RELATIVE COMPACTIFICATION OF SEMIABELIAN NÉRON MODELS

I. NAKAMURA HOKKAIDO UNVERSITY

ABSTRACT. Let R be a complete discrete valuation ring, $k(\eta)$ its fraction field, $S = \operatorname{Spec} R$, $(G_{\eta}, \mathcal{L}_{\eta})$ a polarized abelian variety over $k(\eta)$ with \mathcal{L}_{η} symmetric ample cubical and \mathcal{G} the Néron model of G_{η} over S. Suppose that \mathcal{G} is semiabelian over S. Then there exists a *unique* relative compactification (P, \mathcal{N}) of \mathcal{G} such that (α) P is Cohen-Macaulay with $\operatorname{codim}_P(P \setminus \mathcal{G}) = 2$ and $(\beta) \mathcal{N}$ is ample invertible with $\mathcal{N}_{|\mathcal{G}}$ cubical and $\mathcal{N}_{\eta} = \mathcal{L}_{\eta}^{\otimes n}$ for some positive integer n. We study the totally degenerate case in [MN24], while we study in [N24] the partially degenerate case and then the case where R is a Dedekind domain. Most remarkable is that the compactification satisfying the conditions (α) and (β) is uniquely determined by $(G_n, \mathbf{Z}\mathcal{L}_n).$

CONTENTS

1.	Introduction	2
2.	Construction of a relatively complete model	3
3.	Construction of P	5
4.	Voronoi polytopes	6
5.	The properties of P and P_0	7
6.	Examples	8
References		10

The author was partially supported by the Grants-in-aid for Scientific Research (C) (No. 17K05188, 22K03261), JSPS. This work was partially supported also by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14K05; Secondary 14J10, 14K99.

Abelian varieties, Néron model, relative Key words and phrases. compactification.

IKU NAKAMURA

1. INTRODUCTION

This report is based in part on a joint work with K. Mitsui. The preprints [MN24] and [N24] on the same subject appeared in arXiv.

Let R be a complete discrete valuation ring (abbr. CDVR), $k(\eta)$ (resp. k(0)) the fraction (resp. residue) field of R, S := Spec R, and η (resp. 0) the generic (resp. closed) point of S.

Let $(G_{\eta}, \mathcal{L}_{\eta})$ be a polarized abelian variety over $k(\eta)$ with \mathcal{L}_{η} symmetric ample cubical, \mathcal{G} the Néron model of G_{η} and $G := \mathcal{G}^0$ the identity component of \mathcal{G} . We say that G is semiabelian if G_0 is an extension of an abelian variety by a torus.

By subdividing fans associated with torus embeddings over S, [K98] proved that there are relative compactifications of a semiabelian Néron model \mathcal{G} which are regular, but rarely satisfy the condition (b) of Theorem 1.1 below. Those constructed by [K98] are not codimension two compactifications in general.

In contrast with it, our compactification (which we wish to call a *cubical compactification*) of \mathcal{G} is Cohen-Macaulay but not regular in general. However it is a codimension two compactification of \mathcal{G} and perhaps its most remarkable feature is the uniqueness as in Theorem 1.2.

Thus we have a very simple picture:

- for a given $(G_{\eta}, \mathcal{L}_{\eta})$, there exists a *unique Néron model* \mathcal{G} of it;
- if G is semi-stable (=semi-abelian), then there exists a unique cubical compactification of \mathcal{G} .

A triple (P, i, \mathcal{N}) is called a *relative compactification of* \mathcal{G} (abbr. *compactification of* \mathcal{G}) (extending $(G_{\eta}, \mathcal{L}_{\eta})$) if

- (rc1) P is an irreducible proper flat S-scheme;
- (rc2) $i: \mathcal{G} \hookrightarrow P$ is an open immersion with $P_{\eta} = i(\mathcal{G}_{\eta}) = i(\mathcal{G}_{\eta});$
- (rc3) \mathcal{N} is an ample invertible \mathcal{O}_P -module with $i^*\mathcal{N}_\eta \in \mathbf{Z}_{>0}\mathcal{L}_\eta$.

