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1 Introduction

The AdS/CFT correspondence has been a remarkable tool for understanding the prop-
erties of quantum gravity from field theories and for analyzing strongly interacting field
theories through classical gravity calculations [1]. This duality relates quantum gravity
on d + 1 dimensional anti-de Sitter spaces (AdSd+1) to a class of conformal field theories
(CFTd) residing on the boundary of AdSd+1 bulk spacetime. In this sense, the AdS/CFT
correspondence can be viewed as a special example of holography principle [2, 3], which
is a powerful and fundamental idea that quantum gravity on various spacetimes can be
described by theories of quantum matter.

To gain a deeper understanding of the quantum origin of the Universe, one may be
tempted to extend the AdS/CFT correspondence to more realistic spacetimes, such as de
Sitter spaces. However, this is a highly non-trivial problem, mainly because such cosmolog-
ical spacetimes typically lack timelike boundaries where the dual field theory could reside.
Consequently, identifying the non-gravitational theory that is dual to gravity in cosmologi-
cal spacetime becomes exceedingly difficult. Several approaches have been taken to address
this conundrum. In the case of de Sitter holography, the first idea is to employ the spacelike
boundaries in de Sitter spaces, which is referred to as the dS/CFT correspondence [4–6].
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Other approaches include, e.g., the dS/dS duality [7, 8], the surface/state duality [9], static
patch holography [10, 11], and the von-Neumann algebras [12]. Each of these approaches
presents unique challenges and opportunities, and further research is hopeful to yield fas-
cinating insights into the nature of quantum gravity and its relationship to our cosmology.

The primary purpose of this paper is to initiate the exploration of the concept of
“holography without boundaries” through the modification of the AdS/CFT duality. In the
conventional AdS/CFT correspondence, the d+ 1-dimensional bulk spacetime is dual to a
conformal field theory living on its d-dimensional conformal boundary. Rather than propos-
ing an entirely novel holographic duality, we modify the original AdS/CFT framework by
gluing two distinct portions of AdS geometries, which are enclosed by the timelike bound-
aries Σ(1) and Σ(2), respectively. Subsequently, we join the two AdSd+1 spacetimes together
along the timelike hypersurface by identifying the two branes, i.e., Σ(1) = Σ(2)(≡ Σ), which
could create an AdS bulk spacetime without boundaries. We anticipate that the result-
ing bulk geometry will be dual to two lower-dimensional field theories interacting through
induced dynamical gravity on the braneworld Σ. In this work, we provide a detailed de-
scription of gluing AdS/CFT, with a particular focus on the AdS3/CFT2 case.

This framework bears some resemblance to the brane-world models [13–16], which
assert that a d + 1 dimensional AdS geometry with a finite cut-off is dual to a conformal
field theory coupled to a certain quantum gravity on the d dimensional boundary of the
AdSd+1. In such models, one imposes the Neumann boundary condition on the boundary
surface Σ, which is referred to as the end-of-the-world brane. When the boundary is an
AdSd, this is also interpreted as the gravity dual of a CFT on a manifold with boundaries,
so called the AdS/BCFT correspondence [17–19]. It is notable that our trivial class of
gluing AdS solutions with vanishing stress tensors can be reduced to two copies of the AdS
geometry with the end-of-the-world brane. Gluing two AdS/BCFT geometries partially
along a common AdS boundary Σ has been studied by many authors in the context of
the gravity duals of defect or interface CFT [20–28], the Janus solutions [29–33] and also
recent developed double holography [34–36] (refer also to [37] for a RG flow setup). Also,
the idea of coupling an AdS to another spacetime via the AdS boundary can be found in
the context of island formula associated with black hole evaporation [38–40].

It is also intriguing to note that our models of gluing two AdS/CFT are closely related
to the wedge holography [41]. The wedge holography establishes a connection between the
wedge-shaped region in AdSd+2 and quantum gravity on its boundary, which consists of two
AdSd+1 geometries. This, in turn, is dual to a d-dimensional CFT residing on the tip of the
d+ 2-dimensional wedge, via further application of the AdS/CFT correspondence. In the
middle picture of this chain of holography, two AdSd+1 geometries are united along their
boundaries, which appears similar to our gluing AdS/CFT set-up. However, the original
wedge holography assumes the Dirichlet boundary condition at the d-dimensional tip, while
in our joint spacetime, we impose the Neumann boundary condition, and hence gravity is
dynamic at the tip. We proceed to examine how this gravity interacts with the energy stress
tensors of the two field theories on the brane. We concentrate our detailed computations
on the scenario where the end-of-the-world brane has the critical tension (T = 1 for d = 2).
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Figure 1. Our setup for gluing two AdS/CFT: we introduce a brane into each AdS bulk spacetime
and remove a portion outside the brane. The new spacetime is formed by joining the remaining
bulk spacetime along the timelike brane represented by the blue surface in the figure.

This paper is organized as follows: in section 2, we present a general formulation
for gluing AdS/CFT. In section 3, we put forth solutions in which only chiral modes are
excited. In section 4, we delve into perturbative solutions in the presence of both chiral and
anti-chiral excitations. In section 5, we explore another approach to gluing AdS/CFT by
utilizing the wedge holography. Finally, in section 6, we discuss potential future directions.

2 Formulation of gluing AdS/CFT

In this section, we illustrate the basic constraints for gluing two AdS bulk spacetimes along
a codimension-one (timelike) hypersurface that is denoted by Σ. In this paper, we assume
the presence of the pure gravity in AdSd+1 bulk spacetime. As usual, the bulk gravity
theory for each side is given by standard Einstein gravity with a negative cosmological
constant. Thus, the total action of the bulk spacetime is represented as follows:

Ibulk =
∑
a

1
16πGN

∫
bulk

dd+1y
√
−g

(
R [gµν ] + d(d− 1)

L2
AdSa

)
, (2.1)

where LAdSa with a = 1, 2 denotes the corresponding AdS radius for two AdS bulk space-
times, respectively. We begin by introducing a codimension-one brane to separate the two
independent AdS bulk spacetimes. For the sake of simplicity, the brane is characterized by
a fixed tension term in the main text. As a result, the boundary term in the total action
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thus consists of not only the standard GHY boundary terms but also a tension term, viz,

Ibdy = 1
8πGN

∫
brane1

d2x
√
−h(1)(K(1) − T ) + 1

8πGN

∫
brane2

d2x
√
−h(2)(K(2) − T ) , (2.2)

where T is the tension,1 h
(a)
ij is the induced metric on the brane, and K(a) denotes the

trace of the extrinsic curvature of the brane with respect to each side. Since there is no
matter term in the bulk, the bulk spacetime still satisfies Rµν = − d

L2
AdSi

g
(a)
µν . The new bulk

spacetime is then built by gluing the brane from two sides, as shown in figure 1.

2.1 Junction conditions

The junction condition on the brane is nothing but the so-called Israel junction conditions,
i.e.,

h
(1)
ij = h

(2)
ij ,

[Kij ]− [K]hij = −2Thij ,
(2.3)

with [Kij ] denoting the jump of Kij across the brane, namely

[Kij ] = K
(1)
ij +K

(2)
ij . (2.4)

Our definition of the extrinsic curvature is given byKij = hµi h
ν
j∇µnν with the normal vector

nµ outward pointing in both directions. It is important to note that the Israel junction
conditions defined in eq. (2.3) presuppose that the coordinate systems of the brane from
both sides are the same. Note that the Israel junction conditions result in the following
coordinate-independent constraints:

R[h(1)] = R[h(2)] ,

K(1) +K(2) = 2d
d− 1T .

(2.5)

Since the bulk spacetime is the solution of the vacuum Einstein equations, momentum
constraints also have been automatically satisfied, viz,

DiK
(a)
ij −DjK

(a) = 0 . (2.6)

In the case of high-dimensional bulk spacetime, the two scalar functions do not suffice to
completely solve the Israel junction conditions. However, most of the equations in eq. (2.3)
for three-dimensional AdS3 spacetime are redundant. For instance, it can be noticed that
the first condition, which states the agreement of the Ricci scalar of the two-dimensional
brane on both sides, is sufficient to ensure the match of the induced geometry.

1We can choose different values of the tension for a = 1 and a = 2. However, only their sum is relevant
in our analysis. Thus we choose them to take the same value T .

