On the Opdam-Cherednik transform associated with a type BC root system

拓殖大学 工学部 織田 寛 Hiroshi Oda

Faculty of Engineering, Takushoku University

1 超幾何関数と Opdam-Cherednik 変換

 \mathfrak{a} , \mathfrak{a}^* をユークリッド空間とし, \mathfrak{R} を \mathfrak{a}^* 内の結晶的ルート系とする. \mathfrak{R} の Weyl 群を W とする. Heckman と Opdam が [4] で導入した \mathfrak{R} に付随した超幾何関数を $F(\lambda, \mathbf{k}; x)$ と記す. これは,スペクトルパラメータ $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ (\mathfrak{a}^* の複素化),"重複度 関数" $\mathbf{k} \in (\mathbb{C}^{\mathcal{R}})^W$ (W 不変な写像 $\mathfrak{R} \to \mathbb{C}$),および空間変数 $x \in \mathfrak{a}$ の関数である. $\mathcal{K} = (\mathbb{R}^{\mathcal{R}})^W$, $\mathcal{K}_{\mathbb{C}} = (\mathbb{C}^{\mathcal{R}})^W$ とする.以下に詳しく述べるように, $F(\lambda, \mathbf{k}; x)$ は Riemann 対称空間上の球関数の一般化になっている.

制限ルート系が $2\mathcal{R}$ と同型な非コンパクト型の連結実半単純 Lie 群 G=KAN (右辺は岩澤分解) があるとき,Riemann 対称空間 G/K 上のスペクトル $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ ($\mathfrak{a}=\mathrm{Lie}\,A$ とする) に対する球関数の $AK/K \simeq A \simeq \mathfrak{a}$ への制限は, λ とルート重複度 $m_{2\alpha}$ ($\alpha \in \mathcal{R}$) のみで決まる \mathfrak{a} 上の微分方程式系により特徴付けられる.より詳しくは

- 1. a 上解析的
- 2. W 不変
- $3.0 \in \mathfrak{a}$ での値が 1

を満たす唯一の解になっている.この微分方程式系は一般の重複度関数 $\mathbf{k} \in \mathcal{K}_{\mathbb{C}}$ に対するもの $\mathcal{M}_{\lambda,k}$ に自然に拡張され(ただし,もとの微分方程式系は $\mathbf{k}_{\alpha} = \mathbf{m}_{2\alpha}/2$ に対するもの),"超幾何微分方程式系"と呼ばれる.すべての $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ に対して超幾何微分方程式系 $\mathcal{M}_{\lambda,k}$ の 1~3 を満たす解が存在するような $\mathbf{k} \in \mathcal{K}_{\mathbb{C}}$ 全体を $\mathcal{K}_{\mathbb{C},reg}$ とする. ($\mathcal{K}_{\mathbb{C}} \setminus \mathcal{K}_{\mathbb{C},reg}$ は解析的部分集合になる.) $F(\lambda,\mathbf{k};x)$ はその場合の唯一の解で, $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$,

 $\mathbf{k} \in \mathcal{K}_{\mathbb{C},reg}$ について正則, $x \in \mathfrak{a}$ について実解析的になる. また, λ , x のそれぞれについて W 不変になる.

 $L^2(G/K)$ の既約分解は球変換 $C_0^\infty(K\backslash G/K)\to \mathcal{O}(\mathfrak{a}_\mathbb{C}^*)^W$ から得られるが(C_0^∞ はコンパクト台の C^∞ 球関数),球変換は制限写像による同型 $C^\infty(K\backslash G/K)\simeq C_0^\infty(\mathfrak{a})^W$ により $C_0^\infty(\mathfrak{a})^W\to \mathcal{O}(\mathfrak{a}_\mathbb{C}^*)^W$ という形に書くことができる.これを一般の \mathbf{k} に自然に拡張したものが,以下に見る"超幾何 Fourier 変換"である.

