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§1. Rationality problem for algebraic tori T (1/3) 

► k: a base field which is NOT algebraically closed! (TODAY) 

► T: algebraic k-torus, i.e. k-form of a split torus; 
an algebraic group over k (group k-scheme) with T Xk k ,..__, (<G-m,k)n. 

Rationality problem for algebraic tori 

Whether T is k-rational ?, i.e. T ~ IPn? (birationally k-equivalent) 

Let R~jk(<G-m) be the norm one torus of K/k, i.e. the kernel of the norm 

map NK/k: RKjk(<G-m) ➔ <Gm where RK/k is the Weil restriction: 
(1) NK/k 

1 --+ RK/k(<G-m) --+ RKjk(<Gm) --+ <Gm --+ 1. 

dim n - l n l 

► :32 algebraic k-tori T with dim(T) = 1; 

the trivial torus <Gm and R~jk ( <Gm) with [K : k] = 2, are k- rational. 
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Rationality problem for algebraic tori T (2/3) 

► :313 algebraic k-tori T with dim(T) = 2. 

► :373 algebraic k-tori T with dim(T) = 3. 

Theorem (Kunyavskii 1990) 3-dim. algebraic tori T 

(i) :358 algebraic k-tori T which are k-rational ; 
(ii) :315 algebraic k-tori T which are not k-rationa l. 

► What happens in higher dimensions? 
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Algebraic k-tori T and G-lattices 

► T: algebraic k-torus 
~ :3 finite Galois extension L/k such that T Xk L r--.J (CGm,L)n. 

► G = Gal(L/k) where Lis the minimal splitting field. 

Category of algebraic k-tori which split/ L d<ali~y Category of G-lattices 
(i.e. finitely generated Z-free Z[G]-module) 

► T f-----+ the character group f = Hom(T, CGm): G-lattice. 

► T = Spec(L[M]c) which splits/ L with T r--.J M +--, M: G-lattice 

► Tori of dimension n A elements of the set H 1(9, GL(n, Z)) 
where 9 = Gal(k/k) since Aut(CG~) = GL(n, Z). 

► k-torus T of dimension n is determined uniquely by the integral 
representation h: 9--+ GL(n, Z) up to conjugacy, and the group 
h(Q) is a finite subgroup of GL(n, Z). 

► The function field of T id~ed L(M)G: invariant field. 
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Rationality problem for algebraic tori T (3/3) 

► L/k: Galois extension with G = Gal(L/k). 

► M = EBi<i<n Z · U( G-lattice with a Z-basis { u1, ... , un}-

► G acts on L(x1, ... , xn) by 

n 

o-(xi) = IJ x;i,j, 
j=l 

l<i<n 

for any o- E G, when o-(ui) = Lj 1 ai,jUj, ai,j E Z. 
► L(M) := L(x1, ... , xn) with this action of G. 

► The function field of algebraic k-torus T id~ed L(M)G 

Rationality problem for algebraic tori T (2nd form) 

Whether L(M)G is k-rational ? 

(= purely transcendental over k?; L(M)G = k(:3t1 , ... , :3tn)?) 
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Some definitions. 

► K/k: a finite generated field extension. 

Definition (stably rational) 

K is called stably k-rational if K(y1, ... , Ym) is k-rational. 

Definition (retract rational) 

K is retract k-rational if :3k-algebra (domain) R c K such that 
(i) K is the quotient field of R; 
(ii) :3f E k[x1, ... , Xn] :3k-algebra horn. <p: R--+ k[x1, ... , Xn] [1/ f] and 
1/J : k[x1, ... , Xn] [1/ f] --+ R satisfying 1/J o <p = lR. 

Definition ( unirational) 

K is k-unirational if KC k(x1, ... , xn)-

► k-rational ⇒ stably k-rational ⇒ retract k-rational ⇒ k-unirational. 

► L(M)G (resp. T) is always k-unirational. 
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Ration a I ity problem for algebraic tori T ( 2-d i m., 3-d i m.) 

► The function field of n-dim. T id~ed L(M)c, G:::; GL(n, Z) 

► :313 Z-coujugacy subgroups G < GL(2, Z) 
(:313 2-dim. algebraic k-tori T). 

► :373 Z-coujugacy subgroups G < GL(3, Z) 
(:373 3-dim. algebraic k-tori T). 

Theorem (Kunyavskii 1990) 3-dim. algebraic tori T (precise form) 

(i) T is k-rational -¢===} T is stably k-rational 
-¢===} T is retract k-rational -¢===} :3G: 58 groups; 

(ii) T is not k-rational -¢===} T is not stably k-rational 
-¢===} T is not retract k-rational -¢===} :3G: 15 groups. 
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Rationality problem for algebraic tori T ( 4-dim.) 

► The function field of n-dim. T id~ed L(M)c, G:::; GL(n, Z) 

► :3710 Z-coujugacy subgroups G < GL(4, Z) 
(:3710 4-dim. algebraic k-tori T). 

Theorem ([HYl 7]) 4-dim. algebraic tori T 

(i) T is stably k-rational ¢=} :3G: 487 groups; 
(ii) T is not stably but retract k-rational ¢=} :3G: 7 groups; 
(iii) T is not retract k-rational ¢=} :3G: 216 groups. 

► We do not know "k-rationality". 

► Voskresenskii's conjecture: 
any stably k-rational torus is k-rational (Zariski problem). 