We prove the following theorems in [MN24] and [N24]:

Theorem 1.1. [MN24]+[N24] If \mathcal{G} is semiabelian over S, then there exists a relative compactification (P, i, \mathcal{N}) of \mathcal{G} such that

- (a) *P* is Cohen-Macaulay;
- (b) $i(\mathcal{G}) = P \setminus \operatorname{Sing}(P_0)$ with $\operatorname{codim}_P \operatorname{Sing}(P_0) \ge 2$ where $\operatorname{Sing}(P_0)$ denotes the singular locus of P_0 ;
- (c) $i^*\mathcal{N}$ is cubical with $i_*i^*\mathcal{N} = \mathcal{N}$;
- (d) G acts on P so that $i_{|G}$ is G-equivariant.

Theorem 1.2. [N24] If (P', i', \mathcal{N}') is another relative compactification of \mathcal{G} subject to (a)-(c), then $P \simeq P'$.

To be more precise, we prove:

Theorem 1.3. [N24] Let (G, \mathcal{L}) be a semi-abelian S-scheme, \mathcal{G} its Néron model and (P, i, \mathcal{N}) a cubical compactification of \mathcal{G} extending $(G_{\eta}, \mathcal{L}_{\eta})$. Then

- 1. $P \simeq \operatorname{Proj} A(\mathcal{G}, i^* \mathcal{N})$ with $i_* i^* \mathcal{N} = \mathcal{N}$;
- 2. P is uniquely determined by (G_n, \mathbf{ZL}_n) ;
- 3. \mathcal{N} is uniquely determined by $(G_{\eta}, \mathcal{L}_{\eta})$ up to positive multiples;
- 4. any $k(\eta)$ -automorphism h_{η} of G_{η} with $h_{\eta}^* \mathcal{L}_{\eta} \simeq \mathcal{L}_{\eta}$ extends to an S-automorphism g of P with $g(\mathcal{G}) = \mathcal{G}$ and $g^* \mathcal{N} = \mathcal{N}$.

The following is an over-Dedekind-domain version of the above:

Theorem 1.4. [N24] Let D be a Dedekind domain, K the fraction field of D and S = Spec D. Let (G, \mathcal{L}) be a semiabelian S-scheme over S, \mathcal{L} a symmetric ample cubical invertible sheaf on G and \mathcal{G} a Néron model of G. Then there exists a relative compactification (P, i, \mathcal{N}) of \mathcal{G} extending (G_K, \mathcal{L}_K) such that

- (a) *P* is Cohen-Macaulay;
- (b) $i(\mathcal{G}) = P \setminus \operatorname{Sing}(P/S)$ with $\operatorname{codim}_P \operatorname{Sing}(P_S) \ge 2$ where $\operatorname{Sing}(P/S)$ denotes the union of the singular loci of closed fibers of P over S;
- (c) $i^*\mathcal{N}$ is ample cubical invertible;
- (d) G acts on P so that $i_{|G}$ is G-equivariant.

Moreover the relative compactification (P, i, \mathcal{N}) satisfying (a)-(c) is unique up to isomorphism in the sense of Theorem 1.2.

2. Construction of a relatively complete model

2.1. Set-up. Let R be a CDVR, $S = \operatorname{Spec} R$, and η (resp. 0) the generic point (resp. closed point) of S. $k(\eta)$ the fraction field of R and k(0) the residue field of R by the maximal ideal I of R. Suppose that we are given a g-dimensional polarized abelian variety $(G_{\eta}, \mathcal{L}_{\eta})$ over $k(\eta)$ with \mathcal{L}_{η} ample cubical and symmetric. Let G be the connected Néron model of G_{η} . By choosing a suitable finite extension of $k(\eta)$, we may assume that G_0 is an extension of a g'-dimensional abelian variety A_0 over k(0) by a split torus $\mathbf{G}_{m,k(0)}^{g''}$.

Throughout this report we assume g = g'', $A_0 = 0$ and $G_0 \simeq \mathbf{G}_{m,k(0)}^g$.

2.2. Degeneration data.

Theorem 2.1. [FC90] Suppose that $A_0 = 0$ and G_0 is a split k(0)torus T_0 . Let X be a free **Z**-module of rank g such that $T_0 \simeq \operatorname{Spec} k(0)[X]$. Then there exist a submodule Y of X of finite index, a function $a: Y \to k(\eta)^{\times}$ and a bilinear function $b: Y \times X \to k(\eta)^{\times 1}$ such that

¹To be exact, b(y + y', x) = b(y, x)b(y', x) and b(y, x + x') = b(y, x)b(y, x').

