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In the wagyu industry worldwide, high-quality marbling beef is produced by promoting intramuscular 
fat deposition during cattle fattening stage through dietary vitamin A control. Thus, however, 
cattle become susceptible to either vitamin A deficiency or excess state, not only influencing cattle 
performance and beef quality, but also causing health problems. Researchers have been exploring 
eye photography monitoring methods for cattle blood vitamin A levels based on the relation between 
vitamin A and retina colour changes. But previous endeavours cannot realise real-time monitoring 
and their prediction accuracy still need improvement in a practical sense. This study developed a 
handheld camera system capable of capturing cattle fundus images and predicting vitamin A levels in 
real time using deep learning. 4000 fundus images from 50 Japanese Black cattle were used to train 
and test the prediction algorithms, and the model achieved an average 87%, 83%, and 80% accuracy 
for three levels of vitamin A deficiency classification (particularly 87% for severe level), demonstrating 
the effectiveness of camera system in vitamin A deficiency prediction, especially for screening and 
early warning. More importantly, a new method was exemplified to utilise visualisation heatmap for 
colour-related DNNs tasks, and it was found that chromatic features extracted from LRP heatmap 
highlighted-ROI could account for 70% accuracy for the prediction of vitamin A deficiency. This system 
can assist farmers in blood vitamin A level monitoring and related disease prevention, contributing to 
precision livestock management and animal well-being in wagyu industry.
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PL filter  Polarising filter
PR curve  Precision-recall curve
ROI  Region of interests
Rave, Gave, Bave  Average value of RGB channels
Ri, Gi ,Bi  Each pixel value of eye surface or fundus ROI in RGB channels
Rratio, Gratio, Bratio  Red, green, and blue component ratios
Rvariance, Gvariance, Bvariance  Red, green, and blue channels variances
SVM  Support vector machine
TN  True negative
TP  True positive
YOLO  You only look once model

Beef marbling quality is determined by both genetic factor and nutrition factor1. Not only in wagyu cattle, 
but also in Angus and many others, beef marbling is significantly dependent on blood vitamin A2 levels 
(Supplementary material Fig. S1) during cattle growth3–7. This holds true particularly for Japanese Black cattle – 
a renowned breed selected for high marbling beef (Supplementary material Fig. S2). A higher level of vitamin A 
inhibits intramuscular fat (IMF) deposition8,9, consequently lowering beef quality. Conversely, too low vitamin 
A concentration (below 30 IU dL−1) leads to hypovitaminosis A, causing night blindness10, joint oedema11, liver 
damage12,13, and other diseases14, from which, animals suffer so much. As such, not only a responsible awareness 
of animal welfare, but also a higher standard of precision livestock requirement in the wagyu husbandry system, 
necessitate an effective, timely monitoring of blood vitamin A levels.

During the fattening stage, wagyu cattle undergo vitamin A decrease period, resulting in reduced amount 
of chromophore retinal (vitamin A derivatives). This, in turn, leads to a diminished supply of photopigment 
(such as rhodopsin) in the retinoid cycle15, causing fundus colour change from blueish to pale macroscopically 
(Supplementary material Fig. S3). It is based on this colour changes due to the blood vitamin A levels16–18, 
that our team has proposed an ophthalmological and photographical method for non-invasive monitoring of 
vitamin A condition using eye imaging19–25, aiming to replace the conventional blood assay method, which is 
expensive, time consuming, and potentially stressful to cattle.