– 4 –



J
H
E
P
0
7
(
2
0
2
3
)
0
8
0

2.2 Constant-mean-curvature slice in AdS spacetime

One can imagine that the configuration of the hypersurface in a general bulk spacetime
could be very complicated. However, we will focus on the special bulk spacetime, i.e.,
the vacuum solutions of the Einstein equations with a negative cosmological constant. As
we will demonstrate in the subsequent sections, the codimension-one brane consistently
manifests as a hypersurface with constant mean curvature in the AdS bulk spacetime.

First of all, one can apply the Gauss equation to a timelike hypersurface as follows:

R+ 2Rµνnµnν = R−KµνKµν +K2 , (2.7)

and immediately derive the Hamiltonian constraint, viz,

R = K2 −KµνKµν −
d(d− 1)
L2

AdS
, (2.8)

with using the fact that (d + 1)-dimensional bulk spacetime is the vacuum solution with
Rµν = − d

L2
AdS

gµν . Consequently, it has been established that the intrinsic curvature R of
the hypersurface is entirely determined by its extrinsic curvature tensors. On the other
hand, the second junction condition gives rise to the following two equalities:

K
(1)
ij K

(1)ij − (K(1))2 +K
(2)
ij K

(1)ij −K(1)K(2) + 2TK(1) = 0 ,

K
(2)
ij K

(2)ij − (K(2))2 +K
(1)
ij K

(2)ij −K(1)K(2) + 2TK(2) = 0 .
(2.9)

With using the Hamiltonian constraint, one can find that the difference of the above two
equations leads to

K(1) −K(2) = 1
2T

[(
(K(1))2 −K(1)

ij K
(1)ij

)
−
(
(K(2))2 −K(2)

ij K
(2)ij

)]
= d(d− 1)

2T

(
1

L2
AdS1

− 1
L2

AdS2

)
,

(2.10)

where the second equality follows from the identification of the Ricci scalar (i.e., the first
junction condition). By incorporating the above observations with the second junction
condition expressed in equation (2.5), we immediately arrive at

K(1) = d T

d− 1 + d(d− 1)
4T

(
1

L2
AdS1

− 1
L2

AdS2

)
,

K(2) = d T

d− 1 + d(d− 1)
4T

(
1

L2
AdS2

− 1
L2

AdS1

)
.

(2.11)

As advertised before, this ultimately leads to the conclusion that the codimension-one brane
on either side is always a hypersurface with a constant mean curvature. It is noteworthy
that the two equations with respect to two sides of the brane are independent of each other,
which is different from the original Israel junction conditions presented in equation (2.3).
Additionally, if LAdS1 = LAdS2, a more symmetrical setup is achieved due to

K(1) = K(2) = d T

d− 1 . (2.12)
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2.3 Hamiltonian constraint and T T̄ deformation on the brane

Focusing on the geometry of the codimension-one brane, the variation of the total action
reads

δIbulk+δIbdy = 1
8πGN

∫ √
−hddx

(
K

(1)
ij −K

(1)hij +K
(2)
ij −K

(2)hij + 2Thij
)
δhij . (2.13)

With respect to the d-dimensional metric hij , one can also interpret the Israel junction as
the Einstein equation on the brane, i.e.,

τ
(1)
ij + τ

(2)
ij = 0 , (2.14)

where we have defined two distinct stress tensors on the brane in terms of

τ
(a)
ij : = K

(a)
ij −K

(a)hij + T (a)hij , (2.15)

with T (1)+T (2) = 2T . This definition resembles the renormalized Brown-York stress tensor
(or the holographic boundary stress tensor) in the conventional AdS/CFT correspondence.
For d = 2, they are proportional to each other with a negative coefficient, as we will see
below. The trace of the brane stress tensor can easily be obtained as the following:

τ (a) ≡ τ (a)
ij h

ij = d T (a) − (d− 1)K(a) . (2.16)

First of all, one can notice that the brane stress tensors are conserved, viz,

Diτ
(a)
ij = DiK

(a)
ij −DjK

(a) = 0 , (2.17)

thanks to the momentum constraint on the brane as shown in eq. (2.6). We are interested
in the expectation value of T T̄ operator with respect to the brane stress tensor τij , i.e.,

〈τ τ̄〉 ≡ 〈τ ij〉〈τij〉 − 〈τ ii 〉2 , (2.18)

for two-dimensional field theories. For a generic high-dimensional bulk spacetime, the
corresponding generalization is given by

τ (a)ij τ
(a)
ij −

(τ (a))2

d− 1 ≡ K
(a)ijK

(a)
ij − (K(a))2 + 2K(a)T (a) − d

d− 1(T (a))2 (2.19)

= K(a)ijK
(a)
ij − (K(a))2 + d

d− 1(T (a))2 + 2T (a)
(
K(a) − d

d− 1T
(a)
)
,

where we have recast the last term as the trace of the stress tensors. With this redefinition,
we can rewrite the Hamiltonian constraint derived in eq. (2.8) as

R− (K(a))2 +K(a)ijK
(a)
ij + d(d− 1)

L2
AdS

= R+ µ(a) +
(
τ (a)ij τ

(a)
ij −

(τ (a))2

d− 1

)
+ 2T (a)

d− 1τ
(a) = 0 ,

(2.20)
by identifying the constant part as a potential term, i.e.,

µ(a) = d(d− 1)
L2

AdSa

− d

d− 1(T (a))2 . (2.21)
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For each side, the trace equation on the brane can be interpreted as the flow equation of
the stress tensor under the so-called T T̄ deformation, viz,

2T (a)

d− 1τ
(a) = −R− µ(a) −

(
τ (a)ij τ

(a)
ij −

(τ (a))2

d− 1

)
. (2.22)

Until this point, we have allowed for arbitrary choices of the two tension terms T (a).
However, a more natural choice is given by

T (1) = T + (d− 1)2

4T

(
1

L2
AdS1

− 1
L2

AdS2

)
,

T (2) = T + (d− 1)2

4T

(
1

L2
AdS2

− 1
L2

AdS1

)
.

(2.23)

As a result, the second junction condition implies the traceless condition of the boundary
stress tensor, namely

τ (a) = d T (a) − (d− 1)K(a) = 0 . (2.24)

We would like to note that this traceless condition is realized regardless of the particular
choice of the value of tension T . Furthermore, the potential terms are also identical, i.e.,

µ = µ(1) = µ(2) = d(d− 1)
L2

AdSa

− d

d− 1(T (a))2 , (2.25)

after taking eq. (2.23) for T (a). The flow equations of the two brane stress tensors, i.e., the
brane constraint equations, reduce to

R+ µ = −
(
τ (1)ij τ

(1)
ij −

(τ (1))2

d− 1

)
= −

(
τ (2)ij τ

(2)
ij −

(τ (2))2

d− 1

)
. (2.26)

2.4 AdS3 bulk spacetime

In the remainder of the paper, we will concentrate on the case with the identical AdS radius:
LAdS1 = L = LAdS2 for simplicity. We will specifically focus on AdS3 for constructing explicit
configurations of two-dimensional branes. The geometric constraint for a timelike brane in
AdS3 is expressed as

2T τ (a) = −R− µ−
(
τ (a)ij τ

(a)
ij − (τ (a))2

)
, (2.27)

with µ = 2
L2 − 2T 2. Let us first examine the special case where the brane is pushed to the

conformal boundary before delving into the discussion of brane in the center of AdS bulk
spacetime. Near the conformal boundary, we can describe the asymptotic geometry in the
Fefferman-Graham gauge as follows:

ds2 = gµνdx
µdxν = L2

r2 dr
2 + r2

L2 γijdx
idxj , (2.28)

where the conformal boundary is located at r → ∞. It is worth noting that the brane
tension term with fixing T = 1

L for each side, serves as the counterterm, viz,

Ict = − 1
8πGNL

∫
bdy

d2x
√
−h , (2.29)

– 7 –
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which is used for holographic renormalization in AdS3. Furthermore, the brane stress tensor
τ

(a)
ij defined in eq. (2.13) thus reduces to the renormalized quasi-local stress tensor [42], i.e.,

T ij ≡ 2√
h

δSren
δhij

= − 1
8πGN

(
Kij −Khij + hij

)
= − τĳ

8πGN
, (2.30)

which can be interpreted as the expectation value of the stress tensor of CFT at the con-
formal boundary of asymptotically anti-de Sitter spacetime. For a finite cut-off surface
located at r = rc, we can read the boundary metric γij associated with the field theory
from the induced metric by

hij
∣∣
r=rc = r2

c

L2 γij . (2.31)