IKU NAKAMURA

- (i) $a(0) = 1, a(y) = a(-y) \ (\forall y \in Y);$
- (ii) $b(y,z) = b(z,y) = a(y+z)a(y)^{-1}a(z)^{-1} \quad (\forall y,z \in Y);$
- (iii) $b(y,y) \in I \ (\forall y \in Y \setminus \{0\}), and for every n \ge 0, a(y) \in I^n for all but finitely many <math>y \in Y;$
- (iv) $\Gamma(G_{\eta}, \mathcal{L}_{\eta})$ is identified with the $k(\eta)$ -vector subspace of formal Fourier series $\theta = \sum_{x \in X} \sigma_x(\theta) w^x$ such that

$$\sigma_{x+y}(\theta) = a(y)b(y,x)\sigma_x(\theta), \ \sigma_x(\theta) \in k(\eta) \ (\forall x \in X, \forall y \in Y).$$

Remark 2.2. Furthermore by taking a finite extension of $k(\eta)$ and the integral closure of R in $k(\eta)$ if necessary, we may assume:

there exist a function $a : X \to k(\eta)^{\times}$ and a bilinear function $b : X \times X \to k(\eta)^{\times}$ extending a and b in Theorem 2.1, which satisfy instead of (i)-(ii)

 $\begin{array}{l} ({\rm i}^{\rm \prime}) \ a(0)=1, \ a(y)=a(-y) \ (\forall y\in X); \\ ({\rm i}{\rm i}^{\rm \prime}) \ b(y,z)=b(z,y)=a(y+z)a(y)^{-1}a(z)^{-1} \ (\forall y,z\in X). \end{array}$

2.3. Construction. We start with the stronger version of Theorem 2.1 with (i') and (ii'). Then we can construct a flat projective S-scheme P extending (G_n, \mathcal{L}_n) as follows [AN99]:

- we define a graded algebra $R^{\sharp} := R[a(x)w^{x}\vartheta; x \in X];$
- *P*[♯] := the normalization of Proj(R[♯]) is a torus embedding over S locally of finite type;
- $\tilde{P}^{\sharp,\wedge}$: the formal completion of R^{\sharp} ;
- the quotient $\tilde{P}^{\sharp,\wedge}/Y$ is algebraizable, where Y acts on R^{\sharp} by

$$S_{y}^{*}(a(x)w^{x}\vartheta) = a(x+y)w^{x+y}\vartheta;$$

- the algebraization P^{\sharp} of $\tilde{P}^{\sharp,\wedge}/Y$ is flat projective with $P^{\sharp} \supset G$;
- $(G_{\eta}, \mathcal{L}_{\eta}) \simeq (P_{\eta}^{\sharp}, \mathcal{O}_{P^{\sharp}}(1)_{\eta}).$
- but $\mathcal{G} \not\subset P^{\sharp}$ in general.

See [AN99]. The above (P, \mathcal{L}) is the normalization of a projectively stable quasi-abelian scheme over S in [N99].

2.4. The complex case. Over the complex number field \mathbf{C} , a(x) and b(y, x) in the above are familiar objects:

- $D = \{s \in \mathbf{C}; |s| < 1\}, G = \mathbf{C}^g \times D/\mathbf{Z}^g + \mathbf{Z}^g T;$
- $a(x) = \mathbf{e}(x^{t}Tx/2), \ b(x,y) = \mathbf{e}(x^{t}Ty);$
- let $T = T_0(s) + B \log s/(2\pi i)$, with ${}^tT = T$, where $T_0(s)$ holomorphic on D, $B = \operatorname{val}_s(b) \in M_{g \times g}(\mathbf{Z})$ even positive definite;
- if $T_0 \equiv 0$, then $a(x) = s^{B(x,x)/2}$, $b(x,y) = s^{B(x,y)}$;
- we choose $R = \mathbf{C}[[s]]$ the formal power series ring of one variable to formulate the problem in the algebraic manner.

4

3. Construction of P

3.1. **Definitions.** Let \mathcal{G} be the Néron model \mathcal{G} of G. Next we construct a new relatively complete model \tilde{P} so that P: the algebraization of \tilde{P}^{\wedge}/Y may contain \mathcal{G} . Let $\Phi := \mathcal{G}_0/G_0$ be the component group of \mathcal{G} . Recall

$$\Phi \simeq X^{\vee} / \beta(Y)$$

where $\beta: Y \to X^{\vee}$ defined by $\beta(y)(x) = B(x, y)$. We choose $0 \in \Psi$ ($\subset X^{\vee}$) an arbitrary set of representatives of Φ . Let $N := |\Phi|$.