正ルート系 $\mathcal{R}^+ \subset \mathcal{R}$ を固定する. W 不変な重み関数

$$\delta_{\mathbf{k}}(x) = \prod_{\alpha \in \mathcal{R}^+} \left| e^{\frac{1}{2}\alpha(x)} - e^{-\frac{1}{2}\alpha(x)} \right|^{2\mathbf{k}_{\alpha}}$$

が \mathfrak{a} 上の Lebesgue 測度 dx に対して局所可積分であるような $\mathbf{k} \in \mathcal{K}$ 全体を \mathcal{K}_1 と記す. $\mathcal{K}_1 \subset \mathcal{K}_{\mathbb{C},\text{reg}} \cap \mathcal{K}$ が知られている. $\mathbf{k} \in \mathcal{K}_1$ のとき, $f \in C_0^{\infty}(\mathfrak{a})^W$ の超幾何 Fourier 変換を

(1.1)
$$\mathcal{F}_{k}f(\lambda) = \frac{1}{|W|} \int_{\mathfrak{a}} f(x)F(\lambda, \mathbf{k}; -x)\delta_{\mathbf{k}}(x)dx$$

と定める. 明らかに $\mathcal{F}_k f \in \mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*)^W$ である. 超幾何 Fourier 変換 $\mathcal{F}_k : C_0^{\infty}(\mathfrak{a})^W \to \mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*)^W$ は,Opdam により [10] で導入された.実は,Opdam が [10] で主に考察したのは,W 不変性を取り除いたより一般的な "Cherednik 変換" であり, \mathcal{F}_k はその $C_0^{\infty}(\mathfrak{a})^W$ への制限として得られる.Cherednik は [3] で,Cherednik 変換を等価で簡単な以下のような形に再定式化した.

(1.2)
$$\mathcal{H}_{k}f(\lambda) = \frac{1}{|W|} \int_{\mathfrak{a}} f(x)G(\lambda, \mathbf{k}; -x)\delta_{\mathbf{k}}(x)dx.$$

ここで, $G(\lambda, \mathbf{k}; x)$ は [10] で導入された"非対称超幾何関数"であり(実半単純 Lie 群 G とは関係ない), $f(x) \in C_0^\infty(\mathfrak{a})$ は W 不変でなくてよい. $G(\lambda, \mathbf{k}; x)$ は,定義については命題 3.3 で述べるが, $F(\lambda, \mathbf{k}; x)$ と同様に $\mathfrak{a}_{\mathbb{C}}^* \times \mathcal{K}_{\mathbb{C}, \text{reg}} \times \mathfrak{a}$ 上の関数で, λ , \mathbf{k} について正則,x について実解析的になるので, $\mathcal{H}_k f \in \mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*)$ となる.また,

(1.3)
$$F(\lambda, \mathbf{k}; x) = \frac{1}{|W|} \sum_{w \in W} G(\lambda, \mathbf{k}; wx)$$

であるので, $\mathcal{F}_k: C_0^\infty(\mathfrak{a})^W \to \mathcal{O}(\mathfrak{a}_\mathbb{C}^*)^W$ は $\mathcal{H}_k: C_0^\infty(\mathfrak{a}) \to \mathcal{O}(\mathfrak{a}_\mathbb{C}^*)$ の制限になっている. Cherednik は \mathcal{H}_k を "Opdam 変換"と呼んだが, 我々は"Opdam-Cherednik 変換"と呼 ぶことにする. $G(\lambda, \mathbf{k}; x)$ は \mathcal{R}^+ の取り方に依存するので, \mathcal{H}_k もそうである. $\mathbf{k} = \mathbf{0}$ のときは $G(\lambda, \mathbf{0}; x) = e^{\lambda(x)}$, $\delta_{\mathbf{0}}(x) = 1$ となるので, $G(\lambda, \mathbf{k}; x)$ は指数関数の一般化, \mathcal{H}_k は古典的な Fourier 変換の一般化になっている.

2 考えるべき問題と既知の結果

 $\mathcal{K}_+ = \{ \mathbf{k} \in \mathcal{K} | \mathbf{k}_\alpha > 0 \ (\alpha \in \mathcal{R}) \}$ とすると、 $\mathcal{K}_+ \subset \mathcal{K}_1$ である. Opdam は [10] で $\mathbf{k} \in \mathcal{K}_+$ のときに以下を与えた.

