the order of acquisition of genetic alterations
by evaluating their variant allele frequency. der(1;7)(q10;p10),
together with del(20q) and mutations in DNMT3A and ETNK1,
represented the major clone in most cases, suggesting their early
origin during clonal evolution. By contrast, characteristic transcrip-
tion factor gene mutations in der(1;7)(q10;p10), such as ETV6,
GATA2, and MYB, were relatively late events (Supplementary
Fig. 2C, D). Furthermore, der(1;7)(q10;p10) was identified as clonal
mosaicism in healthy individuals before they developed AML/
MDS. When we surveyed CNAs among 179,417 healthy individuals
from the BioBank Japan based on SNP array data [13, 14], we
found 29 individuals harboring concomitant gain of 1q and loss of
7q suggestive of der(1;7)(q10;p10), of which four later died of AML
or MDS (Supplementary Fig. 2E). Another interesting finding was
the identification of ETNK1 hotspot mutations in only individuals
with der(1;7)(q10;p10) when we analyzed mutations by duplex-
sequencing in 64 individuals including six with der(1;7)(q10;p10)
(Supplementary Fig. 2F). Droplet Digital PCR (ddPCR) of 146 BBJ
samples also identified these hotspot mutations in only those with
der(1;7)(q10;p10) (Data not shown). Given the strong and unique
association between ETNK1 mutations and der(1;7)(q10;p10),
ETNK1 mutations may be acquired during early evolution of
der(1;7)(q10;p10)(+) myeloid neoplasms as clonal hematopoiesis.
In conclusion, der(1;7)(q10;p10)(+) myeloid neoplasms are

characterized by a number of unique genetic features and distinct
hematological profiles and are therefore considered to represent a
distinct entity of myeloid neoplasms, as supported by the recent
findings from the IWG cohort [15]. Identification of this subset of
myeloid neoplasms may allow for better prognostication and
treatment for these patients. An elevated MDM4 expression
associated with 1q gain indicates a possible role of MDM4
inhibitor for these neoplasms which needs to be tested in the
clinical setting in the future.

DATA AVAILABILITY
Datasets of WES and RNA-seq data are available in the European Genome-phenome
Archive database (Accession ID: EGAS50000000704 and EGAS50000000705).
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