RELATIVE COMPACTIFICATION OF SEMIABELIAN
NERON MODELS
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ABSTRACT. Let R be a complete discrete valuation ring, k(7) its
fraction field, S = Spec R, (G, L,) a polarized abelian variety over
k(n) with £, symmetric ample cubical and G the Néron model of
Gy over S. Suppose that G is semiabelian over S. Then there
exists a unique relative compactification (P, N') of G such that (@)
P is Cohen-Macaulay with codimp(P\ G) = 2 and (3) N is ample
invertible with Mg cubical and NV, = L’f?” for some positive integer
n. We study the totally degenerate case in [MN24], while we study
in [N24] the partially degenerate case and then the case where R is
a Dedekind domain. Most remarkable is that the compactification
satisfying the conditions («) and () is uniquely determined by
(G, ZL,).
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1. INTRODUCTION

This report is based in part on a joint work with K. Mitsui. The
preprints [MN24] and [N24] on the same subject appeared in arXiv.

Let R be a complete discrete valuation ring (abbr. CDVR), k(n)
(resp. k(0)) the fraction (resp. residue) field of R, S := Spec R, and 7
(resp. 0) the generic (resp. closed) point of S.

Let (G, £,)) be a polarized abelian variety over k(n) with £, symmet-
ric ample cubical, G the Néron model of G, and G := G° the identity
component of G. We say that G is semiabelian if G is an extension of
an abelian variety by a torus.

By subdividing fans associated with torus embeddings over S, [K98|
proved that there are relative compactifications of a semiabelian Néron
model G which are regular, but rarely satisfy the condition (b) of The-
orem 1.1 below. Those constructed by [K98] are not codimension two
compactifications in general.

In contrast with it, our compactification (which we wish to call a
cubical compactification) of G is Cohen-Macaulay but not regular in
general. However it is a codimension two compactification of G and per-
haps its most remarkable feature is the uniqueness as in Theorem 1.2.

Thus we have a very simple picture:

e for a given (G,, £,), there exists a unique Néron model G of it;

e if G is semi-stable (=semi-abelian), then there exists a unique

cubical compactification of G.

A triple (P,i,N) is called a relative compactification of G (abbr.
compactification of G) (extending (G,, L,)) if
(rcl) P is an irreducible proper flat S-scheme;

(rc2) i: G — P is an open immersion with P, = i(G,) = i(G,);
(rc3) N is an ample invertible Op-module with i*N, € Z,L,,.
We prove the following theorems in [MN24] and [N24]:

Theorem 1.1. [MN24]+[N24] If G is semiabelian over S, then there
exists a relative compactification (P,i,N') of G such that
(a) P is Cohen-Macaulay;
(b) i(G) = P\ Sing(Fy) with codimp Sing(Fy) > 2 where Sing(Fp)
denotes the singular locus of Py;
(c) i*N is cubical with i,0*N = N;
(d) G acts on P so that i\ is G-equivariant.

Theorem 1.2. [N24] If(P',i', N") is another relative compactification
of G subject to (a)-(c), then P ~ P'.

To be more precise, we prove:
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Theorem 1.3. [N24] Let (G,L) be a semi-abelian S-scheme, G its
Néron model and (P,i,N') a cubical compactification of G extending
(Gy, Ly). Then

1. P~ Proj A(G,i*N) with i,i*N = N ;

2. P is uniquely determined by (G, ZL,);

3. N is uniquely determined by (G, L) up to positive multiples;

4. any k(n)-automorphism hy, of G, with hiL, ~ L, extends to an

S-automorphism g of P with g(G) = G and g*N = N.

The following is an over-Dedekind-domain version of the above:

Theorem 1.4. [N24] Let D be a Dedekind domain, K the fraction
field of D and S = Spec D. Let (G, L) be a semiabelian S-scheme over
S, L a symmetric ample cubical invertible sheaf on G and G a Néron
model of G. Then there exists a relative compactification (P,i,N) of
G extending (Gk, Lk) such that

(a) P is Cohen-Macaulay;
(b) i(G) = P\Sing(P/S) with codimp Sing(Ps) > 2 where Sing(P/S)
denotes the union of the singular loci of closed fibers of P over S;
(c) i*N is ample cubical invertible;
(d) G acts on P so that i\ is G-equivariant.
Moreover the relative compactification (P,i,N') satisfying (a)-(c) is
unique up to isomorphism in the sense of Theorem 1.2.