The holographic stress tensor of the boundary CFT is identical to the renormalized quasilo-
cal stress tensor, i.e., Tij = Tij , for two-dimensional CFT. In the conformal limit as rc →∞,
the Hamiltonian constraint in eq. (2.8) associated with the conformal boundary agrees with
the trace anomaly of two-dimensional CFT [43, 44], namely

lim
rc→0
〈T ii 〉 = r2

c

L2h
ijTij = + r2

c

16πGNL
R[hij ] = + c

24πR[γij ] , (2.32)

after taking c = 3L
2GN

. This is a typical scenario in the AdS3/CFT2 correspondence, where
we enforce the Dirichlet boundary condition δγij = 0 on the conformal boundary. Con-
sidering a finite cut-off surface, the corresponding field theory is deformed by the T T̄

term [45–48]. As a result, the Hamiltonian constraint (2.27) becomes the T T̄ flow equa-
tion [49, 50], i.e.,

〈T ii 〉 = c

24π R[γ] + λ

4
(
〈T ij〉〈Tij〉 − 〈T ii 〉2

)
, (2.33)

where the coupling constant λ for T T̄ deformation is identified as the bulk quantity via

λ = 16πGNL

r2
c

, (2.34)

and potential term µ vanishes since the counterterm corresponds to T = 1
L . Note that Tij

is the stress tensor associated with the deformed theory rather than CFT2 on the confor-
mal boundary. It is obvious that the T T̄ term in terms of boundary quantities would not
contribute in the limit rc →∞ due to the appearance of the double traces.

Instead of imposing the Dirichlet boundary condition on the brane, we aim to connect
two AdS3 bulk spacetimes via the dynamical brane. Using the Israel junction conditions,
the brane is fixed as a CMC hypersurface withK(a) = 2T with respect to the bulk spacetime
of each side, as previously demonstrated. The possible configurations for a generic brane
with tension T residing in the bulk spacetime are restricted by the following equation:

− 2Tτ (a) = 0 = R+ µ+
(
τ (a)ij τ

(a)
ij − (τ (a))2

)
= R+ µ+ τ (a)ijτ

(a)
ij , (2.35)

where the trace of the brane stress tensors vanishes due to the CMC condition. It differs
from the normal story of T T̄ deformed CFT on a finite cut-off surface.

– 8 –
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Figure 2. Gluing two Poincaré AdS geometries along timelike hypersurfaces Σ(1) and Σ(2) and our
notations for various physical quantities.

First of all, let us think about stretching the brane to the conformal boundary. We
note that in AdS3, the trace of the extrinsic curvature of the conformal boundary is always
fixed as

K(a)∣∣
bdy = 2

L
. (2.36)

As a result, the CMC condition, i.e., the junction condition, would be satisfied if and only
if T = 1

L . It is straightforward to see that the potential term µ vanishes after taking T = 1
L ,

which leads us to the constraint equation:

R+
(
τ (a)ij τ

(a)
ij − (τ (a))2

)
= R+ τ (a)ijτ

(a)
ij = 0 . (2.37)

In other words, it can be ascertained that the aforementioned constraint prevents us from
gluing any two arbitrary AdS3 bulk spacetimes along a timelike brane. In the next section,
we will proceed to find solutions for the profiles of the brane by explicitly solving the
junction conditions. Given that the radii of the two AdS bulk spacetimes have been selected
to be congruent, we will set L = 1 throughout the remainder of the present paper.

3 Gluing AdS3/CFT2

To construct explicit solutions of joint AdS background, we mainly focus on solutions ob-
tained by gluing two AdS3 geometries together. In this section, we analyze an exactly
solvable class of solutions with chiral excitations. We denote the boundary of the left-sided
and that of the right-sided AdS before gluing, as Σ(1) and Σ(2), respectively. Correspond-
ingly, the effective field theory living on each brane is presented by BFT(1), BFT(2) as
an abbreviation of the brane field theory. As depicted in figure 2, we joint the two bulk
spacetimes by gluing the two branes, which couples BFT(1) with BFT(2).

– 9 –
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3.1 Symmetric solutions

Although it is not easy to get the most general solutions of the Israel junction condition,
the junction condition reduces to the simplest case, i.e.,

τ
(a)
ij = K

(a)
ij −K

(a)hij + Thij = 0 , (3.1)

or equivalently
K

(a)
ij = Thij

d− 1 , (3.2)

when the left and right regions are exactly symmetric. It is a stronger constraint of our
first conclusion that the brane is a CMC slice with K(a) = Td

d−1 for the left/right bulk
spacetime. It is obvious that the junction condition (2.14) is thus the same as the Neu-
mann boundary condition for each side, which is explicitly used for the construction of
AdS/BCFT correspondence [18]. Supposing the bulk spacetime is given by the vacuum
solution of Einstein equation with a negative constant, one can substitute Rµν = −dgµν to
the contracted Gauss equation (2.8) (Hamiltonian constraint) and immediately obtain the
Ricci scalar of the d-dimensional brane, i.e.,

R = d T 2

d− 1 − d(d− 1) ≡ −µ . (3.3)

This is, of course, the constraint equation (2.26) but with a vanishing T T̄ term. We can
regard this symmetric class of solutions as the vacuum ones because the holographic stress
tensor vanishes. From this, we can conclude that the sign of the cosmological constant
of the braneworld is also determined by the tension of the brane in this symmetric case.
For example, the flat brane is obtained when the tension is given by the critical case with
T = d − 1. On the contrary, the AdS brane can exist with a lower tension |T | ≤ d − 1.
Moreover, for |T | ≥ d− 1, we find the brane takes the form of a de Sitter space.

It is noteworthy that one can exactly solve equation (3.2) in pure AdS bulk spacetimes.
As a warm-up, we begin by considering AdS3 in Poincaré coordinates, namely

ds2 = −dt
2 + dx2 + dη2

η2 . (3.4)

The codimension-one hypersurface in AdS3 is thus parameterized by a scalar function
F (t, x, η) = 0. After some algebras, one can find that the hypersurface satisfying Kij ∝ hij
is solved by

F (t, x, η) = A
(
x2 + η2 − t2

)
+Bη + Cx+Dt+ E = 0 , (3.5)

with (A,B,C,D,E) as real constants. However, we need to note that this family of solu-
tions only depends on four free parameters, e.g., (A/E,B/E,C/E,D/E). In this paper, we
are more interested in timelike hypersurfaces, which should satisfy the following constraint:

Timelike : nµnµ = +1 > 0 , −→ B2 + C2 −D2 − 4AE > 0 . (3.6)

One can also work out the general solutions of eq. (3.2) in other AdS3 spacetime by taking
the solutions shown in (3.5) and performing the corresponding coordinate transformations.
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Figure 3. Sketches of gluing two AdS3 geometries along AdS2 (left), the flat space (middle), and
dS2 (right). The two red surfaces are glued in each case.

As we advertised before, one can easily check that the extrinsic curvature of the hypersur-
face parametrized by F (t, x, η) = 0 satisfies eq. (3.2). More explicitly, we have

Kij = ±B hij√
|B2 + C2 −D2 − 4AE|

, (3.7)

where the sign depends on our choice of physical region. Obviously, it is nothing but the
solution of the symmetric junction condition after taking

T = ±B√
|B2 + C2 −D2 − 4AE|

. (3.8)

In particular, we stress that the induced geometry of the hypersurface is still maximally
symmetric, i.e., AdS2, dS2 or Minkowski spacetime. One can check that the Ricci scalar of
the induced metric reads

R = 2
(
4AE − C2 +D2)

B2 + C2 −D2 − 4AE . (3.9)

We can glue a pair of identical solutions constructed explicitly in this way.
For example, the finite cut-off surface located at

η = η0 = constant , (3.10)

corresponds to a flat brane with tension at T = 1. In other words, it implies that one
can glue two AdS3 in Poincaré coordinates along their finite cut-off surfaces at η = η0 and
η̃ = η̃0 by imposing the tension of the brane as T = 1. We can find that the static timelike
surface defined by η = λx is given by AdS2 with R = − 2

1+λ2 and T = λ√
1+λ2 . On the other

hand, the spacelike surface with the translation invariance defined by t = λη describes dS2
with R = 2

λ2−1 and T = λ√
λ2−1 , where we assume |λ| ≤ 1. We sketched the gluing of two

copies of these solutions in figure 3.
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3.2 Chiral solutions from Poincaré AdS3

We have shown that the brane profiles in the symmetric bulk spacetime are parametrized
by eq. (3.5) thanks to the vanishing of the brane stress tensors τ (a)

ij = 0. Different from
the symmetric set-up, the two bulk spacetimes glued togehter by the brane may not be the
same in general. In other words, one can expect that there are more nontrivial solutions
of the brane profiles with τ

(a)
ij 6= 0. Instead of directly solving the most general junction

conditions (2.14), we begin with the generalization of the previous results by including
nonzero brane stress tensors but keeping a vanishing T T̄ term, i.e., τ (a)ijτ

(a)
ij − (τ (a))2 = 0.