► what happens for dimension 5? 
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Rationality problem for algebraic tori T (5-dim.) 

► The function field of n-dim. T id~ed L(M)c, G:::; GL(n, Z) 

► :36079 Z-coujugacy subgroups G < GL(5, Z) 
(:36079 5-dim. algebraic k-tori T). 

Theorem ([HYl 7]) 5-dim. algebraic tori T 

(i) T is stably k-rational ¢=} :3G: 3051 groups; 
(ii) T is not stably but retract k-rational ¢=} :3G: 25 groups; 
(iii) T is not retract k-rational ¢=} :3G: 3003 groups. 

► what happens for dimension 6? 

► BUT we do not know the answer for dimension 6. 

► :385308 Z-coujugacy subgroups G < GL(6, Z) 
(:385308 6-dim. algebraic k-tori T). 
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Flabby (Flasque) resolution 

► M: G-lattice, i.e. f.g. Z-free Z[G]-module. 

Definition 

(i) Mis permutation ~ M f'.J ffi1<i<mZ[G/Hi]-

(ii) M is stably permutation ~ M E9 3P f'.J P', P, P': permutation. 

(iii) M is invertible ~ M E9 3M' f'.J P: permutation. 

(iv) Mis coflabby ~ H 1(H, M) = 0 (VH < G). 

(v) Mis flabby ~ fi- 1 (H, M) = 0 (VH < G). (H: Tate cohomology) 

► "permutation" 
====} "stably permutation" 
====} "invertible" 
====} "flabby and coflabby". 
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Commutative monoid M 

October 22, 2024 

M1 f'.J M2 ~ M1 E9 P1 f'./ M2 E9 P2 (3P1, 3P2: permutation). 
====} commutative monoid M: [M1] + [M2] := [M1 E9 M2], 0 = [P]. 

Theorem (Endo-Miyata 1974, Colliot-Thelene-Sansuc 1977) 

3P: permutation, 3F: flabby such that 

0-+ M-+ P-+ F-+ 0: flabby resolution of M. 

► [M]fl := [F]; flabby class of M 

Theorem (Endo-Miyata 1973, Voskresenskii 1974, Saltman 1984) 

(EM73) [M]fl = 0 ~ L(M)c is stably k-rational. 

11 / 45 

(Vos74) [M]fl = [M']fl ~ L(M)G(x1, ... , xm) f'.J L(M')G(Y1, ... , Yn); 
stably k-equivalent . 

(Sal84) [M]fl is invertible ~ L(M)G is retract k-rational. 

► M = Mc f'.J T = Hom(T, <Gm), k(T) f'.J L(M)c, G = Gal(L/k) 
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Contributions of [HYl 7] 

► We give a procedure to compute a flabby resolution of M, in 
particular [M]fl = [F], effectively (with smaller rank after base 
change) by computer software GAP. 

► The function IsFlabby (resp. IsCoflabby) may determine whether 
M is flabby (resp. coflabby). 

► The function IslnvertibleF may determine whether [M]fl = [F] is 
invertible ( +-+ whether L(M)G (resp. T) is retract rational ). 

► We provide some functions for checking a possibility of isomorphism 

by computing some invariants ( e.g. trace, 2°, H0 ) of both sides. 

► [HY17, Example 10.7]. G rv S5 < GL(5,Z) with number (5,946,4) 
===⇒ rank(F) = 17 and rank(*) = 88 holds 
===⇒ [F] = 0 ===⇒ L(M)G (resp. T) is stably rational over k. 
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Application to Kru I I-Schmidt 

Corollary ([F] = [M]fl: invertible case, G rv S5 , F20 ) 

3T, T'; 4-dim. not stably rational algebraic tori over k such that 
T f T' (birational) and T x T': 8-dim. stably rational over k. 
·: -[M]fl = [M']fl # 0. 

Prop. ([HYl 7], Krull-Schmidt fails for permutation D6-lattices) 

13/ 45 

(1) (2) (3) (1) (2) . {1}, C2 , C2 , C2 , C3, V4, C6, S3 , S3 , D6: conJ. subgroups of D6, 

Z[D6] EB Z[D6/V4]EB2 EB Z[D6/C6] EB Z[D6/ si1)] EB Z[D6/ si2)] 

rv Z[D6/c?)] EB Z[D6/C~2)] EB Z[D6/C~3)] EB Z[D6/C3] EB zEB2 . 

► D 6 is the smallest example exhibiting the failure of K-5: 

Theorem (Dress 1973) 

Krull-Schmidt holds for permutation G-lattices <¢:::::::? G /Op( G) is cyclic 
where Op( G) is the maximal normal p-subgroup of G. 
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Krull-Schmidt and Direct sum cancelation 

Theorem (Hindman-Klingler-Odenthal 1998) Assume G-/- D8 

Krull-Schmidt holds for G-lattices <¢::::=} (i) G = Gp (p < 19; prime), 

(ii) G = Cn (n = 1, 4, 8, 9), (iii) G = V4 or (iv) G = D4. 

Theorem (Endo-Hironaka 1979) 

Direct sum cancellation holds, i.e. M1 EB N ~ M2 EB N ====} M1 ~ M2, 
====} G is abelian, dihedral, A4, 84 or As (*). 

► via projective class group (see Swan 1988, Corollary 1.3, Section 7). 

