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ABSTRACT. Let R be a complete discrete valuation ring, k(TJ) its 
fraction field, S = Spec R, (a,,, £,,,) a polarized abelian variety over 
k(TJ) with £,,, symmetric ample cubical and g the Neron model of 
G,,, over S. Suppose that Q is semiabelian over S. Then there 
exists a unique relative compactification ( P, N) of Q such that (a) 
Pis Cohen-Macaulay with codimp(P\ Q) = 2 and (/3) N is ample 
invertible with Njg cubical and N,,, = _c~n for some positive integer 
n. We study the totally degenerate case in [MN24], while we study 
in [N24] the partially degenerate case and then the case where R is 
a Dedekind domain. Most remarkable is that the compactification 
satisfying the conditions (a) and (/3) is uniquely determined by 
(G,,,, Z£,,,). 
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1. INTRODUCTION 

This report is based in part on a joint work with K. Mitsui. The 
preprints [MN24] and [N24] on the same subject appeared in arXiv. 

Let R be a complete discrete valuation ring (abbr. CDVR), k(rJ) 
(resp. k(O)) the fraction (resp. residue) field of R, S := SpecR, and rJ 
(resp. 0) the generic (resp. closed) point of S. 

Let (G,,, £,,,) be a polarized abelian variety over k(rJ) with£,,, symmet­
ric ample cubical, g the Neron model of G,,, and G := go the identity 
component of g. We say that G is semiabelian if Go is an extension of 
an abelian variety by a torus. 

By subdividing fans associated with torus embeddings over S, [K98] 
proved that there are relative compactifications of a semiabelian Neron 
model g which are regular, but rarely satisfy the condition (b) of The­
orem 1.1 below. Those constructed by [K98] are not codimension two 
compactifications in general. 

In contrast with it, our compactification (which we wish to call a 
cubical compactification) of g is Cohen-Macaulay but not regular in 
general. However it is a codimension two compactification of g and per­
haps its most remarkable feature is the uniqueness as in Theorem 1.2. 

Thus we have a very simple picture: 

• for a given ( G,,,, £,,,), there exists a unique Neron model g of it; 
• if G is semi-stable (=semi-abelian), then there exists a unique 

cubical compactification of g. 
A triple ( P, i, N) is called a relative compactification of g ( abbr. 

compactification of 9) ( extending ( G,,,, £,,,)) if 

(rel) Pis an irreducible proper flat S-scheme; 
(rc2) i: g c.......+ Pis an open immersion with P,,, = i(9,,,) = i(G,,,); 
(rc3) N is an ample invertible Op-module with i*N,,, E Z>o.C,,,. 

We prove the following theorems in [MN24] and [N24]: 

Theorem 1.1. [MN24]+[N24] If g is semiabelian over S, then there 
exists a relative compactification (P, i, N) of g such that 

(a) P is Cohen-Macaulay; 
(b) i(Q) = P \ Sing(P0 ) with codimp Sing(P0 ) ~ 2 where Sing(P0) 

denotes the singular locus of P0 ; 

( c) i* N is cubical with i* i* N = N; 
( d) G acts on P so that i1c is G-equivariant. 

Theorem 1.2. [N24] If ( P', i', N') is another relative compactification 
of g subject to (a)-(c), then Pc:::: P'. 

To be more precise, we prove: 
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Theorem 1.3. [N24] Let (G, .C) be a semi-abelian S-scheme, g its 
Neron model and (P, i, N) a cubical compactification of g extending 
(Gr,, .Cr,)- Then 

l. P ~ Proj A(Q, i*N) with i*i*N = N; 
2. P is uniquely determined by ( Gr,, Z.Cr,); 
3. N is uniquely determined by ( Gr,, .Cr,) up to positive multiples; 
4. any k( rJ )-automorphism hr, of Gr, with h;.Cri C::'. .Cr, extends to an 

S-automorphism g of P with g(Q) = g and g* N = N. 