Correspondingly, the brane constraint equation (2.27) in AdS3 reduces to

R+ µ = R+ 2− 2T 2 , (3.11)

which is the same as that in the symmetric setups. For more explicit solutions, we start
from Poincaré AdS3 and denote the two bulk spacetimes as

g(1)
µν dx

µdxν = dη2 − dUdV
η2 , g(2)

µν dx
µdxν = dη̃2 − dŨdṼ

η̃2 , (3.12)

where we have chosen null coordinates (U, V ), (Ũ , Ṽ ) for later convenience. The sketch of
this setup and our conventions are summarized in figure 2. Before gluing the two AdS3
bulk spacetimes, we consider two branes Σ(a) on each side by assuming the brane profiles
are given by

η = e−φ(U) , η̃ = e−φ̃(Ũ) , (3.13)

respectively. The induced metric of the brane Σ(a) thus reads

ds2∣∣
Σ(1) = (φ′)2dU2 − e2φdUdV , ds2∣∣

Σ(2) = (φ̃′)2dŨ2 − e2φdŨdṼ , (3.14)

which is a two-dimensional Minkowski spacetime with Rij = 0. Note that these two
coordinates on Σ(1) and Σ(2) are not simply identical in general. On the other hand, as a
hypersurface of AdS3, the extrinsic curvature of the brane Σ(1) is derived as

KUU = 2φ′2 − φ′′ , KV V = 0 , KUV = −1
2e

2φ , (3.15)

whose trace reduces to a constant K = 2. We have similar expressions for the second
brane Σ(2). Since we have shown that the brane jointing two bulk spacetimes has to be a
CMC slice, we can immediately conclude that the only possibility for gluing the two branes
parametrized by the chiral form in eq. (3.13) is choosing T = 1. It is also obvious that the
brane solutions shown in eq. (3.13) are not the symmetric cases described in the previous
subsection due to the existence of the non-vanishing brane stress tensors, i.e.,

τ
(1)
UU = −φ′′ + φ′2 , τ

(2)
ŨŨ

= −φ̃′′ + φ̃′2 . (3.16)

However, this type of flux cannot curve the brane spacetime due to

τ (a)ijτ
(a)
ij − (τ (a))2 = 0 . (3.17)
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As shown by the brane constraint equation (3.11), the brane with a tension T = 1 in this
situation always leads us to a flat braneworld.

From the above analysis, we have seen that the junction condition can be solved by
taking the brane profiles as eq. (3.13) and T = 1. However, the gluing of the two flat
branes Σ(a) is still nontrivial since we need to carefully match the two coordinate systems.
First of all, we assume that the transformations are given by

Ũ = P (U), Ṽ = V +Q(U) , (3.18)

where P (U), Q(U) are functions depending on only U . With this ansatz, we focus on
analytically solving the Israel junction conditions in the following. The identification of
the two induced metrics h(1)

ij = h
(2)
ij yields2

e2φ(U) = e2φ̃(P (U))P ′(U) ,(
dφ(U)
dU

)2
=
(
dφ̃(Ũ)
dŨ

)2

(P ′(U))2 − e2φ̃(P (U))Q′(U)P ′(U) .
(3.19)

In the following, we choose to work on (U, V, η) coordinates. By substituting the first
equation with the second, we obtain

Q′(U) = e−2φ
(
−P

′′

P ′
dφ

dU
+ 1

4
P ′′2

P ′2

)
, (3.20)

which relates the two functions P (U) and Q(U). On the other hand, we can find that the
brane stress tensors τ (2)

ij on the brane in terms of (U, V ) coordinates are recast as

τ
(2)
UU =

(
− d2

d2Ũ
φ̃+

(
d

dŨ
φ̃

)2)
P ′(U)2 = −φ′′ + φ′2 − T+(U) ,

τ
(2)
UV = 0 = τ

(2)
V V ,

(3.21)

with
T+(U) = −1

2{P,U} = 3
4

(
P ′′(U)
P ′(U)

)2
− P ′′′(U)

2P ′(U) . (3.22)

The second junction condition τ (1)
ij + τ

(2)
ij = 0 then yields

− φ′′ + φ′2 = 1
2T+(U) = −1

4
{
Ũ , U

}
, (3.23)

which indicates that the coordinate transformation Ũ = P (U) is fixed by the choice of the
brane profile, i.e., the chiral function φ(U). After gluing the two branes Σ(a) with the Israel
junction conditions, the non-vanishing stress tensors reduce to

τ
(1)
UU = 1

2T+(U) = −τ (2)
UU ,

τ
(2)
ŨŨ

= − 1
2P ′2T+(U) .

(3.24)

2One may notice that the first equation can only hold when P ′(U) > 0. However, we can absorb the
sign or any constant by changing the ansatz in eq. (3.18) to Ṽ = c1V + Q(U).
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It is worth noting that these energy stress tensors τ (a)
ij are not the ones that are generated

by a conformal transformation in a conventional way due to the extra factor 1/2. In the
following, we analyze several simple examples with the goal of deriving the explicit solutions
of the brane profiles.

Vanishing stress tensor. We commence our analysis with the case in which the stress
tensor vanishes, i.e., τ (1)

ij = 0, corresponding to the symmetric configuration discussed in
the previous subsection. We first note that the equation of motion (3.23) can be recast as

d2

d2U
e−φ = 1

2T+(U)e−φ . (3.25)

With taking τij = 0 = T+(U), we can easily obtain the solutions for the brane profile Σ(1) by

η = e−φ = C1U + C2 , (3.26)

where C1 and C2 are arbitrary constants. It is apparent that this type of solution coincides
with those derived in equation (3.5) upon assuming η = e−φ(u). Due to the vanishing of
the Schwarzian derivative defined in eq. (3.22) associated with τ (1)

UU , the coordinate trans-
formation P (U) between Σ(1) and Σ(2) is fixed to be

Ũ = P (U) = aU + b

cU + d
, , with ad− bc = 1 . (3.27)

This transformation corresponds to an SL(2,R) transformation, namely, half of the isome-
tries of the AdS3 bulk spacetime. However, it is worth noting that Ũ defined by equa-
tion (3.27) does not cover all real values, indicating that we are gluing a portion of Σ(2)

to the entire brane Σ(1). This can be traced back to the asymptotic symmetry breaking of
global isometries of AdS3 induced by the existence of the brane located at a finite radius.
Nonetheless, there are still isometries left, i.e., P (U) = aU + b ∈ (−∞,+∞), under which
the two branes Σ(1) and Σ(2) are equivalent. For instance, the brane profile of Σ(2) can be
derived as

φ̃ = φ− 1
2 log a ,

η̃ = e−φ̃ =
√
aη ,

(3.28)

which can be understood as the profile of Σ(1) under an isometric transformation.

Constant energy flux. Furthermore, let us consider the case with a constant energy
flux in the first conformal field theory, i.e.,

τ
(1)
UU = −1

4{Ũ , U} = α2 . (3.29)

This choice can be realized by selecting the function P (U) as follows

Ũ = P (U) = e2
√

2αU . (3.30)

Solving the differential equation (3.23) yields

φ(U) = − log
(
C1e

αU + C2e
−αU

)
. (3.31)

Notably, we have Ũ = P (U) > 0 on the brane Σ(2). As a consequence, we can only glue a
portion of Σ(2) with Σ(1) while keeping the rest of Σ(2) with Ũ < 0 as the boundary.
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Figure 4. The left plot shows the function T+(U) as a function of null coordinate U . The middle
and right plots describe the graphs of e−φ(U) and e−φ̃(Ũ), respectively. We have chosen a = 1

5 for
all plots.

Perturbation around vacuum. Finally, we introduce a function P (U) that maps the
real line −∞ < U <∞ to −∞ < Ũ <∞. For example, one explicit expression of P (U) is
given by

P (U) = U + a

(1 + U4) , (3.32)

with a as a small constant. We will specifically use a = 1/5 for our numerical calculations.
The coordinate transformation P (U) in eq. (3.32) is a smooth and invertible function that
plays the role of a source for generating smooth and non-trivial solutions. In the left panel
of figure 4, we plot T+(U) as a function of U , which oscillates smoothly around zero. By
solving the differential equations (3.23) numerically, we can also compute the functions
e−φ(U) and e−φ̃(Ũ), which are shown in the middle and right panels of figure 4, respectively.
Asymptotically, it is straightforward to find that the solutions behave as

φ(U) ' − log |U | , (3.33)

as U → ±∞, and similarly for φ̃(Ũ). We observe that the glued geometry, obtained by
taking the union of the regions where η ≥ e−φ(U) and η̃ ≥ e−φ̃(Ũ), is smooth and the two
hypersurface Σ(1) and Σ(2) are glued together completely.