2. CONSTRUCTION OF A RELATIVELY COMPLETE MODEL

2.1. Set-up. Let R be a CDVR, S = Spec R, and 7 (resp. 0) the
generic point (resp. closed point) of S. k(n) the fraction field of R and
k(0) the residue field of R by the maximal ideal I of R. Suppose that
we are given a g-dimensional polarized abelian variety (G,,L,) over
k(n) with £, ample cubical and symmetric. Let G be the connected
Néron model of G,,. By choosing a suitable finite extension of k(n), we
may assume that G is an extension of a g’-dimensional abelian variety
Ap over k(0) by a split torus G%k(o)'

Throughout this report we assume g = ¢”, Ag = 0 and Gy ~ G%k(o),

2.2. Degeneration data.

Theorem 2.1. [FC90] Suppose that Ay = 0 and Gg is a split k(0)-
torus Ty. Let X be a free Z-module of rank g such that Ty ~ Spec k(0)[X].
Then there exist a submodule Y of X of finite index, a functiona : Y —
k(n)* and a bilinear function b:Y x X — k(n)* ' such that

1To be exact, b(y +y',x) = b(y, )b(y’, x) and b(y, = + ') = b(y, z)b(y, ).
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(O> =1, a’(y) = a(_y) (Vy € Y);
,2) = b(z,y) = aly + Z) (y)ta(2)~" (Vy,z€Y);

but finitely many y € Y,
(iv) I'(G,, £,) is identified with the k(n)-vector subspace of formal
Fourier series 0 =)\ 0.(0)w” such that

Gery(0) = aly)b(y, )7 (0), 72(6) € k(n) (Y € X, Vy € V).

Remark 2.2. Furthermore by taking a finite extension of k(n) and
the integral closure of R in k(n) if necessary, we may assume:
there exist a function a : X — k(n)* and a bilinear function b :

X x X — k(n)* extending a and b in Theorem 2.1, which satisfy
instead of (i ) (i)
(i) a(0) = 1, a(y) = a(-y) (Vy € X);

(i) b(y, 2) = b(z y) = aly+2)aly)la(z)" (Vy,z € X).

2.3. Construction. We start with the stronger version of Theorem 2.1
with (i) and (ii’). Then we can construct a flat projective S-scheme P
extending (G, £,)) as follows [AN99]:

e we define a graded algebra Rf := Ra(x)w®d;z € X;

e P! := the normalization of Proj(R?) is a torus embedding over S

locally of finite type;
e P!/ the formal completion of RY:;
e the quotient P*"/Y is algebraizable, where Y acts on R? by

Sy(a(x)w™) = a(z + y)w™ 0

e the algebraization P? of P /Y is flat projective with P* > G;

o (Gy, L) ~ (PEOpi(1)y).

e but G ¢ P* in general.

See [AN99]. The above (P, £) is the normalization of a projectively
stable quasi-abelian scheme over S in [N99].

2.4. The complex case. Over the complex number field C, a(x) and
b(y,x) in the above are familiar objects:

e D={seC;ls|<1},G=CIx D/Z9 + Z9T;
a(z) = e(x'Tx/2), b(x,y) = e(x'Ty);
let T' = To(s) + Blog s/(2mi), with ‘T = T', where Tj(s) holomor-
phic on D, B = val,(b) € Myy,(Z) even positive definite;
if Ty = 0, then a(z) = sB@®)/2 p(z,y) = sPE@v);
we choose R = C][s]] the formal power series ring of one variable
to formulate the problem in the algebraic manner.
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3. CONSTRUCTION OF P

3.1. Definitions. Let G be the Néron model G of G. Next we con-
struct a new relatively complete model P so that P : the algebraization

of P"/Y may contain G. Let ® := Gy/Gy be the component group of
G. Recall

b~ XV/B(Y)
where §: Y — XV defined by G(y)(z) = B(z,y). We choose 0 € ¥ (C
XV) an arbitrary sct of representatives of ®. Let N := |®].

Definition 3.1. We define

0, = Hﬂv, 0_ .= H V_y,

uew uew

0:=0,0_.