The following is an over-Dedekind-domain version of the above: 

Theorem 1.4. [N24] Let D be a Dedekind domain, K the fraction 
field of D and S = Spec D. Let ( G, .C) be a semiabelian S-scheme over 
S, .C a symmetric ample cubical invertible sheaf on G and g a Neron 
model of G. Then there exists a relative compactification (P, i, N) of 
g extending (GK, .CK) such that 

(a) P is Cohen-Macaulay; 
(b) i(Q) = P\Sing(P/S) withcodimpSing(Ps) ~ 2 whereSing(P/S) 

denotes the union of the singular loci of closed fibers of P over S; 
( c) i* N is ample cubical invertible; 
( d) G acts on P so that i1c is G-equivariant. 

Moreover the relative compactification (P, i, N) satisfying ( a)-(c) is 
unique up to isomorphism in the sense of Theorem 1. 2. 

2. CONSTRUCTION OF A RELATIVELY COMPLETE MODEL 

2.1. Set-up. Let R be a CDVR, S = Spec R, and rJ (resp. 0) the 
generic point (resp. closed point) of S. k(TJ) the fraction field of Rand 
k(O) the residue field of R by the maximal ideal I of R. Suppose that 
we are given a g-dimensional polarized abelian variety ( Gr,, .Cr,) over 
k(rJ) with Lr, ample cubical and symmetric. Let G be the connected 
Neron model of Gr,· By choosing a suitable finite extension of k(TJ), we 
may assume that G0 is an extension of a g' -dimensional abelian variety 

( ) gn 
A 0 over k O by a split torus Gm,k(o)· 

Throughout this report we assume g = g", A 0 = 0 and Go ~ G~,k(o). 

2.2. Degeneration data. 

Theorem 2.1. [FC90] Suppose that A 0 = 0 and G0 is a split k(O)­
torus T0 . Let X be a free Z-module of rank g such that T0 '.::::'. Spec k(O) [X]. 
Then there exist a submodule Y of X of finite index, a function a : Y -----+ 

k(TJY and a bilinear function b: Y x X-----+ k(TJY 1 such that 

1To be exact, b(y + y', x) = b(y, x)b(y', x) and b(y, x + x') = b(y, x)b(y, x'). 
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(i) a(0) = 1, a(y) = a(-y) (Vy E Y); 
(ii) b(y, z) = b(z, y) = a(y + z)a(y)-1a(z)-1 (Vy, z E Y); 

(iii) b(y, y) E I (Vy E Y \ {0} ), and for every n 2: 0, a(y) E Jn for all 
but finitely many y E Y; 

(iv) r( G17 , £ 17 ) is identified with the k(ry)-vector subspace of formal 
Fourier series 0 = I:xEX ax(0)wx such that 

ax+y(0) = a(y)b(y, x)ax(0), ax(0) E k(ry) (Vx EX, Vy E Y). 

Remark 2.2. Furthermore by taking a finite extension of k(ry) and 
the integral closure of R in k(ry) if necessary, we may assume: 

there exist a function a : X -----, k( 'T/ Y and a bilinear function b : 
X x X -----, k(rJY extending a and b in Theorem 2.1, which satisfy 
instead of (i)-(ii) 

(i') a(0) = 1, a(y) = a(-y) (Vy EX); 
(ii') b(y, z) = b(z, y) = a(y + z)a(y)-1a(z)-1 (Vy, z EX). 

2.3. Construction. We start with the stronger version of Theorem 2.1 
with (i') and (ii'). Then we can construct a flat projective S-scheme P 
extending (G17,£17 ) as follows [AN99]: 

• we define a graded algebra Rtt := R[a(x)wx'!9; x EX]; 
• Ptt := the normalization of Proj(Rtt) is a torus embedding over S 

locally of finite type; 
• Ptt,11 : the formal completion of Rtt; 
• the quotient Ptt,A /Y is algebraizable, where Y acts on Rtt by 

s;(a(x)wx'!9) = a(x + y)wx+y'!9; 

• the algebraization ptt of Ptt,A /Y is flat projective with ptt =:> G,; 
• ( G ri, Lr,) '.::::'. ( PJ, 0 pa ( 1) 17 ). 