Deep Neural Networks (DNNs) embraced a boom in a vast variety of tasks nowadays26,27, including animal 
applications28–30. In human ophthalmology, DNNs have been successfully applied on retinal fundus photographs 
to detect or classify human eye diseases such as diabetic retinopathy, glaucomatous damages, and others30–33. 
It was the abnormal changes in colour, shape, or size of specific area (including retinal biomarkers and lesions) 
in retinal fundus image that provided evidence for the automated detection and diagnosis of eye diseases, such 
as the red colour from the retinal bleeding (haemorrhage)34,35, irregularities of shape and appearance of the 
retinal venules (venous beading)36, pale optic disc or unusual CDR (cup disc ratio)37,38 etc. However, in the 
case of cattle eyes, no such abnormality is observed in the retinal fundus during the normal fattening process, 
regardless of how high (119 IU dL−1) or low (21 IU dL−1, below the critical level) the blood vitamin A level 
is. Besides, in the classification task of human eye diseases, some targets (diseased area, such as exudates or 
optic disc) are so distinct from each other or from their surroundings that their classification task poses no 
challenge to a DNN architecture which already demonstrated persuasive performance in various public 
datasets. Whereas in our study, all cattle fundi exhibit high similarity, and the only discernible difference in 
the fundus images associated with varying levels of vitamin A seems to be the moderate changes in fundus 
colour, which is, by human diagnosis, impossible to correlate with vitamin A condition. These points make 
the task of fundus image-based cattle vitamin A prediction markedly distinct from and more challenging than 
human fundus disease classification. Furthermore, though previous studies pioneered the prediction of blood 
vitamin A levels19,21,22,24, their device systems need on-site installation, and their methods required a separate 
image processing procedure, thus making real-time monitoring unattainable. This is not convenient for farmers 
or relevant industry personnel. More importantly, their overall prediction accuracy still needs improvements 
in a practical sense. For example, Han et al.21 obtained 74.8%, 56.6%, and 62.2% accuracy for the three levels 
of vitamin A deficiency and Zhou et al.19 found 0.64% R2 in the multiple linear regression for vitamin A level 
estimation. There is need for an accurate, fast, affordable, and easily operable methodology for monitoring blood 
vitamin A condition. We wish to put into application our findings and technology of fundus photography-based 
vitamin A prediction and dedicate it to a higher level of precision livestock management.

In the present work, we developed a handheld camera system capable of capturing cattle fundus images and 
predicting blood vitamin A levels in real time using deep learning algorithms.

Methods
Camera
A new handheld fundus camera was conceptualised for realising easy and flexible image acquisition and real-time 
vitamin A prediction. This camera system mainly consists of a camera (The Imaging Source, DFK23U445), lens 
(VS Technology, f8mmVS-0818VM), centre LED (NICHIA NVNWS007), ring LED (NICHIA NSDW570G-Kl), 
half mirror, polarising filters (PL filters) and a tablet computer (Microsoft Surface Go2). Interior structure of the 
system and its photography light path was illustrated in Fig. 1.

The core light path lies in the polarised illuminating system. Light from centre LED was polarised by a PL 
filter and directed towards the eye. A portion of it reached the eye surface and the others went through the pupil 
onto the retina. Specular reflection occurred at the eye surface and the reflected light was suppressed by another 
perpendicularly oriented PL filter arranged in front of the camera. Thus, the pupil reflection was eliminated 
in the fundus image. By contrast, diffuse reflection occurred at the retina and only those of the same direction 
components with PL filter (camera side) could pass it, while other diffuse reflection was suppressed likewise. 
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Thus, the interior retinal fundus was clearly observed. Taking into consideration the need for enough object 
illumination as well as reducing ocular stress for cattle, the LED illuminous intensity was set to 1200 lx. The 
tablet functions as I/O unit as well as storage.

Animal experiment
Fifty clinically healthy Japanese Black cattle were tested in the photographic experiment at the collaborative farm 
of Tajima Agricultural High School, Hyogo Prefecture, Japan. To explore the potential of fundus-based vitamin 
A prediction across a broader range of animal group, steers from early, middle, and late fattening stages were 
all included in this experiment, just like a typical cattle farm. Their monthly ages spanned from 8 ~ 32 mo. To 
describe the experimental process concisely, the above-mentioned handheld camera was used to take fundus 
images of both right and left eye from each cattle (Fig. 2a). Then, blood collection was conducted via jugular 
venepuncture and vitamin A concentration measured by high-performance liquid chromatography (HPLC) 
in the Hoken Kagaku laboratory, Japan (Health Science Research Institute). In this way, the photographic 
experiment was performed every two months and continued for 10 months overall. Animal experiment approval 
was obtained from the Management Office for Research Regulations, Kyoto University, and the experiments are 
subject to Regulations on Animal Experimentations at Kyoto University. All methods are reported in accordance 
with ARRIVE guidelines.

YOLO model and statistical analysis
In this study, the most basic model in YOLO 5 family, v5s model, was used to detect and classify the fundus 
images. It is favoured in a wide range of industrial applications for its good balance of efficiency, accuracy, 
and computational economy. The model was trained on a desktop PC with 32 batch size and 210 epochs 
(specifications: CPU Core i7-8700,3.2 GHz; GPU RTX 2080 Super; RAM 32G; OS Windows 10 edu; Python 
3.7.6; Pytorch 1.5.0; CUDA 10.2.89; cuDNN 7.6.5). As several images were available for each session (see 3.1. 
Handheld camera and fundus image section), it was split randomly at the session level into training (70%) and 
test (30%) set. This is crucial to avoid data from the same session being present in both training and test samples 
and to ensure the evaluation accountability.