Lemma 3.2. Let p:= 7 det(B): XV — Y, and N = |®|. By taking
a finite extension of k(n) if necessary, there exists an extension b of
b to XV x X such that b*(B(y),z) = bly,z) (Vy € Y,Vo € X). Set
e(u) == b(u, p(u)) (ue€ XY). Then

e 050 = e(u)wWo;

e ¢(u) is independent of the choice of W;

o c(u+v)=c(u)e(v)b®(u, u(v))* Vu,v € XV);

o Og) =Sy (Yy €Y); this definition induces an isomorphism:

{0v;0 € XY}/ {Sy eV} =~ XY/B(Y) ~ @.
Definition 3.3. Now we define an algebra
(1) R := Rle(u)b®(u, 0)w*Wh: o € B, u,v € XV,
where X is the set of integral points of some bounded convex polytope
(Voronoi polytope) of Xg with integral vertices. See § 4.

3.2. Construction of P. Our construction of P proceeds as follows:

e P := the normalization of Proj(R') is a torus embedding over S
locally of finite type;

e P’ the formal completion of P;

e XV acts on R by

8 (e()b® (u, ) w®THWG) = e(u + v)b° (u + v, @)w g,

® sy =Sy (Vy €Y);
e the quotient P"/Y is algebraizable;

e the algebraization P of pPr /Y is flat projective;
o (G, LY) = (P, 0p(1)y).
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To achieve P D G, we need another step in § 4 of choosing a suitable
multiple of Op(1).

Remark 3.4. The algebra R represents the sheaf £, while the algebra
R' may represent the tensor product over P:

) ar ().

uew

4. VORONOI POLYTOPES

4.1. Voronoi polytopes. The relatively complete model P is an S-
scheme of locally of finite type, which is a torus embedding over S
described by a certain fan consisting of infinitely many cones. It ap-
pears in the standard manner, which we do not write down here. See
[MN24, 7.4]. Instead, we will define Voronoi polytopes, which helps us
to understand the S-scheme P to some extent.

By Th. 2.1 (ii’), we have a symmetric positive definite bilinear form

B(z,y) = valyb(z,y) (z,y € X)
associated with a totally degenerate semiabelian S-scheme (G, £).

Definition 4.1. Let | € Z-,. We define a distance ||z|| = \/B(z, 2)
on Xg. For any ¢ € XV, we define a Voronoi polytope X;(c) by

Su(e) = {x € Xnslle = 2p(w)]| > o - 2p(e)]| (Vu e X)),

4.2. Properties. We summarize the properties of Voronoi polytopes:

e for (G, L?"), we have [B and ¥;(c);

e Y(c) is a bounded convex polytope with ¥, (0) = I¥;(0);

o Si(c) = 5(0) + 20p(e):

* Xgp = UCGXV 2[(0);

e ¥(c) (c € XVY) and their faces form a poly. decomp. of Xg;

¥ :=3(0) N X is a finite subset of X with ¥, +2lu(XV) = X;
there exists lp € N such that ¥,;,(0) is integral (Definition 4.2);
if B = Ejg, then [y = 30;

if g =2, then [y = 1.

Definition 4.2. A convex polytope A in Xg is said to be integral if

(i) A is the convex closure of AN X and A =—A 3 0;
(ii) AN X contains a basis of X.

Note that Iy = 1 iff 3;(0) is integral.

If A is integral, then A N X is a star of [M72, 2.2].
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4.3. Cubical compactifications.

Theorem 4.3. Let R' be the algebra (1) with ¥ = X;(0) N X. If
¥1(0) is integral, then by choosing ¥ = ¥;(0) N X, P is a cubical
compactification of (G,, L,) such that G C P.

If %3,(0) is integral, then we take £ for £ and define the algebra R
for R with due modification. See [MN24, 9.1] for the detail.

Lemma 4.4. Let P be a cubical compactification of (G, L,)). Then Py
is the union of normal torus embeddings, each of which is (isomorphic
to) the one associated with the same Voronoi polytope ¥;(0).

See [N24, 9.10-9.12].

Remark 4.5. In general, we need pullbacks of P in § 2 and faithfully
flat descents of P in § 3 in order to construct cubical compactifications
in Theorems 1.1-1.4. See [MN24, §§ 9/11-12] and [N24, §§ 6/8].

5. THE PROPERTIES OF P AND F,

5.1. The properties. Assume 3;(0) is integral. The following are
some standard properties of P and P, proved in [N24, §§ 9-10]:

e [ is reduced, Cohen-Macaulay with trivial dualizing sheaf;

e the semi-universal covering ]50 of P, is stratified into closed sub-
schemes Z(A), each Z(A) being associated with a (unique) closed
face A of some (c) (c € XV) and dimy Z(A) = dimg A;

e HI(P,Op) is an R-free module of rank (‘q’);

o HU(P, L) = HI(Py, LE™) = 0 (Vg > 0,Ym > 0);

e I'(P,L£%™) is a free R-module of rank (2Nm)9|X/Y|;

e L%™ is very ample on P for m > 4g.