• but Q (/_ ptt in general. 

See [AN99]. The above (P, £) is the normalization of a projectively 
stable quasi-abelian scheme over S in [N99]. 

2.4. The complex case. Over the complex number field C, a(x) and 
b(y,x) in the above are familiar objects: 

• D = {s EC; Isl< 1}, G = Cg x D/Z9 + Z9T; 
• a(x) = e(xtTx/2), b(x, y) = e(xtTy); 
• let T = T0 (s) +Blog s/(21ri), with tr= T, where T0 (s) holomor­

phic on D, B = vals(b) E M9 x 9 (Z) even positive definite; 
• if To = 0, then a(x) = sB(x,x)/2 , b(x, y) = sB(x,y); 
• we choose R = C[[s]] the formal power series ring of one variable 

to formulate the problem in the algebraic manner. 
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3. CONSTRUCTION OF P 

3.1. Definitions. Let Q be the Neron model Q of G. Next we con­
struct a new relatively complete model P so that P : the algebraization 
of pA /Y may contain Q. Let qi := Q0/G0 be the component group of 
Q. Recall 

qi~ xv /~(Y) 

where~: Y---+ xv defined by ~(y)(x) = B(x, y). We choose OE W ( C 
xv) an arbitrary set of representatives of qi_ Let N := lqil-
Definition 3.1. We define 

0 := 0+0_. 

Lemma 3.2. Letµ:= ~-l det(B) : xv---+ Y, and N = lqil, By taking 
a finite extension of k( TJ) if necessary, there exists an extension be of 
b to xv x X such that be(~(y), x) = b(y, x) (\/y E Y, \/x E X). Set 
E(u) := be(u,µ(u)) (u E xv). Then 

• <5:0 = E(u)w2µ(u)0; 
• E( u) is independent of the choice of '11; 
• E(u + v) = E(u)E(v)be(u, µ(v)) 2 (\/u, v E xv); 
• <5f3(y) = Sy (\/y E Y); this definition induces an isomorphism: 

{<5v; v E Xv}/{Sy; y E Y} c:::: Xv /~(Y) c:::: qi_ 

Definition 3.3. Now we define an algebra 

(1) Rt:= R[E(u)be(u,a)w°'+2µ(u)0;a E I:,u,v E xv], 

where I: is the set of integral points of some bounded convex polytope 
(Voronoi polytope) of XR with integral vertices. See § 4. 

3.2. Construction of P. Our construction of P proceeds as follows: 

• P := the normalization of Proj(Rt) is a torus embedding over S 
locally of finite type; 

• f>A: the formal completion of P; 
• xv acts on Rt by 

'5: ( E( U )be ( u, a )w°'+2µ(u) 0) = E( U + V )be ( U + V, a )w°'+2µ(u+v)0; 

• <513(y) = Sy (\/y E Y); 
• the quotient pA /Y is algebraizable; 
• the algebraization P of pA /Y is flat projective; 
• (G,,,, £~2N) ~ (P,,,, Op(l),,,). 



6 IKU NAKAMURA 

To achieve P ::J g, we need another step in § 4 of choosing a suitable 
multiple of Op(l). 

Remark 3.4. The algebra Rtt represents the sheaf£, while the algebra 
Rt may represent the tensor product over PA: 

4. VORONOI POLYTOPES 

4.1. Voronoi polytopes. The relatively complete model P is an S­
scheme of locally of finite type, which is a torus embedding over S 
described by a certain fan consisting of infinitely many cones. It ap­
pears in the standard manner, which we do not write down here. See 
[MN24, 7.4]. Instead, we will define Voronoi polytopes, which helps us 
to understand the S-scheme P to some extent. 