► Except for (*) ====} Direct sum cancelation fails ====} K-S fails 

Theorem ([HY17]) G < GL(n, ~) (up to conjugacy) 

(i) n < 4 ====} K-S holds. 
(ii) n = 5. K-S fails <¢::::=} 11 groups G (among 6079 groups). 
(iii) n = 6. K-S fails <¢::::=} 131 groups G (among 85308 groups). 
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Special case: T = Ri~k (<Gm); norm one tori (1/5) 
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► Rationality problem for T = R~jk(<G-m) is investigated by S. Endo, 
Colliot-Thelene and Sansuc, W. Hurlimann, L. Le Bruyn, A. Cortella 
and B. Kunyavskii, N. Lemire and M. Lorenz, M. Florence, etc. 

Theorem (Endo-Miyata 1974), (Saltman 1984) 

Let K/k be a finite Galois field extension and G = Gal(K/k). 
(i) T is retract k-rational <¢::::=} all the Sylow subgroups of G are cyclic; 
(ii) T is stably k-rational <¢::::=} G is a cyclic group, or a direct product of 

a cyclic group of order m and a group (a-, TI a-n = T 2d = 1, TCJ"T-l = a--1), 

where d, m > 1, n > 3, m, n: odd, and (m, n) = 1. 

Theorem (Endo 2011) 

Let K/k be a finite non-Galois, separable field extension and L/k be the 
Galois closure of K/k. Assume that the Galois group of L/k is nilpotent. 

Then the norm one torus T = R~jk(<G-m) is not retract k-rational. 
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Special case: T = Ri~k (<Gm); norm one tori (2/5) 

► Let K/k be a finite non-Galois, separable field extension 

► Let L/k be the Galois closure of K/k. 

► Let G = Gal(L/k) and H = Gal(L/ K) < G. 

Theorem (Endo 2011) 
Assume that all the Sylow subgroups of G are cyclic. 

Then T is retract k-rational. 

T = R~)k(<G-m) is stably k-rational <¢:::::=} G = Dn, n odd (n > 3) or 

Cm X Dn, m,n odd (m,n > 3), (m,n) = 1, H < Dn with IHI= 2. 
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Special case: T = Ri~k(<Gm); norm one tori (3/5) 

Theorem (Endo 2011) dim T = n - I 

Assume that Gal(L/k) = Sn , n > 3, and Gal(L/ K) = Sn-1 is the 

stabilizer of one of the letters in Sn. 
(i) R~)k(<G-m) is retract k-rational <¢:::::=} n is a prime; 

(ii) R~)k(<G-m) is (stably) k- rational <¢:::::=} n = 3. 

Theorem (Endo 2011) dim T = n - I 

Assume that Gal(L/k) = An , n > 4, and Gal(L/ K) = An-1 is the 

stabilizer of one of the letters in An. 
(i) R~)k(<G-m) is retract k-rational <¢:::::=} n is a prime; 

(ii) :3t EN s.t. [R~)k(<G-m)]Ct) is stably k-rational <¢:::::=} n = 5. 
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Special case: T = Ri~k( <Gm); norm one tori ( 4/5) 

Theorem ([HY17], Rationality for R~jk(<Gm) (dim. 4, [K: k] = 5)) 

Let K/k be a separable field extension of degree 5 and L/k be the Galois 
closure of K/k. Assume that G = Gal(L/k) is a transitive subgroup of Ss 
and H = Gal(L/ K) is the stabilizer of one of the letters in G. Then the 

rationality of R~jk(<Gm) is given by 

G L(M) = L(x1,x2,x3,x4)G 
5Tl C 5 stably k-rational 
5T2 D5 stably k-rational 
5T3 F 20 not stably but retract k-rationa I 
5T4 A 5 stably k-rational 
5T5 S 5 not stably but retract k-rationa I 

► This theorem is already known except for the case of A5 (Endo). 

► Stably k-rationality for the case A 5 is asked by S. Endo (2011). 
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Special case: T = Ri~k(<Gm); norm one tori (5/5) 

Corollary of (Endo 2011) and [HY17] 

Assume that Gal(L/k) = An , n > 4, and Gal(L/ K) = An-l is the 
stabilizer of one of the letters in An. Then 
R~jk(<Gm) is stably k-rational ~ n = 5. 

More recent results on stably /retract k-rational classification for T 

► G < Sn (n < 10) and G #- 9T27 rv PSL2(IFs), 
G < Sp and G #- PSL2(IF2e) (p = 2e + 1 > 17; Fermat prime) 
(Hoshi-Yamasaki [HY21] Israel J. Math.) 

► G < Sn ( n = 12, 14, 15) ( n = 2e) 
(Hasegawa-Hoshi-Yamasaki [HHY20] Math. Comp.) 

III(T) and Hasse norm principle over number fields k (see next slides) 

► (Hoshi-Kanai-Yamasaki [HKY22] Math. Comp., [HKY23] JNT) 
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III(T) and HNP for K/k: Ono's theorem (1963) 

► T : algebraic k-torus, i.e. T Xk k rv (1i-m,h;)n. 

► III(T) := Ker{H1(k, T) ~ E9 H 1(kv, T)} : Shafarevich-Tate gp. 
vEVk 

► T = R~jk(1i-m) is biregularly isomorphic to the norm hyper surface 

f (x1, ... , Xn) = 1 where f E k[x1, ... , Xn] is the norm form of K/k. 