Fig. 1. Interior structure of the fundus camera system and the light path.
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Although being effective in enhancing system’s robustness, synthetic image or data augmentation technique 
was not adopted in this study. Obviously, the detection of fundus is intrinsically associated to colour features of 
retina. What is desired is to input into the model images with their original information, rather than contrast-
enhanced or colour-modified images. On the other hand, considering the unbalanced sample data for vitamin 
A deficiency levels, the effect of non-colour related augmentation was investigated (see 3.2. Vitamin A deficiency 
classification and data characterisation).

Statistical analysis was conducted to evaluated YOLO model’s performance by a variety of metrics, including 
TP (true positive), TN (true negative), FP (false positive), FN (false negative), precision, recall, mean average 
precision (mAP@0.5, when IOU is at 0.5), accuracy, as well as confusion matrix. F1-score and PR curve 
(precision-recall) were also presented, considering the class-imbalance problem. 3-fold cross validation was 
implemented for assessing the model and to ensure the generalisation ability on the whole datasets.

LRP heatmap
Layer-wise Relevance Propagation39,40 is an algorithm that can trace the contribution to the final classification 
back to the input layer by layer and visualises the relevance/importance of each pixel in heatmaps. Its core idea is 
to decompose the prediction ƒ(x) as the sum of terms of separate input pixel xd. as shown in the Eq. (1).

 
f (x) =

V∑
d=1

Rd (1)

where Rd is the relevance score, with Rd >0 representing the presence of the target structure while Rd <0 
representing the absence. Vis the dimensionality. Considering the fact of almost identical fundus images except 
for colours in this study, LRP fits this fundus classification task better for both class-discriminative and fine-
grained visualising ability, as compared to other methods, such as Guided Backpropagation or Grad-CAM41–43 
etc.

Chromatic feature extraction
Following the LRP heatmap generation, in total, 21 chromatic features were extracted from heatmap-highlighted 
ROI. They were the average, ratio, and variance of each channel in the RGB space, average and variance of each 
channel in HSV and Lab colour spaces:
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where, n is the pixel number, Ri, Gi, and Bi are each pixel value of fundus ROI in RGB channels respectively; Rave, 
Gave, and Bave are the average value of red, green, and blue channel; Rratio, Gratio, and Bratio are red, green, and blue 
component ratios while Rvar, Gvar, and Bvar are the counterpart variances respectively.

HSB and Lab colour spaces are converted from RGB space according to the OpenCV documents. Then 
average value and variance are calculated likewise (see Supplementary Note).

Fig. 2. A handheld fundus camera: (a) easy use in taking fundus images; (b) main components and model 
structure; (c) an example of cattle fundus image. (identifiable information/image see Informed consent).
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Results
Handheld camera and fundus image
In this study, we developed a handheld fundus camera for image acquisition and real-time vitamin A prediction. 
In comparison to the stationary camera system in our preceding research24: (1) this is compact, lightweight, 
and unrestricted to the photography time or farm facility limitations. It is designed specifically for a demand of 
easier operation and improved flexibility. Furthermore, (2) it integrated a tablet computer deployed with DNNs 
to realise the real-time prediction. As shown in Fig. 2a, it captures fundus images (in the vicinity of cattle eyes) 
with a simple click of button. Such a shooting captures one session of 10 consecutive images (10 fps, 1280 × 960, 
BMP file, 32bit). Figure 2b. shows the main components of this camera model. A combined illuminating systems 
consisting of a centre LED and ring LED as well as the polarising filters (PL filter) effectively eliminates the 
specular reflection at the eye surface (Fig. 1) and enables the interior retinal fundus (Fig. 2c) to be observed.