(P1) Paley-Wiener の定理: \mathcal{H}_k が $C_0^{\infty}(\mathfrak{a})$ から古典的な Paley-Wiener 空間

$$\mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*) = \Big\{ \phi \in \mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*) \; \Big| \; \exists B > 0 \, \forall n \in \mathbb{N} \, \sup_{\lambda \in \mathfrak{a}_{\mathbb{C}}^*} (1 + ||\lambda||)^n e^{-B||\operatorname{Re} \lambda||} |\phi(\lambda)| < +\infty \Big\}.$$

への全単射であることの証明. $(\mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*)$ は k に依らず一定なことに注意.)

- (P2) **Plancherel の定理**: $C_0^{\infty}(\mathfrak{a}) \subset L^2(\mathfrak{a}, |W|^{-1}\delta_k(x)dx)$ の前ヒルベルト空間の構造(内積)と \mathcal{H}_k によって対応する $\mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*)$ の前ヒルベルト空間の構造.(よって \mathcal{H}_k は自然な L^2 空間の間の対応に拡張される.)
- (P3) **逆変換公式**:逆変換 $\mathcal{H}_k^{-1}: \mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*) \to C_0^{\infty}(\mathfrak{a})$ の明示公式. (いくつかのバージョンがあるが, 特に $\phi(\lambda)G(\lambda, \mathbf{k}; x)$ を $\mathfrak{a}_{\mathbb{C}}^*$ 上のある測度で積分するもの.)

(P2) の内積 $\langle \phi, \psi \rangle$ は $\phi, \psi \in \mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*)$ の $\sqrt{-1}\mathfrak{a}^*$ 上の値のみで定義され,(P3) の逆変換公式は, $\phi(\lambda)G(\lambda, \mathbf{k}; x)$ を $\sqrt{-1}\mathfrak{a}^*$ 上のある測度で積分するものになっていることを補足しておく.

これらの結果は、 \mathbf{k} が \mathcal{K}_+ の閉包 $\mathrm{Cl}(\mathcal{K}_+) = \{\mathbf{k} \in \mathcal{K} \mid \mathbf{k}_\alpha \leq 0 \ (\alpha \in \mathcal{R})\}$ に属する場合に容易に拡張される.考えるべき問題は、 $\mathbf{k} \in \mathcal{K}_1 \setminus \mathrm{Cl}(\mathcal{K}_+)$ のときに同様の結果を拡張することであるが、部分的に以下が知られている.いずれも \mathcal{H}_k に対するものではなく、 \mathcal{F}_k に対するものであり、 $C_0^\infty(\mathfrak{a})$ や $\mathcal{PW}(\mathfrak{a}_\mathbb{C}^*)$ は $C_0^\infty(\mathfrak{a})^W$ や $\mathcal{PW}(\mathfrak{a}_\mathbb{C}^*)^W$ とする必要がある.

(拡張 1) \mathcal{R} は既約かつ被約(つまり BC 型でない)とする.また, $\mathbf{k} \in (-\mathcal{K}_+) \cap \mathcal{K}_1$ とする(\mathbf{k} が正の値も負の値も取る場合は含まれないことに注意).このとき, \mathcal{F}_k に対する (P1)~(P3) が [11] で与えられたが, \mathbf{k} によっては (P2) や (P3) に $\sqrt{-1}\mathfrak{a}^*$ 以外の低次元スペクトルが本質的に関わってくる.

(拡張 2) 次に、 \mathcal{R} は既約で BC_r 型とする. $\mathbf{k} \in \mathcal{K}$ は長いルート上での値 \mathbf{k}_l 、中間

の長さのルート上での値 k_m , 短いルート上での値 k_s で決まるが、これらについて

$$\mathbf{k}_s + \mathbf{k}_\ell > -\frac{1}{2} \quad \text{かつ} \quad \mathbf{k}_m \ge 0.$$

を仮定する. ((2.1) は「 $k_m \ge 0$ かつ $k \in \mathcal{K}_+$ 」と同値である.) このとき, \mathcal{F}_k に対す る (P1)~(P3) が [7] で与えられた.