3.3 Comments on energy condition

Because our gluing condition requires eq. (2.14), one might be concerned that one of the
energy stress tensors among the two field theories will violate the energy condition. Here
we would like to give a heuristic explanation of why this is not a problem. Consider an
excited state in a two-dimensional CFT which is obtained by a conformal transformation
Ũ = P (U) from the vacuum state on a plane (described by Ũ). The energy stress tensor
is computed by the conformal anomaly or the Schwarzian derivative:

TUU = − c

12{Ũ , U} = c

6

[
3
4

(
P ′′(U)
P ′(U)

)2
− P ′′′(U)

2P ′(U)

]
. (3.34)

If we introduce Φ(U) such that
P ′(U) = e−Φ(U), (3.35)

then we find
6
c
TUU = 1

2Φ′′ + 1
4Φ′2. (3.36)
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This means that if we integrate the whole region −∞ < u <∞, we find

6
c

∫ ∞
−∞

dUTUU =
[1

2Φ′
]∞
−∞

+
∫ ∞
−∞

dU
Φ′2

4 . (3.37)

Thus, if we assume that Φ′ gets vanishing in the limit U → ±∞, which is the case when
p(U) approaches the vacuum value p(U) = U in the limit as in (3.32), then we find

6
c

∫ ∞
−∞

dUTUU =
∫ ∞
−∞

dU
Φ′2

4 ≥ 0. (3.38)

This is the averaged null energy condition (ANEC). For the example of (3.32), we plotted
this function and energy stress tensor in figure 5.

Then one may wonder if we can realize the condition like T (1)
UU + T

(2)
ŨŨ

= 0, which is
required by the gluing condition. Note that both T (1)

UU and T (2)
ŨŨ

should satisfy the ANEC
and do not seem to cancel each other. However, what we need to impose is the following
condition:

T
(1)
UU +

(
dŨ

dU

)2

T
(2)
ŨŨ

= 0 . (3.39)

Actually, this is satisfied by choosing the state of T (2)
ŨŨ

such that it is obtained from
the conformal transformation for the inverse map U = P−1(Ũ), which leads to

T
(2)
ŨŨ

= − c

12{U, Ũ} = c

12

(
dŨ

dU

)−2

· {Ũ , U}. (3.40)

Indeed, it is clear that this satisfies the condition (3.39). It can also be seen that we have∫ ∞
−∞

dŨTŨŨ ≥ 0 ,

∫ ∞
−∞

dU

(
dŨ

dU

)2

TŨŨ = −
∫ ∞
−∞

dUTUU ≤ 0 . (3.41)

However, strictly speaking, we should note that in our gravity dual construction in
section 3.2, the coefficient of the Schwarzian derivative is halved as in eq. (3.22). Indeed,
we cannot glue two solutions togehter with the stress tensors each given by eq. (3.34) and
eq. (3.40). This is because the difference between the coordinates of U in the first CFT
and Ũ in the second CFT looks like Ũ = P (P (U)) instead of Ũ = P (U). Thus, our gluing
solution is not simply understood just as a standard conformal map. Nevertheless, the
violation of ANEC is avoided in a similar way.

3.4 Bañados geometries

One of the advantages of working on AdS3 is that one can derive the most general vacuum
solutions of Einstein equations with Λ = − 1

L2 . By imposing Brown-Henneaux boundary
conditions, one can find that the most general solutions of AdS3 are given by [51]

ds2 = dz2

z2 + L
(1)
+ (u)(du)2 + L

(1)
− (v)(dv)2 −

( 1
z2 + z2L

(1)
+ (u)L(1)

− (v)
)
dudv, (3.42)
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Figure 5. Left: function P (U) given by eq. (3.32) with taking a = 1
5 and its inverse function

P−1(U) as a function U . Right: energy stress tensors TUU (U) and TŨŨ (P (U)).

where L(1)
+ (u), L(1)

− (v) are arbitrary functions. They are the so-called Bañados geometries.
For example, the BTZ black hole corresponds to L+ +L− = r++r−

2 and L+−L− = r+r−. It
is easy to check that the two arbitrary functions are nothing but the renormalized quasilocal
stress tensors

Tij = − 1
8πGN

(Kij −Khij + hij)
∣∣∣
z→0

= 1
8πGN

(
L

(1)
+ 0
0 L

(1)
−

)
, (3.43)

which are identified as holographic duals of boundary chiral and anti-chiral stress tensors.
Since AdS3 geometries are locally the same, one can find coordinate transformations be-
tween two AdS3 metrics. Beginning with the holographic dual of CFT2 vacuum i.e., AdS3
in Poincaré metric

ds2 = dη2 − dUdV
η2 , (3.44)

one can consider the conformal transformation on the boundary by taking

U = p(u) , V = q(v) . (3.45)

The corresponding bulk dual is given by coordinate transformations in AdS3 as follows

U = p(u) + 2z2(p′)2q′′

4p′q′ − z2p′′q′′
,

V = q(v) + 2z2(q′)2p′′

4p′q′ − z2p′′q′′
,

η = 4z(p′q′)3/2

4p′q′ − z2p′′q′′
,

(3.46)

which is known as Bañados map [51–53]. It is straightforward to check that the Poincaré
metric eq. (3.44) with this type of transformation is rewritten as the Bañados metric defined

– 17 –



J
H
E
P
0
7
(
2
0
2
3
)
0
8
0

in (3.42) by identifying

L+(u) = −1
2{p(u), u} = 3 (p′′)2 − 2p′p′′′

4p2 , L−(v) = −1
2{q(v), v} = 3 (q′′)2 − 2q′q′′′

4q2 .

(3.47)
In the following, we investigate the case by gluing two Bañados geometries along a timelike
brane. Similarly, we denote another bulk spacetime as

ds2 = dz̃2

z̃2 + L
(2)
+ (ũ)(dũ)2 + L

(2)
− (ṽ)(dṽ)2 −

( 1
z̃2 + z̃2L

(2)
+ (ũ)L(2)

− (ṽ)
)
dũdṽ , (3.48)

which can be obtained from Poincaré metric (3.12) by performing another conformal map
Ũ = p̃(ũ), Ṽ = q̃(ṽ).

Finite cut-off surface. As we illustrated in the symmetric cases, the simplest solution
of the junction conditions can be derived by taking z = 0 = z̃, T = 1, and gluing arbitrary
two Bañados spacetimes along the conformal boundary. However, this is a very special case
because the conformal boundary stays at the conformal infinity, where the energy flux is
suppressed. To show how the constraint equation (2.35) limits the possible configurations,
we further consider gluing two Bañados spacetimes on a finite cut-off surface located at

z = z0 , z̃ = z0 . (3.49)

where we have chosen z0 = z̃0 as the same constant due to the rescaling invariance of the
bulk geometry (with rescaling the stress tensor L̃±). Naively, the induced metric on the
brane Σ(1) reads

ds2∣∣
Σ(1) = L+(u)(du)2 + L−(v)(dv)2 −

( 1
z2

0
+ z2

0L+(u)L−(v)
)
dudv , (3.50)

An interesting observation is that this geometry is always flat regardless of the choices of
L±, which indicates that the first junction condition is naturally satisfied, viz, R̄[h(1)] =
0 = R̄[h(2)]. On the other hand, one can derive the corresponding extrinsic curvature by

K(1)
uv = −1

2

( 1
z2

0
− z2

0L+L−

)
, K(1)

uu = 0 = K(1)
vv , (3.51)

and
K(1) = 4

1− z4
0L+(u)L−(v)

− 2 . (3.52)

The traceless condition K(1) = 2T = K(2) can be achieved by taking T = 1, z0 = 0 as one
can expect. For a more general case with z0 6= 0, the brane located at a finite cut-off z = z0
only exists for3

T = 1 ,
L+(u)L−(v) = 0 = L̃+(ũ)L̃−(ṽ) .