Theorem (Ono 1963, Ann. of Math.) 

Let K/k be a finite extension of number fields and T = R~jk(1i-m)- Then 

III(T) rv (N Kjk(.!A.~) n kx )/N Kjk(Kx) 

where .!A~ is the idele group of K. In particular, 

III(T) = 0 {==;> Hasse norm principle holds for K/k. 
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Known results for HNP (2/2) 

► T = R~jk(1i-m)-

► III(T) = 0 {==;> Hasse norm principle holds for K/k. 

Theorem (Kunyavskii 1984) 

Let [K: k] = 4, G = Gal(L/k) rv 4Tm (1 < m < 5). 
Then III ( T) = 0 except for 4T2 and 4T 4. For 4T2 rv V4, 4T 4 rv A4, 
(i) III(T) < Z/2Z; 
(ii) III(T) = 0 {::} 3v E Vk such that V4 < Gv . 

Theorem (Drakokhrust-Platonov 1987) 

Let [K: k] = 6, G = Gal(L/k) rv 6Tm (1 < m < 16). 
Then III(T) = 0 except for 6T4 and 6T12. For 6T4 rv A 4 , 6T12 rv A 5 , 

(i) III(T) < Z/2Z; 
(ii) III(T) = 0 {::} 3v E Vk such that V4 < Gv . 
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Voskresenskii's theorem (1969) (1/2) 

► Let X be a smooth k-compactification of an algebraic k-torus T 

Theorem (Voskresenskii 1969) 

Let k be a global field, T be an algebraic k-torus and X be a smooth 
k-compactification of T. Then there exists an exact sequence 

0--+ A(T) --+ H 1 (k, PicX)v--+ III(T) --+ 0 

where Mv = Hom(M, <Q/Z) is the Pontryagin dual of M. 

► The group A(T) := (rrvEVk T(kv)) jT(k) is called the kernel of the 

weak approximation of T. 

► T : retract rational ~ [T]fl = [Pie X] is invertible 
====? Pie X is flabby and coflabby 
====? H 1(k, PicX)v = 0 ====? A(T) = III(T) = 0. 

► when T = Rijk(<Gm), by Ono's theorem, 
T: retract k-rational ====? III(T) = 0 (HNP holds for K/k). 
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Voskresenskii's theorem (1969) (2/2) 

(1) ----
► when T = RK/k(<Gm), T = lc;H where 

lc;H = (Ic;H )0 = Hom(Ic;H, Z) is the dual lattice of 
Ic;H = Ker(c) and c: Z[G/H]--+ Z is the augmentation map. 

► (Hasegawa-Hoshi-Yamasaki [HHY20], Hoshi-Yamasaki [HY21]) 

23/ 45 

For [K : k] = n < 15 except 9T27 ,..__, PSL2(1Fs), the classificasion of 

stably/retract rational Rijk(<Gm) was given . 

► when T = Rijk(<Gm), T: retract k-rational ====? H 1(k,PicX) = 0 

► H 1(k,PicX) ,..__, Br(X)/Br(k) ,..__, Brnr(k(X)/k)/Br(k) 
by Colliot-Thelene-Sansuc 1987 
where Br(X) is the eta le cohomological/ Azumaya Brauer group of X 
and Brnr(k(X)/k) is the unramified Brauer group of k(X) over k. 
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Theorems 1,2,3,4 in [HKY22], [HKY23] (1/3) 

► :3 2, 13, 73, 710, 6079 cases of alg. k-tori T of dim(T) = 1, 2, 3, 4, 5. 

Theorem 1 ([H KY22, Theorem 1.5 and Theorem 1.6]) 

(i) dim(T) = 4. Among the 216 cases ( of 710) of not retract rational T, 

0 (194 of 216), 

H 1(k, PicX)"' Z/22 (20 of 216), 

(Z/2Z)EB2 (2 of 216). 
(ii) dim(T) = 5. Among 3003 cases ( of 6079) of not retract rational T, 

0 (2729 of 3003), 

H 1(k,PicX)"' Z/22 (263 of 3003), 

(Z/2Z)EB2 (11 of 3003). 

► Kunyavskii (1984) showed that among the 15 cases (of 73) of not 
retract rational T of dim(T) = 3, H 1(k,PicX) = 0 (13 of 15), 
H 1(k,PicX) "' Z/27/.; (2 of 15). 
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Theorems 1,2,3,4 in [HKY22], [HKY23] (2/3) 

► k : a field, K/k : a separable field extension of [K: k] = n. 

► T = R~jk(<Gm) with dim(T) = n - l. 

► X : a smooth k-compactification of T. 

► L/k : Galois closure of K/k, G := Gal(L/k) and H = Gal(L/ K) 
with [G : H] = n ====} G = nTm < Sn: transitive. 