By Th. 2.1 (ii'), we have a symmetric positive definite bilinear form 

B(x, y) = val8 b(x, y) (x, y EX) 

associated with a totally degenerate semiabelian S-scheme ( G, £). 

Definition 4.1. Let l E Z>o• We define a distance llzll = J B(z, z) 
on XR. For any c E xv, we define a Voronoi polytope Ez ( c) by 

Ez(c) = {x E XR; llx - 2lµ(u)II ~ llx - 2lµ(c)II (Vu E xv)}. 

4.2. Properties. We summarize the properties of Voronoi polytopes: 

• for (G, £C?A), we have lB and E1(c); 
• Ez(c) is a bounded convex polytope with Ell'(O) = l'Ez(O); 
• Ez(c) = Ez(O) + 2lµ(c); 
• XR = UcEXv Ez(c); 
• E1(c) (c E xv) and their faces form a poly. decamp. of XR; 
• Ez := E1(0) n X is a finite subset of X with E1 + 2lµ(Xv) = X; 
• there exists 10 EN such that Ez0 (0) is integral (Definition 4.2); 
• if B = E8 , then 10 = 30; 
• if g = 2, then 10 = l. 

Definition 4.2. A convex polytope D. in XR is said to be integral if 

(i) D. is the convex closure of D. n X and D. = -D. 3 O; 
(ii) D. n X contains a basis of X. 

Note that 10 = l iff E 1 ( 0) is integral. 
If D. is integral, then D. n X is a star of [M72, 2.2]. 
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4.3. Cubical compactifications. 

Theorem 4.3. Let Rt be the algebra (1) with ~ := ~ 1(0) n X. If 
~ 1 (0) is integral, then by choosing ~ := ~ 1(0) n X, P is a cubical 
compactification of (G'IJ, £'1J) such that QC P. 

If ~ 1(0) is integral, then we take £®1 for£ and define the algebra R; 
for Rt with due modification. See [MN24, 9.1] for the detail. 

Lemma 4.4. Let P be a cubical compactification of ( G'IJ, £'1J). Then P0 

is the union of normal torus embeddings, each of which is (isomorphic 
to) the one associated with the same Voronoi polytope ~z(0). 

See [N24, 9.10-9.12]. 

Remark 4.5. In general, we need pullbacks of P in § 2 and faithfully 
flat descents of P in § 3 in order to construct cubical compactifications 
in Theorems 1.1-1.4. See [MN24, §§ 9/11-12] and [N24, §§ 6/8]. 

5. THE PROPERTIES OF P AND Po 

5.1. The properties. Assume ~ 1 (0) is integral. The following are 
some standard properties of P and P0 proved in [N24, §§ 9-10]: 

• P0 is reduced, Cohen-Macaulay with trivial dualizing sheaf; 
• the semi-universal covering .Po of P0 is stratified into closed sub­

schemes Z ( ~), each Z ( ~) being associated with a (unique) closed 
face~ of some ~(c) (c E xv) and dimk Z(~) = dimR~; 

• Hq(P, Op) is an R-free module of rank (~); 

• Hq(P, £®m) = Hq(Po, £~m) = 0 (Vq > 0, Vm > 0); 
• r(P, £®m) is a free R-module of rank (2Nm)9 IX/YI; 
• £®m is very ample on P for m ~ 4g. 

5.2. The closed subscheme Z(~). 

Definition 5.1. Let Fan be the fan in the (g + 1 )-dimensional Eu­
clidean space R>ofo E0 X~ associated with the torus embedding P over 
S, where Jo is a Z-basis of Z C R. Fan consists of cones Tt,. where ~ 
ranges over the set of all faces of Voronoi polytopes ~(c) (c E xv). Let 
Z(~) (~ c:~~)) be the relative interior of Z(~) of P0 . 

Now let us summarize the properties of Z ( ~): 
• Hq(Z(~), £!~)) = 0 (Vq ~ 1, Vm ~ 1); 

• H 0 ( Z ( ~), £!~)) is spanned by monomials wx ( x E m~ n X); 
• _c~m is very ample on Z(~) if m ~ dim~. 
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5.3. Limits of K-rational points. 