(3.53)

3Of course, a special but different case is taking L+L− = constant = L̃+L̃−. However, this reduces to
the symmetric cases discussed in section. 3.1.
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In the following, let us choose L−(v) = 0 = L̃−(ṽ) without loss of generality. Indeed, this
choice makes the disappearance of T T̄ term explicit. For instance, one can evaluate the
brane stress tensor and obtain

τ
(1)
ij =

L+
(
T + 4

L−L+z4
0−1 + 2

)
−

(T+1)z4
0L−L++T+ 8

z4
0L−L+−1

+7

2z2
0

∗ L−
(

4
L−L+z4

0−1 + T + 2
)

 =
(
−L+(u) 0

0 0

)
,

τ
(2)
ij =

(
−L̃+(ũ) 0

0 0

)
, (3.54)

which is different from the trivial case with τ
(a)
ij = 0. It looks like we have found the

possible solutions for gluing two branes Σ(a) at z = z0 with any non-zero energy flux
L+(u), L̃+(ũ). Although we have shown the equivalence of the intrinsic geometry and
the extrinsic geometry (i.e., K(1) = 2T = K(2)) between the branes on two sides, we
need to note that the existence of physical solutions (with real coordinates) implies more
constraints. Recalling the original Israel junctions

L+(u)du2 − 1
z2

0
dudv = L̃+(ũ)dũ2 − 1

z2
0
dũdṽ ,

T+(u)du2 + T̃+(ũ(u))dũ2 = 0 ,
(3.55)

it is obvious that the second junction condition can be solved if and only if

T+(u)T̃+(ũ) ≤ 0 . (3.56)

Solving the Israel junction condition results in the connection between the two coordinate
systems on the brane. Formally, one can recast the solutions as

ũ(u) =
∫ √
−L+(u)

L̃+
du , (3.57)

with assuming the satisfaction of eq. (3.56). More precisely, the transformation ũ(u) can
be solved by the following ODE

L+(u) + L̃+(ũ(u))
(
dũ

du

)2
= 0 . (3.58)

The matching condition of the induced metric then leads us to another coordinate trans-
formation, viz,

ṽ (u, v) =
∫ √
− L̃+(ũ(u))

L+(u)
(
dv − 2z2

0L+(u)du
)
, (3.59)

which is the formal solution for the following two PDEs:

∂ṽ

∂u
= −2z2

0L+

√
− L̃+
L+

,
∂ṽ

∂v
=

√
− L̃+
L+

. (3.60)
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Chiral solutions. As we have shown, the possible solutions for gluing two Bañados
spacetimes are too restricted since we only consider the finite cut-off surface at z = z0. To
allow more general solutions as those chiral solutions discussed in the previous subsection
for Poincaré AdS, we assume that the brane Σ(1),Σ(2) are located at

z = e−φ(u) , z̃ = e−φ̃(ũ) , (3.61)

respectively.
Different from the constant-z slice, the intrinsic geometry of the brane at z = eF (u) gets

more complicated. It is straightforward to obtain the induced metric at (u, v) coordinates,
namely

ds2∣∣
Σ(1) =

(
L+(u) + φ′2

)
(du)2 + L−(v)(dv)2 −

(
e2φ + e−2φL+(u)L−(v)

)
dudv , (3.62)

whose Ricci scalar is expressed as

R[h(1)] =
8e−6φφ′L′−

(
2(φ′)2 − φ′′ + e−4φL−(2L+(φ′)2 − L′+φ′ + L+φ

′′)
)

(
1 + e−4φ (e−4φL2

+L
2
− − 2L+L− − 4L−(φ′)2))2 . (3.63)

It is clear that the flat brane Σ(1) (similar to Σ(2)) only exists in two situations:φ′(u) = 0 ,with z = Constant ,
L′−(v) = 0,with L− = Constant .

(3.64)

Since the first one has been explored before by taking the brane as a finite cut-off surface,
we focus on the second case by setting L−(v) = L− as a constant. On the other hand, the
junction condition fixes the trace of the extrinsic curvature K, i.e.,

2(e−12φL3
+L

3
−−e−8φL2

−
(
L2

+ +L+(8φ′2 +2φ′′)−2φ′L′+
)
−e−4φL−(L+ +8φ′2−2φ′′)+1)(

1+e−4φ (e−4φL2
+L

2
−−2L+L−−4L−φ′2

))3/2 ,

(3.65)
to be a constant 2T . With T = 1, the simplest solution is given by L− = 0. Of course,
As a generalization of the chiral solutions found in Poincaré AdS, the non-vanishing brane
stress tensor associated with Σ(1)in Bañados geometry is given by

τ (1)
uu =

(
φ′(u)

)2 − φ′′(u)− L+(u) . (3.66)

with τ (1)ijτ
(1)
ij = 0. Similar to what we have shown before, one can explicitly find the

coordinate transformation between (u, v) and (ũ, ṽ) by solving the original Israel junction
conditions. For example, the vanishing of τ (1)

uu + τ
(2)
uu fixes the relation between u and ũ as

L+(u)−
(
φ′(u)

)2 + φ′′(u) +

L̃+(ũ(u))−
(
dφ̃

dũ

)2

+ d2φ̃

dũ2

(dũ
du

)2
= 0 . (3.67)
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4 Non-chiral solutions for gluing AdS3/CFT2

4.1 Perturbative construction

In the preceding discussion, we focused on the special cases where the T T̄ term vanishes.
In these cases, the geometry of the brane is solely determined by the tension T , as seen in
the brane constraint equation given by eq. (2.35). However, in this section, we consider the
effect of the T T̄ term and study the curved brane geometry by gluing two Poincaré AdS3
spacetimes whose line elements are defined by

ds2
(1) = dη2 − dUdV

η2 , ds2
(2) = dη̃2 − dŨdṼ

η̃2 . (4.1)

In the following, we still set T = 1 as in previous sections. The most general ansatz for the
brane positions Σ(1) and Σ(2) is given by

η = e−φ(U,V ), η̃ = e−φ̃(Ũ ,Ṽ ) . (4.2)

The induced metric on Σ(1) is then obtained as

ds2
Σ = −(e2φ − 2∂Uφ∂V φ)dUdV + (∂Uφ)2dU2 + (∂V φ)2dV 2 , (4.3)

which is similar to that on Σ(2). The first Israel junction condition requires that the
induced metrics on two sides of the brane, after gluing, should agree up to a coordinate
transformation. Without loss of generality, we can assume the corresponding coordinate
transformations are

Ũ = A(U, V ), Ṽ = B(U, V ) . (4.4)

On the other hand, the normal vector of Σ(1) as a hypersurface living in AdS3 is obtained as

(Nη, NU , NV ) = − η√
1− 4η2∂Uφ∂V φ

(1,−2η∂V φ,−2η∂Uφ) , (4.5)

from which we can compute the extrinsic curvature.
While obtaining the most general brane profiles through the junction conditions is a

formidable challenge, we can still make progress by exploring perturbative solutions for
φ(U, V ) and φ̃(Ũ , Ṽ ). We can start from a finite cut-off surface located at η = η0 and then
construct solutions of φ(U, V ) by taking the following series expansion:

φ(U, V ) = ε · f(U, V ) + ε2 · g(U, V ) + ε3 · h(U, V ) +O(ε4) , (4.6)

with ε as a small parameter. Under this expansion, we can compute the scalar curvature
R(1) and the trace of the extrinsic curvature K(1) on Σ(1) by

R(1) = 8(∂U∂V f) · ε− 8
[
2f(∂U∂V f)− (∂U∂V f)2 − ∂U∂V g + (∂2

Uf)(∂2
V f)

]
ε2 + · · · ,

K(1) = 2 + 4(∂U∂V f) · ε+ (−8f∂U∂V f + 4∂U∂V g)) ε2 + · · · .
(4.7)

Similar expressions R(2) and K(2) associated with Σ(2) can be also found.
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Given the CMC condition K(1) = K(2) = 2, as derived from eq. (2.12), we need to set

∂U∂V f = ∂U∂V g = 0 . (4.8)

Using this information, we can express the functions f(U, V ) and g(U, V ) as

f(U, V ) = P (U) +Q(V ) , g(U, V ) = α(U) + β(V ),
f̃(Ũ , Ṽ ) = P̃ (Ũ) + Q̃(Ṽ ) , g̃(Ũ , Ṽ ) = α̃(Ũ) + β̃(Ṽ ) ,

(4.9)

where P (U), Q(V ), α(U), and β(V ) are arbitrary functions. By imposing K(1) = 2 again,
we obtain the relation ∂U∂V h = −(Q′2P ′′ + P ′2Q′′). Assuming the form of solutions given
in (4.9), we can simplify the expressions of R and K up to the order of O(ε3) as follows:

R(1) =−8P ′′Q′′ ·ε2 +8
[
(Q′)2P ′′+(P ′)2Q′′+4(P +Q)P ′′Q′′−Q′′α′′−P ′′β′′

]
ε3 +O(ε4) ,

K(1) = 2+O(ε4) ,

Moreover, the brane stress tensor τ (1)
ij = K

(1)
ij −K(1)h

(1)
ij + h

(1)
ij can be derived as

τ
(1)
UU = −P ′′ · ε+

[
(P ′)2 − α′′

]
ε2 +

[
2P ′α′ − 2P ′Q′P ′′ − ∂2

Uh
]
ε3 +O(ε4) ,

τ
(1)
V V = −Q′′ · ε+

[
(Q′)2 − β′′

]
ε2 +

[
2Q′β′ − 2Q′P ′Q′′ − ∂2

V h
]
ε3 +O(ε4) ,

τ
(1)
UV =

[
(Q′)2P ′′ + (P ′)2Q′′

]
ε3 +O(ε4) .