Vitamin A deficiency classification and data characterisation
In total, 4000 fundus images were collected from 50 cattle during their fattening period in the eye photography 
experiment. Blood vitamin A concentration corresponding to each fundus image was also obtained. The 
overall vitamin A ranged from 21 ~ 119 IU dL−1, with age spanning from 8 ~ 32 mo across their fattening stage. 
Considering the normal blood vitamin A fluctuation arising from individual differences in vitamin A tolerance 
among cattle, a direct prediction of blood vitamin A concentration could be too exacting and also unnecessary 
for farmers. Therefore, in this study, the vitamin A prediction was implemented as classification task of vitamin 
A deficiency level21 to balance between the prediction accuracy and robustness. The fundus images were grouped 
(according to the Japanese wagyu fattening guideline) into three vitamin A deficiency levels: mild (67–100 IU 
dL−1), moderate (34–66 IU dL−1), and severe (0–33 IU dL−1), as shown in Table 1. It is clear the sample numbers 
are unbalanced, particularly for the severe class. However, this is consistent with the real farm situation where 
cattle experience a low vitamin A fattening for a short period. These images were used for the algorithm training 
and testing with a YOLO44 architecture. On the other hand, non-colour related augmentation method (rotation, 
0 to 45 degree) was adopted for enlarging the severe class data and the analysis results were presented in the 
discussion part (see 4. Discussion).

YOLO performance
Example of fundus images from three vitamin A deficiency levels and their respective YOLO predictions 
are shown in Fig.  3. For assessing model’s generalisation ability, 3-fold cross validation was implemented 
(Supplementary material table S2-1, S2-2, S2-3), and the prediction results, as detailed in Table 2, show YOLO 
model achieved an average mAP@0.5 of 0.81, 0.85, and 0.87 in three folds respectively for the three vitamin 
deficiency classes while their corresponding accuracy reached 0.83, 0.80, and 0.88. The average classification 
metrics for the three levels are presented in Table 3. To address the problem of unbalanced sample number for 
each class, precision-recall (PR) curve is generated to reflect the prediction performance more objectively. A 
confusion matrix for classification is also presented (Fig. 4). Details of other evaluation metrics, such as true 
positive (TP), false positive (FP), true negative (TN), and false negative (FN), for each class are provided in the 
Supplementary material table S3-1, S3-2, S3-3.

The classification of vitamin A deficiency levels exhibited encouraging performance. This suggests that 
specific area in the fundus image could be “detected”, and this very ROI is closely related with blood vitamin A 
concentration. However, the intrinsic “black box” functionality of DNNs could not provide more explanation 
to such outcomes.

Heatmaps and colour feature-based classification
To better understand the input (fundus image)’s relevance to the output (vitamin A level) class, the Layer-wise 
Relevance Propagation (LRP), a class decision heatmapping technique, was conducted to localise the ROI in 
fundus area (see supplementary material Fig. S4). Then, different from all other studies that stopped at this 
step merely showing the heatmap, this study extracted chromatic features from these ROIs to predict blood 
vitamin A conditions. By this means, we can not only verify if the ROIs are viable to reflect the retinal chromatic 
features in cattle eye, but can also explain, in the context of fundus images, how much of the YOLO vitamin A 
prediction is associated with fundus chromatic features. Figure 3 (third column) shows the LRP heatmaps of the 
retinal fundus images. Using them as masks, 21 handcraft chromatic features were extracted from the fundus 
images for vitamin A deficiency classification. The mean and standard deviation of the features are presented 
in supplementary material table S4-1. The SVM was used for this analysis since it is one of the most powerful 
machine learning algorithms for classification problem, and, to compare directly with our prior work that used 
the SVM. Classification results are presented in Table 4.

Datasets*

Fundus No.

Label No.Earlya Middlea Latea

mild 604 878 134 1616

moderate 103 1196 675 1974

severe 0 130 280 410

Table 1. Summary of datasets. *Cattle gender is steer. Heifers and production cows were not used. a “Early”, 
“Middle”, and “Late” represent three fattening stages of cattle.

 

Scientific Reports |         (2025) 15:4125 5| https://doi.org/10.1038/s41598-025-85372-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Class Precision Recall (Sensitivity) Specificity F1 Accuracy

Severe 0.79 0.88 0.97 0.83 0.87

Moderate 0.78 0.77 0.78 0.77 0.83

Mild 0.74 0.78 0.76 0.76 0.80

Table 3. Mean classification metrics for vitamin A deficiency states using YOLO.

 

Fold Precision Recall F1 mAP@0.5 Accuracy

1 0.7 0.81 0.75 0.81 0.83

2 0.78 0.81 0.79 0.85 0.80

3 0.83 0.80 0.81 0.87 0.88

Table 2. 3-fold cross validation on all datasets.