(P2), (P3) をより具体的に述べるためにいくつか記号を用意する. a* の直交基底 $\{\beta_1,\ldots,\beta_r\}$ を \mathcal{R}^+ に対応する単純ルート系が $\mathcal{B}=\{\beta_r-\beta_{r-1},\ldots,\beta_2-\beta_1,\beta_1\}$ となる ように取る. 各 $i=0,\ldots,r$ に対して、 $\Theta_i \subset \mathcal{B}$ を Dynkin 図式

の黒ノードからなる部分集合とし,

対する (P2), (P3) はそれぞれ

$$\mathfrak{a}(\Theta_i)^* = \mathbb{R}\Theta_i = \mathbb{R}\beta_1 + \dots + \mathbb{R}\beta_i,$$

$$\mathfrak{a}_{\Theta_i}^* = \{\lambda \in \mathfrak{a}^* \mid \lambda(\alpha^\vee) = 0 \ (\alpha \in \Theta_i)\} = \mathbb{R}\beta_{i+1} + \dots + \mathbb{R}\beta_r$$

と置く. \mathfrak{a}^* 上の座標関数 $\lambda_j = \beta_j^{\vee}$ を用いてそれぞれの空間の要素を座標 $(\lambda_1, \ldots, \lambda_i)$, $(\lambda_{i+1},\ldots,\lambda_r)$ で表したりする. $\mathfrak{a}(\Theta_i)^*$ の有限部分集合 $D_k(\Theta_i)$ を, i>0 のときは

(2.2)
$$D_{\mathbf{k}}(\Theta_i) = \{ (\lambda_1, \dots, \lambda_i) \mid \lambda_1 + |\mathbf{k}_l - \frac{1}{2}| - \mathbf{k}_s - \mathbf{k}_l - \frac{1}{2} \in 2\mathbb{N}, \ \lambda_i < 0,$$
$$\lambda_{j+1} - \lambda_j - 2\mathbf{k}_m \in 2\mathbb{N} \ (1 \le j \le i - 1) \}$$

で $(\mathbb{N} = \{0, 1, 2, \ldots\}), i = 0$ のときは $D_k(\Theta_0) = D_k(\emptyset) = \{0\} = \mathfrak{a}(\emptyset)^*$ で定める. [7] で明示的に定義された $D_k(\Theta_i) + \sqrt{-1}\mathfrak{a}_{\Theta_i}^*$ 上の正値測度 ν_{k,Θ_i} を用いると, \mathcal{F}_k に

(2.3)
$$\langle \phi, \psi \rangle = \sum_{i=0}^{r} \int_{D_{k}(\Theta_{i}) + \sqrt{-1}\mathfrak{a}_{\Theta_{i}}^{*}} \phi(\lambda) \overline{\psi(\lambda)} d\nu_{k,\Theta_{i}}(\lambda),$$

(2.3)
$$\langle \phi, \psi \rangle = \sum_{i=0}^{r} \int_{D_{\mathbf{k}}(\Theta_{i}) + \sqrt{-1} \mathfrak{a}_{\Theta_{i}}^{*}} \phi(\lambda) \overline{\psi(\lambda)} d\nu_{\mathbf{k},\Theta_{i}}(\lambda),$$
(2.4)
$$\mathcal{F}_{\mathbf{k}}^{-1} \phi(x) = \sum_{i=0}^{r} \int_{D_{\mathbf{k}}(\Theta_{i}) + \sqrt{-1} \mathfrak{a}_{\Theta_{i}}^{*}} \phi(\lambda) F(\lambda, \mathbf{k}; x) d\nu_{\mathbf{k},\Theta_{i}}(\lambda)$$

となる.

本稿では [9] で得られた新しい結果として、 \mathcal{H}_k に対する (P1) が (拡張 1) や (拡張 2) の設定で成り立つこと(定理 4.1), \mathcal{H}_k に対する (P2), (P3) が (拡張 2) の設定 (ただし $k_m \neq 0$ とする) で成り立つこと (定理 6.2, 6.3) を述べる.