(4.10)

The validity of the Israel junction condition necessitates the following relations:

τ
(1)
UU +

(
dŨ

dU

)2

τ
(2)
ŨŨ

= 0 , and τ
(1)
V V +

(
dṼ

dV

)2

τ (2))Ṽ Ṽ = 0 . (4.11)

Similar expressions and relations can be derived for the brane stress tensor τ (2)
ŨŨ

and τ (2)
Ṽ Ṽ

in the second BFT. It is important to note that up to O(ε2), we have τ (1,2)
UV = 0, as is

evident from eq. (4.10). Consequently, the junction condition is automatically satisfied for
the (UV ) component.

To obtain the explicit solutions, we begin by considering the relation between the (U, V )
and (Ũ , Ṽ ) coordinates. With equating the first induced metric (4.3) and the second one
at the leading order, we can get

Ũ = A(U) = U +A1(U)ε+A2(U) +O(ε3) ,
Ṽ = B(V ) = V +B1(V )ε+B2(V ) +O(ε3) ,

(4.12)

with A′1(U) = 4P (U) and B′1(V ) = 4Q(V ). Next, we solve the junction condition (4.11).
At the order of O(ε), we have

P̃ (Ũ)|Ũ=A(U) = −P (U) , Q̃(Ṽ )|Ṽ=B(V ) = −Q(V ) . (4.13)

At the next order O(ε2), the condition is solved by

α′′ + α̃(U)′′ = −2(P ′)2 , β′′ + β̃(V )′′ = −2(Q′)2 ,

−α+ α̃− 4P 2 + 1
2A
′
2 = 0 , −β + β̃ − 4Q2 + 1

2B
′′
2 (V ) = 0.

(4.14)
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X

η

Θ

CFT

Figure 6. Sketch of Wedge Holography. The wedge region (blue colored region) is surrounded by
two EOW branes (blue lines). The intersection of two EOW branes is the tip of the wedge (green
dot), where the dual CFT lives.

Using these solutions, one can explicitly show

τ (1)ijhij = O(ε4) ,

R+ τ (1)ijτ
(1)
ij = O(ε4) ,

(4.15)

where R(1) and R(2) are identical and thus denoted simply as R. This matches with
eq. (2.37) obtained from the general analysis. Therefore, the above solutions provide a
class of perturbative solutions with non-chiral excitations.

5 Another approach based on wedge holography

Before we conclude this paper, we would like to briefly discuss another method for gluing
AdS/CFT. This is to employ wedge holography [41]. As depicted in figure 6, we consider
a d+ 1-dimensional wedge-like region in Poincaré metric

ds2 = −dt
2 + dx2 + dη2 +

∑d−2
i=1 dx

2
i

η2 . (5.1)

The wedge region is surrounded by two EOW branes, where we impose the Neumann
boundary condition with a constant value of tension. The wedge holography states the
chain of duality, which first argues that the gravity on the d+ 1-dimensional wedge region
is dual to the d-dimensional quantum gravity on the EOW branes. Secondly, this gravity
is dual to a d − 1 dimensional CFT on the tip of the wedge. The intermediate picture
in d-dimension looks identical to our setup of gluing two AdS geometries. In the original
wedge holography, we impose the Dirichlet boundary condition on the tip. However, for
our proposal of gluing AdS/CFT, we need to impose the Neumann boundary condition on
the tip, which is equivalent to fixing the angle θ of the intersection of two EOW branes.

Below, we will focus on the case where the bulk spacetime is part of AdS3 with three-
dimensional pure gravity. When the bulk metric is given by the Poincaré metric (3.4),
the simplest profile of EOW branes takes the form X = λ1η and X = λ2η as depicted in
figure 6. This corresponds to the vacuum solution of gluing AdS/CFT.
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Figure 7. Wedge holography in the presence of the black hole horizon (left) and its boundary dual
which describes gluing two AdS black hole solutions (right).

To describe non-vacuum solutions, we can introduce a black hole in the bulk, as in the
left panel of figure 7. This is dual to gluing two AdS black hole geometries together, as
depicted in the right panel of figure 7. We can even create a situation in which two AdS2
geometries with different temperatures. In such a bulk solution, the temperature of the
black hole at x = −∞ is different from that at x = ∞. This can be found by considering
the gravity dual of the following conformal map.

ζ = e
2π
β
z
, (5.2)

and
w = z + α

2π log
[
cosh

(2π
β
z

)]
. (5.3)

The first transformation maps a half plane Reζ > 0 into a cylinder, which leads to a state at
the inverse temperature β. The second one maps the cylinder into an inhomogeneous one.
Note that this treatment is a special example of inhomogeneous quantum quenches [54].

The coordinates in the Lorentzian signature can be obtained from the following Wick
rotation:

(U, V ) = (T −X,T +X) = (−ζ, ζ̄) ,
(u, v) = (t− x, t+ x) = (−w, w̄) . (5.4)

The coordinate transformations are thus derived as

−u = β

2π log (−U) + α

2π log
[−U − 1/U

2

]
,

v = β

2π log V + α

2π log
[
V + 1/V

2

]
. (5.5)

This shows that the state, described by the coordinates (u, v) has the inverse temperature
β ± α in the limit x → ±∞. We can find the metric of the inhomogeneous black hole
solutions by plugging the above transformations into eq. (3.46) and deriving the Bañados
metric (3.42). The EOW branes located at x = λ1,2η in Poincaré AdS3 are also mapped
into those in the Bañados geometry via eq. (3.46). Thus we obtain the bulk solution of the
wedge holography depicted in the left panel of figure 7.
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In this way, wedge holography provides another useful method for finding solutions for
gluing AdS/CFT, at least for two-dimensional gravity, albeit through an indirect method
utilizing the holography. One may wonder why we can find the above solution by gluing two
AdS black holes, which was missing in our direct analysis of gluing AdS/CFT in the previous
sections. However, we need to note that we imposed the Neumann boundary condition at
the tip of the wedge, which is expected to correspond to the junction condition (2.3). Since
the tip is situated at the strict AdS boundary η = 0, the gravity back-reaction at the glued
surface (called Σ in previous sections) is negligible. On the other hand, in the previous
sections, we took into account the dynamical gravity and considered the generic situations
where Σ is located at finite η. Indeed, even in our wedge holographic construction, if we
choose the intersection of two EOW branes to be located at finite η, the intersection would
get more complicated, where the intersecting angle θ would become position dependent
in general. This no longer satisfies the Neumann boundary condition, which requires a
constant value of θ. Instead, this can be a solution only if we appropriately arrange the
matter energy stress tensor at the intersection Σ so that it solves the junction conditions.

6 Discussions

In this paper, we consider gluing two AdS spacetimes by using a timelike brane with con-
stant tension to construct a non-boundary holographic spacetime, which is different from
the standard AdS/CFT. The gluing between the two sides is realized by performing the
Israel junction conditions (2.3). We first show in eq. (2.11) that the junction conditions
guarantee that the brane with respect to each side is always given by a constant mean
curvature slice whose trace of the extrinsic curvature is determined by the tension of the
brane. Despite these geometric constraints, we would like to interpret the junction con-
dition as the “Einstein equation” on the brane, i.e., eq. (2.14) with respect to its induced
metric. As a result of the CMC condition, the brane stress tensors are always fixed to be
traceless. Using the Gauss equation for the codimension-one brane, we show in eq. (2.35)
that the intrinsic curvature of the brane geometry is controlled by the T T̄ term of the brane
stress tensor, which differs from standard Einstein gravity. We focus on the special cases in
the rest of the paper by gluing two AdS3 along a two-dimensional brane. In particular, we
present solutions of various types of brane profile by considering Poincaré AdS3, Bañados
geometries, and including nonvanishing brane stress tensors.