25/ 45 

► The number of transitive subgroups nTm of Sn (2 < n < 15) up to 
conjugacy is given as follows: 

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
# of nTm l 2 5 5 16 7 50 34 45 8 301 9 63 104 

Theorem 2 ([HKY22, Theorem 1.5], [HKY23, Theorem 1.11) 

Let 2 < n < 15 be an integer. Then H 1(k, PicX) # 0 ~ G = nTm is 
given as in [HKY22, Table 1] (n # 12) or [HKY23,Table 1] (n = 12). 
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[HKY22, Table 1]: H 1(k,PicX) rv H 1(G, [Jc;HJfl) # 0 
where G = nTm with 2 < n < 15 and n # 12 

G 
4T2 ~ V4 
4T4 ~ A4 
6T4 ~ A4 
6T12 ~ As 
8T2 ~ C4 X C2 
8T3 ~ (C2)s 
8T4 ~ D4 
8T9 ~ D4 x C2 
8Tll ~ (C4 x C2) ><l C2 
8T13 ~ A4 x C2 
8T14 ~ S4 
8T15 ~ Cs ><l V4 
8T19 ~ (C2)s ><l C4 
8T21 ~ (C2)s ><l C4 
8T22 ~ (C2)s ><l V4 
8T31 ~ ((C2)4 ><l C2) ><l C2 
8T32 ~ ((C2)s ><l V4) ><l Cs 
8T37 ~ PSLs(IF2) ~ PSL2(IF1) 
8T38 ~ (((C2)4 ><l C2) ><l C2) ><l Cs 

'll,/2'll, 
'll,/2'll, 
'll,/2'll, 
'll,/2'll, 
'll,/2'll, 

('ll,/2'll,)E8S 
'll,/2'll, 
'll,/2'll, 
'll,/2'll, 
'll,/2'll, 
'll,/2'll, 
'll,/2'll, 
'll,/2'll, 
'll,/2'll, 
'll,/2'll, 
'll,/2'll, 
'll,/2'll, 
'll,/2'll, 
'll,/2'll, 
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[HKY22, Table 1]: H 1(k,PicX) rv H 1(G, [Jc;HJfl) # 0 
where G = nTm with 2 < n < 15 and n # 12 

G 

9T2 ~ (Cs)2 
9T5 ~ (Cs)2 ><l C2 
9T7 ~ (Cs)2 ><l Cs 
9T9 ~ (Cs)2 ><l C4 
9Tll ~ (Cs)2 ><l C5 
9T14 ~ (Cs)2 ><l Qs 
9T23 ~ ((Cs) 2 ><l Qs) ><l Cs 
10T7 ~ As 

10T26 ~ PSL2(IFg) ~ A5 

10T32 ~ S5 

14T30 ~ PSL2(IF1s) 

15T9 ~ (Cs)2 ><l Cs 
15T14 ~ (Cs)2 ><l Ss 

'll,/3'll, 

'll,/3'll, 

'll,/3'll, 

'll,/3'll, 

'll,/3'll, 

'll,/3'll, 

'll,/3'll, 

'll,/2'll, 

'll,/2'll, 

'll,/2'll, 

'll,/2'll, 

'll,/5'll, 

'll,/5'll, 
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Theorems 1,2,3,4 in [HKY22], [HKY23] (3/3) 

► k : a number field, K/k : a separable field extension of [K: k] = n. 

► T = R~)k(<G-m), X : a smooth k-compactification of T. 

Theorem 3 ([HKY22, Theorem 1.18], [HKY23, Theorem 1.3]) 

Let 2 < n < 15 be an integer. For the cases in [HKY22, Table 1] 
(n < 15, n # 12) or [HKY23,Table 1] (n = 12), 

III ( T) = 0 ~ G = nTm satisfies .--I s_o_m_e_c_o_n_d-it"-10-ns__,I of G v 

where Gv is the decomposition group of G at v. 

► By Ono's theorem, III(T) = 0 ~ HNP holds for K/k, Theorem 3 
gives a necessary and sufficient condition for HNP for K/k . 

Theorem 4 ([HKY22, Theorem 1.17]) 

Assume that G = Mn < Sn (n = 11, 12, 22, 23, 24) is the Mathieu group 
of degree n. Then H 1 (k, Pie X) = 0. In particular, III(T) = 0. 
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Examples of Theorem 3 

Example (G = 8T4 rv D4 , 8T13 rv A4 x 0 2 , 8T14 rv S4 , 

8T37 rv PSL2 (IF7 ), 10T7 rv A5 , 14T30 rv PSL2 (IF13)) 

III(T) = 0 ~ ::JV E vk such that V4 < Gv. 

Example ( G = 10T26 ~ PSL2 (IF9 ) ) 

Example (G = 10T32 ~ S6 < S10) 

III(T) = 0 ~ ::JV E vk such that 
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(i) V4 < Gv where N c(V4) ,..__, Cs ~ ( C2 x C2) for the normalizer N c(V4) 
~ ~ 

of V4 in G with the normalizer G = Ns10 (G) ,..__, Aut(G) of Gin S10 or 
(ii) D4 < Gv where D4 < [G, G] ,..__, A5. 

► 45/165 subgroups V4 < G satisfy (i) . 
► 45/180 subgroups D4 < G satisfy (ii). 
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§2. Birational classification for algebraic tori 

Problem 1: (Stably) birational classification for algebraic tori 

For given two algebraic k-tori T and T', 

whether T and T' are stably birationally k-equivalent?, i.e. Ts~. T'? 

Theorem (Colliot-Thelene and Sansuc 1977) dim(T) = dim(T') = 3 

Let L/k and L'/k be Galois extensions with Gal(L/k) rv Gal(L'/k) rv V4. 

Let T = Rl1}k(<G:m) and T' = Rl~jk(<G:m) be the corresponding norm one 

tori. Then Ts~. T' (stably birationally k-equivalent) if and only if L = L'. 