3 次数 Hecke 環とその加群たち

3.1 次数 Hecke 環 H_k

 \mathcal{R} などは任意として、 $\mathbf{k} \in \mathcal{K}_{\mathbb{C}}$ とする. \mathcal{R}^+ および \mathbf{k} に付随する次数 Hecke 環 $\mathbf{H}_{\mathbf{k}}$ とは、 \mathbb{C} 上の結合的代数で以下を満たす唯一のものである:

- (H1) H_k は部分代数として、対称代数 $S(\mathfrak{a}_{\mathbb{C}})$ および群代数 $\mathbb{C}W$ を含む.
- (H2) 掛け算写像 $S(\mathfrak{a}_{\mathbb{C}}) \otimes \mathbb{C}W \to \mathbf{H}_k$ は線形同型.
- $(H3) \xi \in \mathfrak{a}$ と単純ルート $\alpha \in \mathcal{B}$ に対して

$$r_{\alpha} \cdot \xi = r_{\alpha}(\xi) \cdot r_{\alpha} - (\mathbf{k}_{\alpha} + 2\mathbf{k}_{2\alpha})\alpha(\xi)$$

が成り立つ. ただし, $r_{\alpha} \in W$ は $\alpha = 0$ に関する鏡映で, $2\alpha \notin \mathcal{R}$ のときは $\mathbf{k}_{2\alpha} = 0$ とする.

実は Opdam-Cherednik 変換 \mathcal{H}_k は以下で述べる 2 つの H_k 加群 $C_0^{\infty}(\mathfrak{a})$, $\mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*)$ の間 の準同型になっている(定理 3.11)ので,いろいろな H_k 加群が理論に関わってくる. 定義 3.1. H_k の反線形反同型 $h \mapsto h^*$ を

$$w^* = w^{-1} \ (w \in W), \qquad \xi^* = -w_0 \cdot w_0(\bar{\xi}) \cdot w_0 \ (\xi \in \mathfrak{a}_{\mathbb{C}})$$

で定める. w_0 は W の最長元, $\bar{\cdot}$ は $\mathfrak a$ に関する複素共役である. 複素内積 $\langle \cdot, \cdot \rangle$ を持つ H_k 加群がユニタリであるとは、内積について $\langle h \cdot, \cdot \rangle = \langle \cdot, h^* \cdot \rangle$ $(h \in H_k)$ が成り立つことをいう.

3.2 H_k 加群 $C^{\infty}(\mathfrak{a})$

ξ∈αに対して定まる微分差分作用素

$$T(\mathbf{k}, \xi) = \partial(\xi) + \sum_{\alpha \in \mathcal{R}^+} \frac{\mathbf{k}_{\alpha} \alpha(\xi)}{1 - e^{-\alpha}} (1 - r_{\alpha}) - \rho(\mathbf{k})(\xi).$$

は "Cherednik 作用素"と呼ばれ、 $C^{\infty}(\mathfrak{a})$ に作用する([2] で導入された).ここで、 $\rho(\mathbf{k}) = \frac{1}{2} \sum_{\alpha \in \mathcal{R}^+} \mathbf{k}_{\alpha} \alpha$ である. $T(\mathbf{k}, \xi)$ ($\xi \in \mathfrak{a}$) はすべて可換で、 $S(\mathfrak{a}_{\mathbb{C}})$ の $C^{\infty}(\mathfrak{a})$ への作用が導かれる.さらに、これと W の $C^{\infty}(\mathfrak{a})$ への通常の作用は (H3) の交換関係を満

たし、 H_k の $C^{\infty}(\mathfrak{a})$ への作用 $T(k,\cdot)$ に統合される. また、 $C_0^{\infty}(\mathfrak{a})$ 、 $C^{\omega}(\mathfrak{a})$ は H_k 加群 $C^{\infty}(\mathfrak{a})$ の部分加群になっている.

補題 3.2 ([10, Lemma 7.8]). $k \in \mathcal{K}_1, h \in H_k, f(x) \in C_0^{\infty}(\mathfrak{a}), g(x) \in C^{\infty}(\mathfrak{a})$ に対して、

$$\int_{\mathfrak{a}} (T(\boldsymbol{k},h)f)(x) \, \overline{g(x)} \, \delta_{\boldsymbol{k}}(x) dx = \int_{\mathfrak{a}} f(x) \, \overline{(T(\boldsymbol{k},h^{\star})g)(x)} \, \delta_{\boldsymbol{k}}(x) dx$$

である. 特に $\mathbf{k} \in \mathcal{K}_1$ のとき $C_0^{\infty}(\mathfrak{a}) \subset L^2(\mathfrak{a}, |W|^{-1}\delta_{\mathbf{k}}(x)dx)$ はユニタリである.