 

Fig. 3. Example of YOLO predictions for fundus images as well as corresponding LRP heatmaps. The first 
column: typical cattle fundus images for three vitamin A deficiency levels. Second column: their YOLO 
prediction results. Third column: fundus LRP heatmaps highlighted for vitamin A predictions.
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As is clear from the comparison between Tables 3 and 4, the YOLO classification yielded 87%, 83%, and 80% 
of accuracy for severe, moderate, and mild classes, while the chromatic features accounted for an averaged 70% 
in the SVM prediction.

Deployment in camera system
The YOLO model was trained on desktop PC and then deployed in the fundus camera system, as shown in Fig. 5. 
The captured images can be examined through the display window before being saved with cattle ID together. 
After the fundus image collection, a program would direct to the DNNs prediction and yield results.

Discussion
To authors’ knowledge, this is the first report about real-time monitoring for cattle vitamin A deficiency levels 
using deep learning algorithms in retinal fundus photography. Previously, Han et al.21 obtained 62%, 57%, and 
75% classification accuracy for the severe, moderate, and mild group respectively, as shown in Table 5. However, 
their device can only capture the eye surface image rather than the retinal fundus itself. This hinders more accurate 
vitamin A prediction — fundus image can more truthfully reflect the retina colour than eye surface image. 
Then the innovation of double imaging camera system in our preceding research24 enabled both eye surface 
and fundus photography. Their corresponding overall classification accuracy reached 76% and 82% respectively. 
Although the prediction performance improved, the requirements for the imaging system installation on farm 

Class Precision Recall (Sensitivity) Specificity F1 Accuracy

Severe 0.63 0.74 0.96 0.68

0.70Moderate 0.72 0.78 0.68 0.75

Mild 0.68 0.60 0.82 0.64

Table 4. SVM classification metrics for vitamin A deficiency states based on handcraft chromatic features.

 

Fig. 4. Classification performance for vitamin A deficiency. PR curve and confusion matrix were generated for 
each fold to assess the model’s performance and reflect the generalisation ability on the whole datasets.
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site somewhat limited its widespread use. Moreover, they all need additional image processing procedure and 
cannot achieve real-time monitoring. The advancement of this research lies in the development of a handheld 
fundus camera system with DNNs algorithms deployed, enabling real-time prediction of vitamin A deficiency 
based on fundus photography. This methodology achieved practically significant accuracy, with averaged overall 
classification rates of 87%, 83%, 80% for the severe, moderate, and mild classes, respectively. This result surpasses 
all previous research and strongly support the advantage of this method.

Unlike in humans, cattle fundus usually does not exhibit visible biomarker abnormalities15, and thus disease 
diagnosis based on cattle fundus image is more challenging. However, colour change is the easiest possible 
information we can obtain from the fundus image. The grain-based diet throughout fattening stage diminished 
vitamin A concentration in bloodstream. This, in turn, influenced the generation of visual photopigments15 in 
the retinoid cycle in cattle retina and consequently changed its colour.

Han et al. 2018 Li et al. 2023 This study

Eye Image

Eye surface Eye surface Fundus FundusClass

Severe 0.62 - - 0.87

Moderate 0.57
0.76 0.82

0.83

Mild 0.75 0.80

Table 5. Comparison of classification accuracy with previous studies.

 

Fig. 5. The user interface in the fundus camera system. Functions like examining image quality, input of cattle 
ID, record for special conditions, as well as DNNs predictions can be performed.
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A deep learning research is incomplete without addressing its black box issue. Studies so far only provide the 
class-discriminative and highly detailed heatmaps43,45–47 to visualise the target areas for the interpretability of 
the detection results. For a further analysis, this study not only conducted the heatmap visualisation using LPR, 
but also extracted chromatic features out from those heatmap-highlighted ROIs and then used them to predict 
blood vitamin A deficiency states. This provided a new method to explore the visualising heatmap, especially in 
the colour-related tasks. It was found chromatic features can explain 70% of prediction accuracy of the fundus-
based vitamin A prediction in this deep learning study. It is apparent the YOLO model must have “learnt” 
more knowledge from the fundus images than merely focusing on the chromatic information. The comparison 
between the YOLO and the SVM prediction proves this sufficiently.

In the sample data studied, inter-class and intra-class chromatic variation was found across the three vitamin 
A deficiency classes. An example of the continuously captured fundus images from one session is compared in 
supplementary material Fig. S5, with their extracted features listed in supplementary material Table S5. Since 
the two images were captured in one session, no significant differences were found in the 21 chromatic features 
extracted. But resultantly one of two images was misclassified. This is partially due to the image’s similarity to 
another one that belongs the mild class and possibly due to more sophisticated features based on which the 
model inferred. This study can only explain from the chromatic point of view.