► In particular, if k is a number field, then there exist infinitely many 
stably birationally k-equivalent classes of (non-rational: lst/15) k-tori 
which correspond to U1 ( cf. Main theorem 1, later). 
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► k: a fixed separable closure of k and Q = Gal(k/k) 

► X: a smooth k-compactification of T, i.e. smooth projective 
k-variety X containing T as a dense open subvariety 
- -

► X = X Xk k 

Theorem (Voskresenskii 1969, 1970) 

There exists an exact sequence of Q-lattices 

- -0 --+ T --+ Q --+ Pie X --+ 0 

-where Q is permutation and Pie X is flabby. 

► Mc rv T, [f]fl = [Pie X] as Q-lattices 

Theorem (Voskresenskii 1970, 1973) 

(i) T is stably k-rational if and only if [Pie X] = 0 as a Q-lattice. 

(ii) Ts~. T' (stably birationally k-equivalent) if and only if 
[Pie X] = [Pie X'] as Q-lattices. 
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► From Q-lattice to G-lattice 

Let L be the minimal splitting field of T with G = Gal(L/k) rv Q/1-l. -We obtain a flabby resolution of T: - -0 --+ T--+ Q --+ Pie XL --+ 0 

with [f]f Z = [Pie XL] as G-lattices. 

By the inflation-restriction exact sequence 

0--+ H 1(G,PieXL) ~ H 1(k,PieX) ~ H 1(L,PieX), we get 
inf: H 1 (G, Pie XL)~ H 1 (k, PieX) because H 1 (L, PieX) = 0. We get: 

Theorem (Voskresenskii 1970, 1973) 

(ii)' Ts~. T' (stably birationally k-equiva~nt) if and on,!y if ~ 
[PieXz] = [PicXz) as H-lattices where L = LL' and H = Gal(L/k). 

The group H becomes a subdirec~ product of G = Gal(L/k) and 
G' = ~Gal(L' /k), i.e. a ___:>ubgroup Hof G x G' with surjections 
cp1 : H --➔ G and cp2 : H --➔ G'. 
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► This observation yields a concept of "weak stably k-equivalence". 

Definition 
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(i) [M]fl and [M']fl are weak stably k-equivalent, if there exists a~ 
subdirect product H < G x G' of G and G' with surjections cp1 : H--➔ G 
and cp2 : H--➔ G' such that [M]fl = [M']fl as H-lattices where H acts on 
M (resp. M') through the surjection cp1 (resp. cp2). 
(ii) Algebraic k-tori T and T' are weak stably birationally k-equivalent, 

denoted by Ts~. T', if [T]fl and [T']fl are weak stably k-equivalent. 

Remark 

(1) Ts~. T' (birational k-equiv.) ⇒ Ts~. T' (weak birational k-equiv.). 

(2) s~. becomes an equivalence relation and we call this equivalent class 
the weak stably k-equivalent class of [T]f l ( or T) denoted by WSECr 
(r > 0) with the stably k-rational class WSEC0 . 
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Rationality problem for 3-dimensional algebraic k-tori T was solved by 
Kunyavskii (1990). Stably /retract rationality for algebraic k-tori T of 
dimensions 4 and 5 are given in Hoshi and Yamasaki [HY17, Chapter 1]. 

Definition 

(1) The 15 groups G = N3,i < GL(3, Z) (1 < i < 15) for which 
k(T) rv L(M)G is not retract k-rational are as in [HY, Table 6]. 
(2) The 64 groups G = N31 ,i < GL( 4, Z) (1 < i < 64) for which 
k(T) rv L(M)G is not retract k-rational where M rv M1 EB M2 with rank 
M = 3 + 1 are as in [HY, Table 7]. 
(3) The 152 groups G = N4,i < GL( 4, Z) (1 < i < 152) for which 
k(T) rv L(M)G is not retract k-rational with rank M = 4 are as in [HY, 
Table 8]. 
(4) The 7 groups G = 14,i < GL(4, Z) (1 < i < 7) for which 
k(T) rv L(M)G is not stably but retract k-rational with rank M = 4 are 
as in [HY, Table 9]. 
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Main Theorems 1, 2, 3, 4, 5, 6, 7 

► Main theorem 1 dim(T) = 3: 
s.b. up to rv 

Main theorem 2 dim(T) = 3: 
s.b. 

► up to ~ 

► Main theorem 3 dim(T) = 4: 
s.b. 

up to rv 

► Main theorem 4 dim(T) = 4 (N4,i): up to s~. 

► Main theorem 5 dim(T) = 4 (14,i): up to s~. 

► Main theorem 6 dim(T) = 4: seven 14,i cases 

► Main theorem 7 higher dimensional cases: dim(T) > 3 

Definition 
The G-lattice Mc of rank n is defined to be the G-lattice with a 2-basis 
{ u1, ... , un} on which G acts by a( ui) = ~j 1 ai,jUj for any 
a= [ai,J] E G < GL(n, Z). 
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Main theorem 1 ([HY, Theorem 1.22]) dim(T) = 3: up to s~. 