Definition 3.1. We define

$$\theta_{+} := \prod_{u \in \Psi} \vartheta_{v}, \ \theta_{-} := \prod_{u \in \Psi} \vartheta_{-v},$$
$$\theta := \theta_{+} \theta_{-}.$$

Lemma 3.2. Let $\mu := \beta^{-1} \det(B) : X^{\vee} \to Y$, and $N = |\Phi|$. By taking a finite extension of $k(\eta)$ if necessary, there exists an extension b^e of b to $X^{\vee} \times X$ such that $b^e(\beta(y), x) = b(y, x)$ ($\forall y \in Y, \forall x \in X$). Set $\epsilon(u) := b^e(u, \mu(u))$ ($u \in X^{\vee}$). Then

- $\delta_u^* \theta = \epsilon(u) w^{2\mu(u)} \theta;$
- $\epsilon(u)$ is independent of the choice of Ψ ;
- $\epsilon(u+v) = \epsilon(u)\epsilon(v)b^e(u,\mu(v))^2 \ (\forall u,v \in X^{\vee});$
- $\delta_{\beta(y)} = S_y \ (\forall y \in Y);$ this definition induces an isomorphism:

 $\{\delta_v; v \in X^{\vee}\}/\{S_v; y \in Y\} \simeq X^{\vee}/\beta(Y) \simeq \Phi.$

Definition 3.3. Now we define an algebra

(1)
$$R^{\dagger} := R[\epsilon(u)b^{e}(u,\alpha)w^{\alpha+2\mu(u)}\theta; \alpha \in \Sigma, u, v \in X^{\vee}],$$

where Σ is the set of integral points of some bounded convex polytope (Voronoi polytope) of $X_{\mathbf{R}}$ with integral vertices. See § 4.

3.2. Construction of P. Our construction of P proceeds as follows:

- \tilde{P} := the normalization of $\operatorname{Proj}(R^{\dagger})$ is a torus embedding over S locally of finite type;
- \tilde{P}^{\wedge} : the formal completion of \tilde{P} ;
- X^{\vee} acts on R^{\dagger} by

$$\delta_v^*(\epsilon(u)b^e(u,\alpha)w^{\alpha+2\mu(u)}\theta) = \epsilon(u+v)b^e(u+v,\alpha)w^{\alpha+2\mu(u+v)}\theta;$$

- $\delta_{\beta(y)} = S_y \ (\forall y \in Y);$
- the quotient \tilde{P}^{\wedge}/Y is algebraizable;
- the algebraization P of \tilde{P}^{\wedge}/Y is flat projective;
- $(G_{\eta}, \mathcal{L}_{\eta}^{\otimes 2N}) \simeq (P_{\eta}, \mathcal{O}_P(1)_{\eta}).$

To achieve $P \supset \mathcal{G}$, we need another step in § 4 of choosing a suitable multiple of $\mathcal{O}_P(1)$.

Remark 3.4. The algebra R^{\sharp} represents the sheaf \mathcal{L} , while the algebra R^{\dagger} may represent the tensor product over P^{\wedge} :

$$\bigotimes_{u\in\Psi}\delta_v^*(\mathcal{L}^\wedge)^\times$$

4. VORONOI POLYTOPES

4.1. Voronoi polytopes. The relatively complete model \tilde{P} is an S-scheme of locally of finite type, which is a torus embedding over S described by a certain fan consisting of infinitely many cones. It appears in the standard manner, which we do not write down here. See [MN24, 7.4]. Instead, we will define Voronoi polytopes, which helps us to understand the S-scheme \tilde{P} to some extent.

By Th. 2.1 (ii'), we have a symmetric positive definite bilinear form

$$B(x,y) = \operatorname{val}_s b(x,y) \quad (x,y \in X)$$

associated with a totally degenerate semiabelian S-scheme (G, \mathcal{L}) .