Effective brane theory. Given that the brane truncates the bulk spacetime on either
side, it is plausible to consider the joint AdS spacetime as a non-boundary bulk spacetime.
Nonetheless, it is reasonable to expect that a holographic effective theory exists on the
brane that captures the dynamical degrees of freedom of the bulk spacetime. Prior to the
gluing of the two bulk spacetimes, specifically along a generic timelike brane Σ(a), which is
regarded as a finite cut-off surface, it is known that the corresponding boundary theory is
defined by a T T̄ deformed CFT. Within the context of two-dimensional brane field theory,
the act of gluing the two bulk spacetimes along the brane corresponds to the coupling of the
two field theories residing on Σ(1) and Σ(2), given that the Dirichlet boundary condition is
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deactivated and the two brane field theories interact by virtue of the induced gravity on the
brane. A pivotal question is: what is this interacting brane field theory? In principle, the
effective action of the brane field theory can be derived from the gravitational action, i.e.,

IBFT ≡ Itotal = Ibulk + Ibdy , (6.1)

by integrating each side to the position of the brane.
The nature of the interacting brane field theory remains uncertain for a generic brane

profile. However, when the brane is taken to the conformal boundary, it can be shown that
the brane field theory is a sum of two Liouville field theories. This can be established by
parametrizing the regular intrinsic metric of the brane as an off-diagonal form γijdx

idxj =
−e2Φ(u,v)dudv and performing the limit ε → 0 that takes the brane at z = εe−Φ to the
conformal boundary. In this limit, the effective action reduces to the Liouville field theory,
as has been demonstrated in the literature, see e.g., [55–57] for more details. Specifically,
the effective action is derived as

lim
ε→0

IBFT ≈
1

16πGN

∫
d2x

√
|γ|
(
∇iΦ∇iΦ + ΦR[γ]

)
+ Φ̃ part , (6.2)

with an additional part given by Φ̃ from Σ(2). The energy-stress tensor of the Liouville
field Φ is obtained from the effective action as

T
(1)
ij ∝

(
(∂uΦ)2 − ∂2

uΦ −∂u∂vΦ
−∂u∂vΦ (∂vΦ)2 − ∂2

vΦ

)
. (6.3)

The Einstein equation on the brane leads to the Israel junction condition, which states
that the sum of the energy-stress tensor of the two Liouville fields must vanish, i.e.,

δIBFT

δγij
= 0 → T

(1)
ij + T

(2)
ij = 0 . (6.4)

On the other hand, the equation of motion for the Liouville field Φ:

δIBFT

δΦ → ∇2Φ = −1
2R[γ] , (6.5)

indicates ∂u∂vΦ = 0 for on-shell solutions on a flat conformal boundary such as that in
Bañados geometry. For example, we can parametrize the on-shell solutions as Φ(u, v) =
φ(u) + 1

2 log( p′(u)
(1−p(u))2 ), which exactly produces our previous result, i.e., T (1)

uu ∝ (φ′)2−φ′′−
L+(u) as shown in section 3.4 for gluing two Bañados geometries.

Certainly, the examination presented herein is restricted to the particular scenario in
which the brane is located at the conformal boundary. However, in the context of a more
generic brane living in bulk spacetime, it is reasonable to anticipate that the Liouville
field theories would be deformed by a T T̄ term, and interact with each other. From the
perspective of two-dimensional holographic BFTs, it is reasonable to anticipate that the
total Hamiltonian can be expressed as H = H(1) + H(2) + Hint. The specific form of the
interaction term Hint can be understood in terms of the T (1)T (2) deformation, which arises
due to the exchange of gravitons between two AdS spacetimes. This kind of deformation,
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Figure 8. Left: dSd+1/dSd slicing of d + 1-dimensional de Sitter spacetime. The colorful curves
denote d-dimensional dS branes with various tensions. Right: a time slice of global dSd+1 spacetime
that consists of two hemispheres glued by a zero tension brane.

associated with the T (1)T (2) term, has been examined in the context of conventional CFTs
in [58]. Also, it is intriguing to note that the condition (2.14) implies the total central
charge is vanishing. This is what we expect when we couple a CFT with two-dimensional
gravity. Even if the original CFT has a positive central charge, the Liouville CFT, which
emerges from the diagonal metric fluctuations of gravity, has a negative central charge that
cancels the original one and results in a vanishing total central charge.

Open quantum system. Instead of treating the two portions of AdS spacetime on equal
footing, an alternative approach is to regard one of the bulk spacetimes as the environment
with respect to another one. This strategy is commonly employed in the theory of open
quantum systems, where a target system and its surrounding environment are considered
to be two distinct systems. By taking the partial trace over the degrees of freedom of the
environment, one can obtain the non-unitary time evolution of the target system [59]. In
the context of our gluing AdS/CFT setup, one can identify one of the AdS spacetimes as the
environment and the brane as the interface between the target system and the environment.
The joint spacetime then realizes a holographic realization of the open quantum system.

Gluing two de Sitter spacetimes. One of our motivations is to construct holography
without boundaries. Unlike AdS spacetime, which has a timelike conformal boundary,
de Sitter spacetime is a naturally closed universe. It is straightforward to generalize our
analysis to asymptotically de Sitter spacetime. When two (d+ 1)-dimensional dS vacuums
are glued together by a timelike hypersurface, the Hamiltonian constraint on the brane is
given by

R = K2 −KµνKµν + d(d− 1)
L2

dS
, (6.6)

which can also be derived from the AdS counterpart by performing the analytical contin-
uation LAdS → iLdS. The timelike brane living in de Sitter spacetime with a tension T is
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Figure 9. A sketch of one possible configuration for gluing dS spacetime with AdS-Schwarzschild
spacetime along a timelike hypersurface. The trajectory of the brane is denoted by the pink curve.

thus constrained by a similar equation, viz,

R+ µ = −
(
〈τ (1)ij〉〈τ (1)

ij 〉 −
〈τ (1)〉2

d− 1

)
= −

(
〈τ (2)ij〉〈τ (2)

ij 〉 −
〈τ (2)〉2

d− 1

)
, (6.7)

but with identifying the Liouville potential as

µ = −d(d− 1)
L2

dSa

− d

d− 1T
2 ≤ 0 . (6.8)

Contrary to the AdS case, it is obvious that the brane in dS space is always associated
with a positive curvature when the T T̄ term vanishes due to the positivity of the potential
term. The simplest examples of gluing two dS spacetimes can be found by considering the
symmetric case where each side is given by a dSd+1 spacetime with a dSd brane as the
boundary (see e.g., [60]). It is nothing but the dSd+1/dSd slicing as shown in figure 8.
It’s worth noting that dSd+1 spacetime can be thought of as a closed universe created by
gluing two half dSd+1 spacetimes along a d-dimensional brane whose tension vanishes. This
also motivates us to consider constructing non-boundary AdS spacetime by gluing two AdS
spacetimes together with a brane.

Mixed bulk geometries. It is also straightforward to consider gluing two asymptotically
flat spacetime. The constraint equations have a similar form, but with µ = − d

d−1T
2, which

can be derived from the AdS case by setting LAdS →∞. More generally, one can glue two
different types of spacetimes. Let us consider two vacuum spacetimes in Einstein gravity
with distinct cosmological constants Λ(1),Λ(2). The Israel junction condition still fixes the
hypersurface Σ(a) with respect to each side as a CMC slice where the trace of the extrinsic
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curvature is given by

K(1) = d T

d− 1 −
Λ1 − Λ2

2T , K(2) = d T

d− 1 + Λ1 − Λ2
2T . (6.9)

Similarly, we can rewrite the corresponding constraint equation in terms of the brane stress
tensor τij , viz,

R+ µ+
(
τ (a)ij τ

(a)
ij −

(τ (a))2

d− 1

)
= −2T (a)

d− 1τ
(a) = 0 , (6.10)

with
T (a) = d− 1

d
K(a) , µ = − d

d− 1
(
T (a)

)2
− 2Λa . (6.11)

By varying the cosmological constants Λ(a), one may construct six distinct types of joint
spacetime, some of which have been studied before from different viewpoints. For example,
see [61–63] for dS spacetime glued with asymptotically flat spacetime, and e.g., [64–68] for
dS spacetime glued with AdS-Schwarzschild spacetime as shown in figure 9.
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