Indices of smooth Calabi-Yau varieties

Yuto Masamura The University of Tokyo

 $/\mathbb{C}$.

Definition (Calabi-Yau pairs)

A *Calabi–Yau pair* (X,B) consists of a normal projective variety X and a \mathbb{Q} -divisor $B \geq 0$ on X such that $K_X + B \sim_{\mathbb{Q}} 0$.

A Calabi-Yau variety X is a Calabi-Yau pair (X, 0).

- ► Calabi–Yau curves ⇐⇒ (smooth) elliptic curves.
- ► smooth Calabi-Yau surfaces

← K3 surfaces, abelian surfaces, Enriques surfaces, bielliptic surfaces.

Definition (Indices of Calabi-Yau pairs)

(X,B): a Calabi-Yau pair. The *index* of (X,B) is

$$\operatorname{index}(X, B) = \min \{ m \in \mathbb{Z}_{\geq 1} \mid m(K_X + B) \sim 0 \}.$$

Definition (Sets of indices)

 $n \in \mathbb{Z}_{\geq 1}$. $\Phi \subseteq [0,1] \cap \mathbb{Q}$.

$$I_{lc}(n, \Phi) = \left\{ \begin{array}{l} \operatorname{index}(X, B) \\ \operatorname{dim} X = n, \operatorname{Coeff}(B) \subseteq \Phi \end{array} \right\},$$

$$I_{klt}(n, \Phi) = \left\{ \begin{array}{l} \operatorname{index}(X, B) \\ \operatorname{dim} X = n, \operatorname{Coeff}(B) \subseteq \Phi \end{array} \right\},$$

$$\operatorname{dim} X = n, \operatorname{Coeff}(B) \subseteq \Phi \right\},$$

 $I_{\text{term}}(n) = \{ \text{ index}(X) \mid X : \text{ terminal Calabi-Yau variety of dimension } n \},$

 $I_{sm}(n) = \{ \text{ index}(X) \mid X : \text{ smooth Calabi-Yau variety of dimension } n \}.$

- $I_{sm}(1) = \{1\}, I_{sm}(2) = \{1, 2, 3, 4, 6\}.$
- $I_{sm}(n) \subseteq I_{term}(n) \subseteq I_{klt}(n, \Phi) \subseteq I_{lc}(n, \Phi).$

Conjecture (Index conjecture for Calabi-Yau pairs)

 $n \in \mathbb{Z}_{>1}$. $\Phi \subseteq [0,1] \cap \mathbb{Q}$: a finite set.

Then the set $I_{lc}(n, \Phi)$ is bounded (i.e., a finite set).

In other words, $\exists m \in \mathbb{Z}_{\geq 1}$,

 $\forall (X,B)$: Ic Calabi–Yau pair of dimension n with $\mathsf{Coeff}(B) \subseteq \Phi,$ $m(K_X+B) \sim 0.$

- ▶ [JL21]: true in dimension $n \le 3$, and partially in dimension n = 4.
- open in higher dimension.

Toward the proof, several steps are known:

Theorem

 $n \in \mathbb{Z}_{>1}$.

- ▶ [Jia24] $l_{\text{term}}(n)$ bounded $\Longrightarrow l_{\text{klt}}(n, \{0\})$ bounded.
- ▶ [Xu19] $I_{klt}(n, \{0\})$ bounded $\Longrightarrow I_{klt}(n, \Phi)$ bounded for any finite Φ .

Consider proving the index conjecutre for klt Calabi-Yau pairs,

using *inductionon the dimension n*. Then we need to consider:

Question

 $n \in \mathbb{Z}_{\geq 1}$. Does it hold that

 $I_{klt}(n-1, \Phi)$ bounded $\Longrightarrow I_{term}(n)$ bounded

for some Φ ?

The main theorem partially answers to Question:

Theorem ([M])

 $n \in \mathbb{Z}_{\geq 1}$. Then

$$I_{sm}(n) \subseteq I_{klt}(n-1, \Phi_{st}),$$

where $\Phi_{\mathsf{st}} = \{ \ 1 - 1/b \ | \ b \in \mathbb{Z}_{\geq 1} \}.$

▶ The set Φ_{st} is not finite, but a DCC set.