Definition 4.1. Let $l \in \mathbb{Z}_{>0}$. We define a distance $||z|| = \sqrt{B(z,z)}$ on $X_{\mathbf{R}}$. For any $c \in X^{\vee}$, we define a Voronoi polytope $\Sigma_l(c)$ by

$$\Sigma_l(c) = \{ x \in X_{\mathbf{R}}; \| x - 2l\mu(u) \| \ge \| x - 2l\mu(c) \| \ (\forall u \in X^{\vee}) \}.$$

4.2. Properties. We summarize the properties of Voronoi polytopes:

- for $(G, \mathcal{L}^{\otimes l})$, we have lB and $\Sigma_l(c)$;
- $\Sigma_l(c)$ is a bounded convex polytope with $\Sigma_{ll'}(0) = l' \Sigma_l(0)$;
- $\Sigma_l(c) = \Sigma_l(0) + 2l\mu(c);$
- $X_{\mathbf{R}} = \bigcup_{c \in X^{\vee}} \Sigma_l(c);$
- $\Sigma_l(c)$ $(c \in X^{\vee})$ and their faces form a poly. decomp. of $X_{\mathbf{R}}$;
- $\Sigma_l := \Sigma_l(0) \cap X$ is a finite subset of X with $\Sigma_l + 2l\mu(X^{\vee}) = X$;
- there exists $l_0 \in \mathbf{N}$ such that $\Sigma_{l_0}(0)$ is integral (Definition 4.2);
- if $B = E_8$, then $l_0 = 30$;
- if g = 2, then $l_0 = 1$.

Definition 4.2. A convex polytope Δ in $X_{\mathbf{R}}$ is said to be *integral* if

(i) Δ is the convex closure of $\Delta \cap X$ and $\Delta = -\Delta \ni 0$;

(ii) $\Delta \cap X$ contains a basis of X.

Note that $l_0 = 1$ iff $\Sigma_1(0)$ is integral.

If Δ is integral, then $\Delta \cap X$ is a star of [M72, 2.2].

4.3. Cubical compactifications.

Theorem 4.3. Let R^{\dagger} be the algebra (1) with $\Sigma := \Sigma_1(0) \cap X$. If $\Sigma_1(0)$ is integral, then by choosing $\Sigma := \Sigma_1(0) \cap X$, P is a cubical compactification of (G_n, \mathcal{L}_n) such that $\mathcal{G} \subset P$.

If $\Sigma_l(0)$ is integral, then we take $\mathcal{L}^{\otimes l}$ for \mathcal{L} and define the algebra R_l^{\dagger} for R^{\dagger} with due modification. See [MN24, 9.1] for the detail.

Lemma 4.4. Let P be a cubical compactification of $(G_{\eta}, \mathcal{L}_{\eta})$. Then P_0 is the union of normal torus embeddings, each of which is (isomorphic to) the one associated with the same Voronoi polytope $\Sigma_l(0)$.

See [N24, 9.10-9.12].

Remark 4.5. In general, we need pullbacks of P in § 2 and faithfully flat descents of P in § 3 in order to construct cubical compactifications in Theorems 1.1-1.4. See [MN24, \S 9/11-12] and [N24, \S 6/8].

5. The properties of P and P_0

5.1. The properties. Assume $\Sigma_1(0)$ is integral. The following are some standard properties of P and P_0 proved in [N24, §§ 9-10]:

- P_0 is reduced, Cohen-Macaulay with trivial dualizing sheaf;
- the semi-universal covering P_0 of P_0 is stratified into closed subschemes $\overline{Z}(\Delta)$, each $\overline{Z}(\Delta)$ being associated with a (unique) closed face Δ of some $\Sigma(c)$ $(c \in X^{\vee})$ and $\dim_k Z(\Delta) = \dim_{\mathbf{R}} \Delta;$
- $H^q(P, \mathcal{O}_P)$ is an *R*-free module of rank $\binom{g}{q}$;
- $H^q(P, \mathcal{L}^{\otimes m}) = H^q(P_0, \mathcal{L}_0^{\otimes m}) = 0 \ (\forall q > 0, \forall m > 0);$
- $\Gamma(\dot{P}, \mathcal{L}^{\otimes m})$ is a free *R*-module of rank $(2Nm)^g |X/Y|$;
- $\mathcal{L}^{\otimes m}$ is very ample on P for $m \geq 4q$.

5.2. The closed subscheme $Z(\Delta)$.

Definition 5.1. Let Fan be the fan in the (g + 1)-dimensional Euclidean space $\mathbf{R}_{>0} f_0 \bigoplus X_{\mathbf{R}}^{\vee}$ associated with the torus embedding P over S, where f_0 is a **Z**-basis of $\mathbf{Z} \subset \mathbf{R}$. Fan consists of cones τ_{Δ} where Δ ranges over the set of all faces of Voronoi polytopes $\Sigma(c)$ $(c \in X^{\vee})$. Let $Z(\Delta) \ (\simeq \mathbf{G}_{m,k(0)}^{\dim \Delta})$ be the relative interior of $\overline{Z}(\Delta)$ of P_0 .