There exist exactly 14 weak stably birationally k-equivalent classes of 
algebraic k-tori T of dimension 3 which consist of the stably rational class 
WSEC0 and 13 classes WSECr (1 < r < 13) for [T]fl with T = Mc and 
G = N3,i (1 < i < 15) as in the following: (red ++ norm one tori ) 

..,.._ fl fl 
r G = N3,i: [T] = [Ma] E WSECr G 
1 N3,1 = U1 ([CTS 1977]) V4 
2 N3,2 = U2 C? 
3 N3,3 = W2 C? 
4 N3,4 = W1 C4 X C2 

5 N3 s = U3, N3 6 = U4 D4 
' ' 

6 N3, 7 = u6 D4 x C2 

7 N3,s = Us A4 
8 N3,9 = U7 A4 X C2 

9 N3,10 = W3 A4 X C2 

10 N3,11 = Ug, N3,l3 = U10 84 
11 N3,12 = Us 84 
12 N3,14 = U12 84 X C2 

13 N3,15 = U11 84 X C2 
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Main theorem 2 ([HY, Theorem 1.23]) dim(T) = 3: up to s~. 

Let Ti and TJ (1 < i, j < 15) be algebraic k-tori of dimension 3 with the 

minimal splitting fields Li and Lj, and 'n = Mc and f; = Mc, which 
satisfy that G and G' are GL(3, Z)-conjugate to N3,i and N3,j 

respectively. For 1 < i, j < 15, the following conditions are equivalent: 

(1) Tis~. TJ (stably birationally k-equivalent); 
(2) Li= Lj, Ti xk Kand TJ xk Kare weak stably birationally 
K-equivalent for any k c Kc Li; 
(3) Li= Lj, Ti xk Kand TJ xk Kare weak stably birationally 
K-equivalent for any kc Kc Li corresponding to WSECr (r > 1) ; 
(4) Li= Lj, Ti xk Kand TJ xk Kare weak stably birationally 
K-equivalent for any k CK C Li corresponding to WSECr (r > 1) 
with [K: k] = d where 

{
1 

d-
1,2 

Akinari Hoshi (Niigata Univeristy) 

(i = 1, 3, 4, 8, 9, 10, 11, 12, 13, 14), 

(i = 2, 5, 6, 7, 15). 
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► :3G = N31,i < GL(4, Z) (1 < i < 64) for which k(T) rv L(M)c is 
not retract k-rational where M rv M1 EB M2 with rank M = 3 + 1. 

► G = N4,i < GL( 4, Z) (1 < i < 152) for which k(T) rv L(M)c is 
not retract k-rational with rank M = 4. 

► :3G = 14,i < GL( 4, Z) (1 < i < 7) for which k(T) rv L(M)c is 
not stably but retract k-rational with rank M = 4. 

Main theorem 3 ([HY, Theorem 1.24]) dim(T) = 4: up to s~. 

There exist exactly 129 weak stably birationally k-equivalent classes of 
algebraic k-tori T of dimension 4 which consist of the stably rational class 
WSEC0 , 121 classes WSECr (1 < r < 121) for [T]fl with T = Mc and 
G = N31 ,i (1 < i < 64) as in [HY, Table 3] and for [T]fl with T = Mc 
and G = N4,i (1 < i < 152) as in [HY, Table 4], and 7 classes WSECr 
(122 < r < 128) for [T]fl with T = Mc and G = 14,i (1 < i < 7) as in 
[HY, Table 5]. 
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Main theorem 4 ([HY, Theorem 1.26]) dim(T) = 4 (N4,i): up to s~. 

Let Ti and TJ (1 < i, j < 152) be algebraic k-tori of dimension 4 with the 

minimal splitting fields Li and Lj and the character modules 'n = Mc 

and fJ = Mc, which satisfy that G and G' are GL( 4, Z)-conjugate to N4,i 
and N4,j respectively. For 1 < i, j < 152 except for the cases 
i = j = 137, 139, 145, 147, the following conditions are equivalent: 

(1) Tis~. TJ (stably birationally k-equivalent); 
(2) Li= Lj, Ti xk Kand TJ xk Kare weak stably birationally 
K-equivalent for any k CK C Li; 
(3) Li= Lj, Ti xk Kand TJ xk Kare weak stably birationally 
K-equivalent for any kc Kc Li corresponding to WSECr (r > 1) ; 
(4) Li= Lj, Ti xk Kand TJ xk Kare weak stably birationally 
K-equivalent for any k CK C Li corresponding to WSECr (r > 1) with 
[K: k] = d where d is given as in [HY, Theorem 1.26]. 
For the exceptional cases i = j = 137, 139, 145, 147 
(G rv Qs X C3, (Qs X C3) ~ C2, SL(2, IF3) ~ C4, 
(GL(2, IF3) ~ C2) ~ C2 rv (SL(2, IF3) ~ C4) ~ C2), we have the 
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Main theorem 4 ([HY, Theorem 1.26]) dim(T) = 4 (N4,i): up to s~. 

For the exceptional cases i = j = 137, 139, 145, 147 
(G rv Qs X C3, (Qs X C3) ~ C2, S1(2, IF3) ~ C4, 
(GL(2, IF3) ~ C2) ~ C2 rv (S1(2, IF3) ~ C4) ~ C2), we have the 
implications (1) ⇒ (2) {::} (3) {::} ( 4), there exists T E Aut( G) such that 
G' = GT and X = Y <J Z with Z/Y rv C2, C§, C2, C2 respectively where 

Inn(G) < X < Y < Z < Aut(G), 

X = AutcL(4 ,::z;)(C) = {o- E Aut(C) IC and ca are conjugate in GL(4,~)}, 

Y = {o- E Aut(C) I [Mc]fl = [Mca]fl as H-lattices where H = {(g,ga) I g EC}~ C}, 

Z = {o- E Aut(C) I [MH]fl ~ [MHa ]fl for any H :'.SC}. 