次に、 $\lambda \in \mathfrak{a}_{\mathbb{C}}$ とする. H_k の中心は $S(\mathfrak{a}_{\mathbb{C}})^W$ (通常の W 作用で不変な部分代数) なので、

$$C_{\mathbf{k}}^{\omega}(\mathfrak{a},\lambda) := \{ f(x) \in C^{\omega}(\mathfrak{a}) \mid T(\mathbf{k},p)f(x) = p(\lambda)f(x) \quad (p \in S(\mathfrak{a}_{\mathbb{C}})^{W}) \}$$

は $C^{\omega}(\mathfrak{a})$ の部分加群である.この H_k 加群は,Riemann 対称空間上の不変微分作用素環の同時固有関数のなす空間が,実半単純 Lie 群の表現論において果たす役割と酷似した重要な役割を持つ.以下に $C_k^{\omega}(\mathfrak{a},\lambda)$ の性質を述べるが,同時に非対称超幾何関数 $G(\lambda,\mathbf{k};x)$ の定義も与える.

命題 3.3. $k \in \mathcal{K}_{\mathbb{C},reg}$ とする.

- (1) $C_k^{\omega}(\mathfrak{a},\lambda)$ は W 加群として $\mathbb{C}W$ と同型.
- (2) $C_{m k}^{\omega}(\mathfrak{a},\lambda)^W \to \mathbb{C}; f(x) \mapsto f(0)$ は線形同型. この写像による 1 の逆像は $F(\lambda, m k; x)$.
- (3) $H_kF(\lambda, k; x) = T(k, S(\mathfrak{a}_{\mathbb{C}}))F(\lambda, k; x)$ は $C_k^{\omega}(\mathfrak{a}, \lambda)$ の唯一の既約部分加群.
- (4) $C_k^{\omega}(\mathfrak{a},\lambda)$ は 1 次元部分空間 $C_k^{\omega}(\mathfrak{a},\lambda)^{-W} := \{ f \in C_k^{\omega}(\mathfrak{a},\lambda) \mid wf = (\operatorname{sgn} w) f \ (w \in W) \}$ で H_k 上生成される. よって $C_k^{\omega}(\mathfrak{a},\lambda) = T(k,S(\mathfrak{a}_{\mathbb{C}})) C_k^{\omega}(\mathfrak{a},\lambda)^{-W}$.
- (5) 差積のような S(ac) の要素

$$\pi_{k}^{-} := \prod_{\alpha \in \mathcal{R}^{+} \setminus \frac{1}{2}\mathcal{R}} \left(\alpha^{\vee} - \left(\mathbf{k}_{\alpha} + \frac{1}{2} \mathbf{k}_{\frac{1}{2}\alpha} \right) \right)$$

に対して $T(\boldsymbol{k},\pi_{\boldsymbol{k}}^-)C_{\boldsymbol{k}}^\omega(\mathfrak{a},\lambda)^{-W}=C_{\boldsymbol{k}}^\omega(\mathfrak{a},\lambda)^W=\mathbb{C}F(\lambda,\boldsymbol{k};x).$

(6) 任意の $w \in W$ に対して $C_k^{\omega}(\mathfrak{a})_{w\lambda} := \{ f \in C^{\omega}(\mathfrak{a}) \mid T(k,\xi)f = w\lambda(\xi)f \ (\xi \in \mathfrak{a}) \}$ は $C_k^{\omega}(\mathfrak{a},\lambda)$ の 1 次元部分空間. $C_k^{\omega}(\mathfrak{a})_{\lambda} \to \mathbb{C}; f(x) \mapsto f(0)$ は線形同型. この写像に よる 1 の逆像が $G(\lambda,k;x)$.