Now let us summarize the properties of $Z(\Delta)$:

- $H^q(\bar{Z}(\Delta), \mathcal{L}_{\bar{Z}(\Delta)}^{\otimes m}) = 0 \ (\forall q \ge 1, \forall m \ge 1);$ $H^0(\bar{Z}(\Delta), \mathcal{L}_{\bar{Z}(\Delta)}^{\otimes m})$ is spanned by monomials $w^x \ (x \in m\Delta \cap X);$
- $\mathcal{L}_0^{\otimes m}$ is very ample on $\overline{Z}(\Delta)$ if $m \ge \dim \Delta$.

5.3. Limits of *K*-rational points.

Definition 5.2. Let f_0 be a **Z**-basis of **Z**, f_i $(i \in [1, g])$ a **Z**-basis of X^{\vee} , and m_i the **Z**-basis of X dual to f_i . We define

$$\operatorname{Cut}(\tau_{\Delta}) := -f_0 + (\tau_{\Delta} \cap (f_0 \times X_{\mathbf{R}}^{\vee})) \,.$$

For example, $\Delta = \Sigma(c)$, then $\operatorname{Cut}(\tau_{\Delta}) = -c$. If $\Delta = \bigcap_{c \in \Lambda} \Sigma(c)$ (Λ : maximal), then $\operatorname{Cut}(\tau_{\Delta}) =$ the convex closure of -c ($c \in \Lambda$).

Definition 5.3. Let s be a uniformizer of R, v_s the valuation of R with $v_s(s) = 1$ and define an *absolute value* $|\cdot|$ of $k(\eta)$ by $|a| = e^{-v_s(a)}$ for $a \in k(\eta)$. Then v_s and $|\cdot|$ can be uniquely extended to Ω := the algebraic closure of $k(\eta)$. Note that $|a| \ge 0$, and |a| = 0 iff a = 0.

Definition 5.4. Let $Q \in \tilde{P}(\Omega)$ and $\log |w^x(Q)| := \log |Q^*(w^x)| \in \mathbf{Q}$ $(x \in \tilde{X})$. Since $w^{m_0}(Q) = s$, we define

$$\log(Q) = -\sum_{i=0}^{g} (\log |w^{m_i}(Q)|) f_i \in \tilde{X}_{\mathbf{Q}}^{\vee},$$

$$\operatorname{cutlog}(Q) = -f_0 + \log(Q) = -\sum_{i=1}^{g} (\log |w^{m_i}(Q)|) f_i \in X_{\mathbf{Q}}^{\vee}$$

Let K be an algebraic extension of the field $k(\eta)$. The following describes the limits of K-rational points Q [N24, § 9.6].

Theorem 5.5. Let K be a finite extension of $k(\eta)$ and $Q \in G(K)$. Then $\lim Q \in Z(\Delta)$ iff $\operatorname{cutlog}(Q) \in \operatorname{Cut}(\tau_{\Delta})^0$.

Note that Δ is uniquely determined by Q in Theorem 5.5.

6. Examples

6.1. **Two dimensional case.** We recall known compactifications in dimension two. We consider the following case:

- X is a union of two \mathbf{P}^1 with 3 double points, which is a stable curve of genus two embedded in \mathcal{X} ;
- \mathcal{X} is a proper regular surface over S with $\mathcal{X}_0 = X$;
- $(G_{\eta}, \mathcal{L}_{\eta})$ is the Jacobian variety of \mathcal{X}_{η} ;
- \mathcal{G} is the Néron model G_{η} , and $G := \mathcal{G}^0$;
- $G_0 \simeq \mathbf{G}_{m,k(0)}^2$ is the generalized Jacobian of X.

Let P be a relative compactification of \mathcal{G} . Then P_0 is

$\int 3\nabla$	$[N77]$ over \mathbf{C}/Non -cubical,
2Δ	[N75] [Namikawa76][AN99],
$2\Delta + \nabla$	[M72],
$2\Delta, \ 2\Delta + \nabla$	[OS79],
$(3\nabla$	[MN24][N24]/Cubical
$\begin{cases} 2\Delta + \nabla \\ 2\Delta, \ 2\Delta + \nabla \\ 3\nabla \end{cases}$	[M72], [OS79], [MN24][N24]/Cubical

where $\Delta = \mathbf{P}^2$, $\nabla = Q_{p_1, p_2, p_3}(\mathbf{P}^2)$.