Recent studies have also discovered that the effect of vitamin A on beef marbling shifts conversely at different 
growth stages48–50. A lower level of vitamin a promotes IMF deposition during the fattening stage, whereas at an 
early age (before 8 mo), the higher level does (Supplementary material Fig. S1). The mechanism is quite complex, 
and a good understanding and monitoring of blood vitamin A condition across cattle growth is crucial to the 
whole cattle industry. Our methodology offers a good solution to it.

On the other hand, at present, wagyu farmers rely on their raising experience to assess whether a steer is 
vitamin A deficient or not. This is rather subjective. Clear symptoms may only become apparent and observable 
when irreversible health damage has already occurred, making timely intervention helpless. This camera 
system can effectively mitigate such risks by early detection of cattle vitamin A deficiency and give warnings. 
It eliminates the need for laborious blood sampling or expensive blood assay, using instead non-invasive eye 
photography. The general prediction accuracy for three deficiency states all surpassed 80% and, in particular, 
87% for the severe class. This can greatly facilitate cattle vitamin A levels monitoring to prevent diseases and 
minimise the animal stress exerted. It represents a substantial step forward towards achieving a higher level of 
animal welfare in wagyu industry.

Considering the unbalanced sample number for three vitamin A deficiency levels, non-colour related 
augmentation was adopted in this study to enlarge the sample data in severe class and to improve the model’s 
generalisation ability. The originally collected images were rotated at angles between 0 and 45 degree and 
consequently, the sample number reached 1640 images in the severe class to rival the moderate (1974) and mild 
(1616) classes. Likewise, a three-fold cross validation was implemented for the vitamin A deficiency classification 
and the mean results were presented in supplementary material table S5-1. It is apparent the augmentation 
method slightly improved the mean classification accuracy for the three vitamin A deficiency classes where the 
largest increment was found in the severe class. This is due to the fact that the model learnt ‘enough’ features 
from the severe class-images and was able to identify them even at rotated angles. Besides, the augmented severe 
class is four times in quantity that of un-augmented one and the samples had great chance to be present in 
the validation set so as to be correctly classified. A basic rotation of the fundus images does not contribute 
significantly to the classification accuracy because the features extracted from the same fundus at varied angles 
should not differ so much.

This study has several limitations. First of all, by far there is no diagnostic standard of cattle fundus in terms 
of colour or any other features. However, there is a general trend of decreasing blue ratio components and 
increasing red ratio components found in the vitamin A depletion process19,24,51. Currently we have set up a fundus 
database of wagyu cattle in an attempt for reference images of different vitamin A deficiency state. Secondly, 
the experiment was conducted to the “Japanese Black” wagyu cattle from all the fattening stages (from 8 to 32 
mo), but it has not been validated on wagyu cattle offspring overseas, such as purebred (or crossbreed) wagyu 
in US or Australia. Considering the fact that even Angus and other breeds9,49,52,53also exhibit similar marbling 
condition under vitamin A administration, it is anticipated that these wagyu offspring should demonstrate a 
similar performance. From physiological point of view, their fundus colour changes are presumably the same if 
subject to vitamin A deficiency. Yet further investigation is needed to confirm this. Thirdly, for the interpretation 
of the fundus-based vitamin A prediction, we explained from the chromatic features’ perspective. Consideration 
of properties like fundus patterns or shapes would make the prediction model too complicated to interpret. 
Nevertheless, we believe relevant study would shed new lights on this project. Fourthly, as for DNNs architecture, 
we only used the basic YOLO v5s model in this system. Prediction accuracy could be further improved if trained 
with higher version of YOLO44,54 models, or other DNNs architecture, as proven on COCO and other datasets.

Conclusions
This paper presented an easy-use handheld camera system capable of fundus photography and real-time 
vitamin A prediction with practically meaningful accuracy. It demonstrated the DL’s effectiveness in cattle fundi 
classification regardless of the absence of abnormality, as is difficult in human fundus images. It also exemplified 
a new method to utilise visualisation heatmap in the colour-related deep learning study. It can assist farmers 
and veterinarians in vitamin A monitoring and related disease prevention during cattle rearing. This system 
contributes significantly to improving animal welfare in wagyu industry as well as a higher standard of precision 
livestock management.
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Data availability
Part of the experimental results are presented in Supplementary materials and Raw data is available on request 
at li.nanding@imau.edu.cn.
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