Definition 5.2. Let Jo be a Z-basis of Z, Ji (i E [1, g]) a Z-basis of 
xv, and mi the Z-basis of X dual to k We define 

Cut(T~) := -f0 + (T~ n (!0 x X~)). 

For example, ~ = ~(c), then Cut(T~) = -c. If~= ncEA ~(c) (A: 
maximal), then Cut(T~) = the convex closure of -c (c EA). 

Definition 5.3. Let s be a uniformizer of R, Vs the valuation of R 
with vs(s) = 1 and define an absolute value I· I of k(rJ) by lal = e-v.(a) 
for a E k(rJ). Then Vs and I · I can be uniquely extended to fl := the 
algebraic closure of k(rJ). Note that lal ?: 0, and lal = 0 iff a= 0. 

Definition 5.4. Let Q E P(n) and log lwx(Q)I := log IQ*(wx)I E Q 
(x EX). Since wm0 (Q) = s, we define 

g 

log(Q) = - L(log lwmi(Q)l)fi E XQ, 
i=O 

g 

cutlog(Q) = - Jo+ log(Q) = - L(log lwmi(Q)l)fi E XQ. 
i=l 

Let K be an algebraic extension of the field k(rJ). The following 
describes the limits of K-rational points Q [N24, § 9.6]. 

Theorem 5.5. Let K be a finite extension of k(rJ) and Q E G(K). 
Then limQ E Z(~) iff cutlog(Q) E Cut(T~) 0 • 

Note that~ is uniquely determined by Q in Theorem 5.5. 

6. EXAMPLES 

6.1. Two dimensional case. We recall known compactifications in 
dimension two. We consider the following case: 

• X is a union of two P 1 with 3 double points, which is a stable 
curve of genus two embedded in X; 

• X is a proper regular surface over S with X0 = X; 
• (G,,,, £,,,) is the Jacobian variety of X,,,; 
• g is the Neron model G,,,, and G := Q0 ; 

• Go c:::: G~,k(O) is the generalized Jacobian of X. 
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Let P be a relative compactification of g. Then P0 is 

3v7 

2~ 

2~+ v7 

2~, 2~ + v7 
3v7 

[N77] over C/Non-cubical, 

[N75] [Namikawa76l[AN99], 

[M72], 

[0S79], 

[MN24] [N24]/Cubical 

where~= P 2 , v7 = Qp1,p2,p3 (P2). 
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6.2. A smallest cubical compactification Pl. Let X = Zm1 + 
Zm2 ~ Z2 , m 3 = -(m1 +m2), I;:= {O, ±mi; i E [1, 3]}, W := {O, ±m1} 
and N := 1'111 = 3. We define RI as follows: 

RI= R[E+(u)be(u,a)w0+µ(u)0+;u E xv,a EI;] 

where 

0+ := IT rJy, E+(u) := sui+u1u2+u~, be(u, y) = su1y1+u2y2' 
yE'¥ 

f3(y) := (2y1 - Y2)li +(-Yi+ 2y2)h, 

µ(u) := (2u1 + u2)m1 + (u1 + 2u2)m2, 

E+(u) := V8 E+(u) = u(µ(u))/2 = Ui + U1U2 + ut 

u = uif1 + ud2, Y = Y1m1 + Y2m2, 

I;(O) := {x E XR; E+(u) + u(x) 2: 0 (Vu E Xv)}. 

It turns out 

I;(O) = the convex closure of I;, I; = I;(O) n X. 

FIGURE 1. I; and I;(O) 

The S-scheme pl is a cubical compactification of g which is con­
structed by starting from Pl := Proj RI through the process in § 3.2. 
By § 5, .Z(I;(c)) is the torus embedding associated with the Voronoi 
polytope I;(c), which is v'. Thus we see that P~ is the union of 3 copies 
of v7. 
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