6.2. A smallest cubical compactification P^{\natural} . Let $X = \mathbb{Z}m_1 + \mathbb{Z}m_2 \simeq \mathbb{Z}^2$, $m_3 = -(m_1 + m_2)$, $\Sigma := \{0, \pm m_i; i \in [1, 3]\}$, $\Psi := \{0, \pm m_1\}$ and $N := |\Psi| = 3$. We define R^{\natural} as follows:

$$R^{\natural} = R[\epsilon_{+}(u)b^{e}(u,\alpha)w^{\alpha+\mu(u)}\theta_{+}; u \in X^{\vee}, \alpha \in \Sigma]$$

where

$$\begin{split} \theta_+ &:= \prod_{y \in \Psi} \vartheta_y, \ \epsilon_+(u) := s^{u_1^2 + u_1 u_2 + u_2^2}, \ b^e(u, y) = s^{u_1 y_1 + u_2 y_2} \\ \beta(y) &:= (2y_1 - y_2) f_1 + (-y_1 + 2y_2) f_2, \\ \mu(u) &:= (2u_1 + u_2) m_1 + (u_1 + 2u_2) m_2, \\ E_+(u) &:= v_s \epsilon_+(u) = u(\mu(u))/2 = u_1^2 + u_1 u_2 + u_2^2, \\ u &= u_1 f_1 + u_2 f_2, \ y &= y_1 m_1 + y_2 m_2, \\ \Sigma(0) &:= \{ x \in X_{\mathbf{R}}; E_+(u) + u(x) \ge 0 \ (\forall u \in X^{\vee}) \}. \end{split}$$

It turns out

 $\Sigma(0)$ = the convex closure of Σ , $\Sigma = \Sigma(0) \cap X$.

FIGURE 1. Σ and $\Sigma(0)$

The S-scheme P^{\natural} is a cubical compactification of \mathcal{G} which is constructed by starting from $\tilde{P}^{\natural} := \operatorname{Proj} R^{\natural}$ through the process in § 3.2. By § 5, $\overline{Z}(\Sigma(c))$ is the torus embedding associated with the Voronoi polytope $\Sigma(c)$, which is ∇ . Thus we see that P_0^{\natural} is the union of 3 copies of ∇ .

IKU NAKAMURA

References

- [AN99] V. Alexeev and I. Nakamura, On Mumford's construction of degenerating abelian varieties, Tôhoku Math. J. 51 (1999), 399-420.
- [FC90] G. Faltings, C.-L. Chai, Degenerations of abelian varieties, Ergebnisse der Mathematik Band 22, Springer-Verlag (1990), ix + 280 pp.
- [K98] K. Künnemann, Projective regular models for abelian varieties, semistable reduction, and the height pairing, Duke Math. J. 95 (1998), 161-212.
- [M72] D. Mumford, An analytic construction of degenerating abelian varieties over complete rings, Compositio Math. **24** (1972), 239-272.
- [MN24] K. Mitsui, I. Nakamura, Relative compactification of semiabelian Néron models, I (arXiv:2021.08113).
- [N75] I. Nakamura, On moduli of stable quasi abelian varieties, Nagoya Math. J. 58 (1975), 149–214.
- [N77] I. Nakamura, Relative compactification of Néron models and its application, Complex analysis and algebraic geometry, edited by Shioda and Baily, Iwanami and Cambridge Univ. press (1977), 207-225.
- [N99] I. Nakamura, Stability of degenerate abelian varieties, Invent. Math.
 136 (1999), 659-715.
- [N24] I. Nakamura, Relative compactification of semiabelian Néron models, II (arXiv:2024.09172).
- [Namikawa76] Y. Namikawa, A new compactification of the Siegel space and degenerations of abelian varieties, I, II, Math. Ann. 221 (1976), 97– 141,201–241.
- [OS79] T. Oda, C. S. Seshadri, Compactifications of the generalized Jacobian variety, Trans. Amer. Math. Soc. 253 (1979), 1-90.

Department of Mathematics, Hokkaido University, Sapporo, 060, Japan

E-mail address: nakamura@math.sci.hokudai.ac.jp