Moreover, we have (1) {::} Mc rv McT as H-lattices 
{::}Mc®~ IFp rv McT ®~ IFp as IFp[H]-lattices for p = 2 (i = j = 137), 
for p = 2 and 3 (i = j = 139), for p = 3 (i = j = 145,147). 
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Main theorem 5 ([HY, Theorem 1.29]) dim(T) = 4 (14,i): up to s~. 

Let Ti and TJ (1 < i, j < 7) be algebraic k-tori of dimension 4 with the 

minimal splitting fields Li and Lj and the character modules 'n = Mc 

and TJ = Mc, which satisfy that G and G' are GL( 4, ~)-conjugate to 14,i 

and 14,j respectively. For 1 < i, j < 7 except for the case i = j = 7, the 
following conditions are equivalent: 

(1) Tis~. TJ (stably birationally k-equivalent); 
(2) Li= Lj, Ti xk Kand TJ xk Kare weak stably birationally 
K-equivalent for any k CK C Li; 

(3) Li= Lj, Ti xk Kand TJ xk Kare weak stably birationally 
K-equivalent for any kc Kc Li corresponding to WSECr (r > 1) ; 
(4) Li= Lj, Ti xk Kand TJ xk Kare weak stably birationally 
K-equivalent for any k CK C Li corresponding to WSECr (r > 1) with 
[K: k] = d where d = 1 (i = 1, 2, 4, 5, 7), d = 1, 2 (i = 3, 6). 
For the exceptional case i = j = 7 (G rv C3 ~ Cs), we have the 
implications (1) ⇒ (2) {::} (3) {::} ( 4), there exists T E Aut( G) such that 
G' = GT and X = Y <J Z with Z/Y rv C2 where 
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Main theorem 5 ([HY, Theorem 1.29]) dim(T) = 4 (14,i): up to s~. 

For the exceptional case i = j = 7 (G rv C3 ~ Cs), we have the 
implications (1) ⇒ (2) {:} (3) {:} ( 4), there exists T E Aut( G) such that 
G' = QT and X = Y <] Z with Z/Y rv C2 where 

Inn(G) rv S3 < X < Y < Z < Aut(G) rv S3 x C§, 

X = AutcL(4 ,z)(G) = {o- E Aut(G) I G and ca are conjugate in GL(4,~)} ~ D5, 

Y = {o- E Aut(G) I [Mc]fl = [Mca ]fl as H-lattices where H = {(g, ga) I g E G} ~ G}, 

Z = {o- E Aut(G) I [MH]fl rv [MHa ]fl for any H :'.S G} ~ S3 X er 
Moreover, we have (1) {:} Mc rv McT as H-lattices 

{:}Mc®~ W3 rv McT ®~ W3 as W3[H]-lattices. 
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Main theorem 6 ([HY, Theorem 1.31]) dim(T) = 4: seven 14 ,i cases 

Let Ti (1 < i < 7) be an algebraic k-torus of dimension 4 with the -character module Ti = Mc which satisfies that G is GL( 4, Z)-conjugate -to 14,i· Let Tt be the algebraic k-torus with Tt = Mca (CT E Aut(G)). 
Then Ti and Tt are not stably k-rational but we have: 
(1) T1 xk T2 is stably k-rational ; 
(2) T3 x k T3 stably k-rational for CT E Aut( G) with 
1 # CT E Aut(G)/Inn(G) rv C2; 
(3) T4 xk Ts is stably k-rational ; 
(4) T6 xk T6 is stably k-rational for CT E Aut(G) with 
1 # CT E Aut(G)/Inn(G) rv C2; 
(5) T1 Xk T7 is stably k-rational for CT E Aut(G) with 
1 # CT E Aut(G)/ X rv C2 where 

X = AutcL(4,z)(G) = {a E Aut(G) I G and Ga are conjugate in GL(4, ~)} '.::::'. D5. 
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Higher dimensional cases: dim(T) > 3 

The following theorem can answer Problem 1 for algebraic k-tori T and T' 
of dimensions m > 3 and n > 3 respectively with [f]fl, [T']fl E WSECr 
(1 < r < 128) via Main theorem 2, Main theorem 4, and Main theorem 5. 

Main theorem 7 ([HY, Theorem 1.32]) higher dimensional cases 

Let T be an algebraic k-torus of dimension m > 3 with the minimal 
splitting field L, T = Mc, G < GL(m, Z) and [f]fl E WSECr 
(1 < r < 128) . Then there exists an algebraic k-torus T" of dimension 

/'--

3 or 4 with the minimal splitting field L", T" = Mc", and G" = N3 ,i 

(1 < i < 15), G" = N4,i (1 < i < 152) or G" = 14,i (1 < i < 7) such that 
T" and Tare stably birationally k-equivalent and L" c L , i.e. 
[Mc,,Jfl = [Mc]fl as G-lattices and G acts on [Mc,,Jfl through 
G" rv G/N for the corresponding normal subgroup N <l G. 
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