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Corti defined the notion of standard models of del Pezzo fibrations and studied the existence of them over C with
a fixed generic fibre in [Cor]. We proved that existence of standard models of del Pezzo fibrations of degree 4 in
characteristic > 2. To show this, we use Kollar stability, which is introduced in [Kol] and [AFK].

We work over a field k = k with char(k) # 2.

0 Standard models of dP fibrations

We say that 7 : X — C is a del Pezzo fibration (dP fi-
bration) of degree d if w is a flat, projective morphism
from a threefold X to a curve C, and the generic fibre

X of mis a smooth del Pezzo surface of degree d over
the function field K of C.

Definition 1. A dP fibration 7 : X — C of degree d > 3
is called a standard model if the following conditions are
satisfied:

(1) X has only terminal singularities.

(2) 7 has integral fibres.

(3) —Kx is a m-ample line bundle.

Question 2. Do there exist some standard models of del
Pezzo fibrations as birational models for a given del Pezzo
fibration w : X — C 7

Using techniques of descent, we only have to show that
the existence of standard models 7 : X — C = Spec R
with a fixed generic fibre X, where R is the local ring
of a point on the curve C.

1 Settings

We work over a DVR R with the fraction field K.

e V: space of quadrics in n variables z1,...,x, over R

e M :=Gr(2,V) : The moduli of pencils

e G := GL,: general linear group (group scheme over R)

G naturally acts on M by coordinate changes.

A weight system (p,E) is a pair consisting of p =

(wi,...,wy) € Z" and E € GL,(R). Each weight system

determines a K-point of GG in the following form ;
E~Ydiag(tv1, ..., tW)E.

Thus a weight system induces an action by the corre-

sponding K-point of G.

2 Semistability over curves

In order to construct the standard models, we apply
Kolldr stability, which is introduced in [AFK], to the
moduli of pencils M.

Definition 3. A pencil f € M(R) is semistable if the
following properties are satisfied :
(1) The base locus X of the pencil f over K is smooth.
(2) For every weight system (p, M) with p =
(w1, ..., wy), the following inequality holds :

4 n
mult,(f) < - ; w;.

We use the following inequality ;7
mult, (f) > vali(p - g) + val¢(p - ),

where {g, h} is any R-basis of the pencil f and

valy(p- g) := max{N |Vcocff. of p-g is divisible by t"V}.
Theorem 4. (1) For any smooth (2,2)-complete inter-
section X over K, there exists a semistable model f s.t.
the generic fibre of the base locus X — Spec R is X .
(2) Suppose n = 5. Let f € M(R) be a pencil which is
semistable. Then the base locus X C P}, of the pencil f
s a standard model of dP4 fibrations over Spec R.

3 Outline of the proof of Theorem 4

We show that the fibre Xy of the closed point of R is
integral.

Assume that Xy is not integral. By the degree consider-
ations, there are following two cases :

(1) Xo contains a plane.

(2) Xp is a union of two degree 2 surfaces Y7, Y> (pos-
sibly Y7 = Y5 and X is non-reduced).
Let I C k[z1,...,x5] be the ideal which defines X.
Case (1) : In some coordinates, I C (x1,x2). Then f is
destabilized by p = (1,1,0,0,0)
Case (2) : If Y1 # Ya (resp. Y1 = Y3), since each
degree 2 component is contained in some hyperplane
(C Pi), in some coordinates we may suppose xire € [
(resp. 22 € I). In either case, f is destabilized by
p=(1,0,0,0,0).
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