 $\mathcal{R}_0 = \mathcal{R} \setminus 2\mathcal{R}, \ \mathcal{R}_0^+ = \mathcal{R}_0 \cap \mathcal{R}^+, \ \mathfrak{a}_{\mathbb{C} \text{ reg}}^* = \{\lambda \in \mathfrak{a}_{\mathbb{C}}^* \mid \lambda(\alpha^\vee) \neq 0 \ (\alpha \in \mathcal{R})\}$ とする.

系 3.4. $k\in\mathcal{K}_{\mathbb{C},\mathrm{reg}},\ \lambda\in\mathfrak{a}_{\mathbb{C},\mathrm{reg}}^*$ とする.

(1) $C_{\mathbf{k}}^{\omega}(\mathbf{a}, \lambda) = \sum_{w \in W} \mathbb{C}G(w\lambda, \mathbf{k}; x).$

- (2) $C_{\mathbf{k}}^{\omega}(\mathfrak{a},\lambda)^{-W}$ の 0 でない要素を $f(x)=\sum_{w\in W}a_wG(w\lambda,\mathbf{k};x)$ とすると,各 $w\in W$ に対して $a_w\neq 0$.
- (3) $F(\lambda, \mathbf{k}; x) = \sum_{w \in W} b_w G(w\lambda, \mathbf{k}; x)$ とすると, $b_w \neq 0 \Leftrightarrow w\lambda(\alpha^{\vee}) \neq \mathbf{k}_{\alpha} + 2\mathbf{k}_{2\alpha}$ ($\forall \alpha \in \mathcal{R}_0^+$).
- (4) $\mathbf{H}_{\mathbf{k}}F(\lambda,\mathbf{k};x) = \sum \{\mathbb{C}G(w\lambda,\mathbf{k};x) \mid w \in W, b_w \neq 0\}.$ 次も後で使う.

補題 3.5. $\alpha \in \mathcal{B}$ に対して $\tau_{\alpha} = r_{\alpha}\alpha^{\vee} + \mathbf{k}_{\alpha} + 2\mathbf{k}_{2\alpha}$ と置くと、 $\xi \cdot \tau_{\alpha} = \tau_{\alpha} \cdot r_{\alpha}(\xi)$ ($\xi \in \mathfrak{a}$) が 成り立つ. よって $G(\lambda, \mathbf{k})$ の特徴付けから以下が成り立つ.

(3.1)
$$T(\mathbf{k}, \tau_{\alpha})G(\lambda, \mathbf{k}) = \lambda(\alpha^{\vee})T(\mathbf{k}, r_{\alpha})G(\lambda, \mathbf{k}) + (\mathbf{k}_{\alpha} + 2\mathbf{k}_{2\alpha})G(\lambda, \mathbf{k})$$
$$= (\lambda(\alpha^{\vee}) + \mathbf{k}_{\alpha} + 2\mathbf{k}_{2\alpha})G(r_{\alpha}\lambda, \mathbf{k}).$$

3.3 球主系列 $I_k(\lambda)$

 $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ とする. 1 次元の $S(\mathfrak{a})$ 加群 $\mathbb{C}v_{\lambda}$ を $\xi v_{\lambda} = \lambda(\xi)v_{\lambda}$ ($\xi \in \mathfrak{a}$) で定め,その誘導 \mathbf{H}_{k} 加群として球主系列加群 $I_{k}(\lambda) = \operatorname{Ind}_{S(\mathfrak{a})}^{\mathbf{H}_{k}} \mathbb{C}v_{\lambda} = \mathbf{H}_{k} \otimes_{S(\mathfrak{a})} \mathbb{C}v_{\lambda} = \mathbb{C}W \otimes_{\mathbb{C}} \mathbb{C}v_{\lambda}$ を定める. 補題 3.6 ([10, Theorem 4.2]).写像 $\langle \cdot, \cdot \rangle_{W} : I(\lambda) \times I(-\overline{\lambda}) \to \mathbb{C}$ を $\langle \sum_{w} a_{w}wv_{\lambda}, \sum_{t} b_{t}tv_{-\overline{\lambda}} \rangle_{W} = \mathbb{C}W$