Corollary ([M])

The set $I_{sm}(4)$ is bounded.

Sketch of proof:

▶ Induction on the dimension *n*.

Let

- ► X: a smooth Calabi—Yau variety of dimension n,
- ightharpoonup m = index(X).

Enough to show: $m \in I_{klt}(n-1, \Phi_{st})$.

Beauville-Bogomolov decomposition:

- $ightharpoonup \exists$ a finite étale Galois cover $\tilde{X} = \prod_i Y_i \to X$,
- Y_i: a strict Calabi–Yau variety, an irreducible symplectic variety, or an abelain variety,
- ▶ $\exists g \in \operatorname{Aut}(\tilde{X}/X)$ of index m (i.e., $g^* \curvearrowright H^0(\tilde{X}, K_{\tilde{X}}) \simeq \mathbb{C}$ is of order m).

Case (1): $\tilde{X} = Y_1$.

- ▶ The action $g \curvearrowright \tilde{X}$ is free
 - $\rightsquigarrow \varphi(m) \leq 2n \ (\varphi \text{ the Euler function})$
 - $\rightsquigarrow m \in I_{k|t}(n-1, \Phi_{st})$ by the following theorem.

Case (2): \tilde{X} decomposes into at least 2 components.

- ▶ Let $\tilde{X} = Y_1 \times Z$, where $Z := \prod_{i \neq 1} Y_i$.
- ▶ Assume g also decomposes as $g = g_1 \times g_Z$ (otherwise easy).
- ▶ If $g_1 \curvearrowright Y_1$ has a fixed point:

the action $g_Z \curvearrowright Z$ is free

- \rightsquigarrow apply the induction to $Z/\langle g_Z \rangle$
- $\rightsquigarrow m_Z \in I_{klt}(n_Z 1, \Phi_{st})$
- $\rightsquigarrow m \in I_{klt}(n-1,\Phi_{st}).$
- ▶ If g_1 has no fixed point:

 $m_1 = \operatorname{index}(g_1)$ satisfies $\varphi(m_1) \leq 2n_1$ by the holomorphic Lefchetz formula

- $\leadsto m_1 \in \mathit{l}_{\mathsf{klt}}(\mathit{n}_1-1,\Phi_{\mathsf{st}})$ by the following theorem
- $\rightsquigarrow m \in I_{\mathsf{klt}}(n-1,\Phi_{\mathsf{st}}).$

Theorem ([M])

$$n \in \mathbb{Z}_{\geq 3}$$
. Then $\{ m \in \mathbb{Z}_{\geq 1} \mid \varphi(m) \leq 2n \} \subseteq I_{\mathsf{klt}}(n-1, \Phi_{\mathsf{st}})$.

Sketch of proof:

- ightharpoonup Induction on the dimension n
 - \rightsquigarrow we may assume $m = p^e$ is a prime power.
- Construct Calabi-Yau pairs using weighted projective spaces.
 E.g.,

$$(X,B) = \left(\mathbb{P}((p-1)^{(e-1)}, 1^{(p-1)}), \frac{p^e - 1}{p^e} H + \sum_{i=0}^{e-1} \frac{p^{i+1} - 1}{p^{i+1}} H_i \right),$$

$$H_i = \{x_i = 0\}, \quad H = \{x_0 + \dots + x_{e-2} + x_{e-1}^{p-1} + \dots + x_{e+p-3}^{p-1} = 0\}$$

is a Calabi–Yau pair of dimension p + e - 3, of index p^e .

Toward the index conjecture

- ► Similar results for *terminal* Calabi–Yau varieties $l_{\text{term}}(n) \subseteq l_{\text{klt}}(n-1, \Phi_{\text{st}})$?
- ► Index conjecutre for *lc* Calabi–Yau pairs.

[Jia24] Junpeng Jiao, On structures and discrepancies of klt calabi-yau pairs, 2024, arXiv: 2405.13321v2.

[JL21] Chen Jiang and Haidong Liu, Boundedness of log pluricanonical representations of log Calabi-Yau pairs in dimension 2, Algebra Number Theory 15 (2021), no. 2, 545–567.

[Xu19] Yanning Xu, Some results about the index conjecture for log Calabi-Yau pairs, 2019, arXiv: 1905.00297v2.