5.2. The closed subscheme Z(A).

Definition 5.1. Let Fan be the fan in the (¢ + 1)-dimensional Eu-
clidean space R fo @ Xk associated with the torus embedding P over
S, where fj is a Z-basis of Z C R. Fan consists of cones 7o where A

ranges over the set of all faces of Voronoi polytopes X(c) (c € XV). Let
Z(A) (~ Ggi‘f,;(%)) be the relative interior of Z(A) of F.

Now let us summarize the properties of Z(A):

o HI(Z(A),L574,) =0 (¥g > 1,¥m > 1);
o H(Z(A), E%OEZ)) is spanned by monomials w® (x € mA N X);

e L™ is very ample on Z(A) if m > dim A.
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5.3. Limits of K-rational points.

Definition 5.2. Let fy be a Z-basis of Z, f; (i € [1,9]) a Z-basis of
XV, and m; the Z-basis of X dual to f;. We define

Cut(ra) := —fo + (7a N (fo X Xg))-

For example, A = ¥(c), then Cut(ra) = —c. If A =,
maximal), then Cut(7a) = the convex closure of —c (¢ € A).

Y(e) (A:

Definition 5.3. Let s be a uniformizer of R, v, the valuation of R
with v,(s) = 1 and define an absolute value | - | of k(n) by |a| = e
for a € k(n). Then vy and | - | can be uniquely extended to 2 := the
algebraic closure of k(n). Note that |a| > 0, and |a| = 0 iff a = 0.

Definition 5.4. Let Q € P(Q) and log |w*(Q)| := log|Q*(w")| € Q
(x € X). Since w™(Q) = s, we define

log(Q) = =D _ (log [w™(Q)]) fi € Xg,
=0

cutlog(Q) = —fo +1og(Q) = = Y _(log|w™(Q)]) f; € X&.

i=1

Let K be an algebraic extension of the field k(7). The following
describes the limits of K-rational points @) [N24, § 9.6].

Theorem 5.5. Let K be a finite extension of k(n) and Q € G(K).
Then lim Q € Z(A) iff cutlog(Q) € Cut(7a)°.

Note that A is uniquely determined by () in Theorem 5.5.

6. EXAMPLES

6.1. Two dimensional case. We recall known compactifications in
dimension two. We consider the following case:

e X is a union of two P! with 3 double points, which is a stable
curve of genus two embedded in X;

e X is a proper regular surface over S with Xy = X;

e (G,),L,) is the Jacobian variety of X,;

e G is the Néron model G, and G := G

o Gy~ ng,k(o) is the generalized Jacobian of X.
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Let P be a relative compactification of G. Then F is

(3V IN77] over C/Non-cubical,
2A [N75] [Namikawa76][AN99],
A+ V IM72],
2A, 2A +V  [OST9],

L3V IMN24][N24] /Cubical

where A = P2, V = Qp1,pz,p3<P2)~

6.2. A smallest cubical compactification P Let X = Zm; +
Zmy ~ 72 m3 = —(mi+msy), ¥ :={0,+my;i € [1,3]}, ¥ := {0, +m,}
and N := |¥| = 3. We define R* as follows:

R = Rley (u)b®(u, a)w* o, ;u e XV, a € ¥
where

0y 1= [ Oy () i st () = g
yew
B(y) == 2y1 — y2) f1 + (=11 + 2y2) fo,

p(u) == (2uy + u2)my + (ug + 2ug)meo,
B (u) = vsey(u) = u(p(u))/2 = uf + uyug + us,
u=urfi +uafo, Yy =yrma + yamo,
2(0) :={z € Xgr; E(u) + u(z) >0 (Vu e X)}.
It turns out
¥(0) = the convex closure of ¥, ¥ = 3(0) N X.

[
ms

FIGURE 1. ¥ and 3(0)

The S-scheme P! is a cubical compactification of G which is con-
structed by starting from P := Proj R' through the process in § 3.2.
By § 5, Z(X(c)) is the torus embedding associated with the Voronoi
polytope 2 (¢), which is V. Thus we see that P is the union of 3 copies
of V.
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