補起 3.6 ([10, Theorem 4.2]). 与塚 $\langle \cdot, \cdot \rangle_W : I(\lambda) \times I(-\lambda) \to \mathbb{C} \times \langle \sum_w a_w w v_\lambda, \sum_t b_t t v_{-\overline{\lambda}} \rangle_W = |W|^{-1} \sum_w a_w \overline{b}_w$ で定めると、 $\langle h \cdot, \cdot \rangle_W = \langle \cdot, h^* \cdot \rangle_W \ (h \in \mathbf{H}_k)$ が成り立つ.特に $\lambda \in \sqrt{-1}\mathfrak{a}^*$ であれば、 $I(\lambda)$ はこの半双線形形式によりユニタリである.

命題 3.7 ([2, 8]). $k \in \mathcal{K}_{\mathbb{C},reg}$ とする.実半単純 Lie 群の表現論における Poisson 変換の類似した H_k 準同型 $\mathcal{P}_k(\lambda):I_k(\lambda)\to C_k^\omega(\mathfrak{a},\lambda)$ が

$$I_{\mathbf{k}}(\lambda) = \mathbb{C}W \ni \sum_{w} a_{w} w v_{\lambda} \mapsto \frac{1}{|W|} \sum_{w} a_{w} G(\lambda, \mathbf{k}; w^{-1}x) \in C_{\mathbf{k}}^{\omega}(\mathfrak{a}, \lambda).$$

で定まる. $\mathcal{P}_k(\lambda)$ が同型であるためには

(3.2)
$$\lambda(\alpha^{\vee}) \neq -\mathbf{k}_{\alpha} - 2\mathbf{k}_{2\alpha} \quad (\forall \alpha \in \mathcal{R}_0^+)$$

が必要十分. 命題 3.3 (6) より $\operatorname{Hom}_{H_k}(I_k(\lambda), C_k^{\omega}(\mathfrak{a}, \lambda))$ は 1 次元である. $\mathcal{P}_k(\lambda)$ はこの要素で $\mathcal{P}_k(\lambda)(\sum_w wv_{\lambda}) = F(k, \lambda; x)$ であるものと特徴付けられる.

定義 3.8 ([12] 参照). $w \in W$ の簡約表現 $w = r_{\alpha_1} \cdots r_{\alpha_l}$ に対して定まる補題 3.5 の τ_{α} の積 $\tau_{w^{-1}} := \tau_{\alpha_l} \cdots \tau_{\alpha_1} \in H_k$ は,簡約表現の選び方に依らない.よって実半単純 Lie 群の表現論における(未規格化)Knapp-Stein 型繋絡作用素に類似した H_k 準同型

 $\tilde{\mathcal{A}}_k(w,\lambda):I(\lambda)\to I(w\lambda)$ が $\sum_t a_t t v_\lambda \to \sum_t a_t t au_{w^{-1}} v_{w\lambda}$ で定まる. さらに

(3.3)
$$\lambda(\alpha^{\vee}) \neq \mathbf{k}_{\alpha} + 2\mathbf{k}_{2\alpha} \quad (\forall \alpha \in \mathcal{R}_0^+ \cap -w^{-1}\mathcal{R}_0^+)$$

のとき、規格化版の H_k 準同型を

$$\mathcal{A}_{\boldsymbol{k}}(w,\lambda) = \prod_{\alpha \in \mathcal{R}_0^+ \cap -w^{-1}\mathcal{R}_0^+} (\boldsymbol{k}_\alpha + 2\boldsymbol{k}_{2\alpha} - \lambda(\alpha^\vee))^{-1} \cdot \tilde{\mathcal{A}}_{\boldsymbol{k}}(w,\lambda).$$

で定める. $\mathcal{A}_k(w,\lambda)(\sum_t tv_\lambda) = \sum_t tv_{w\lambda}$ に注意.

補題 3.9. $w, w_1, w_2 \in W$ に対して、 $w = w_1 w_2$ かつ $l(w) = l(w_1) + l(w_2)$ であるとする. このとき、 (w, λ) が (3.3) を満たすことは、 $(w_1, w_2 \lambda)$ 、 (w_2, λ) がともに (3.3) を満たすことと同値である.このとき、 $A_k(w, \lambda) = A_k(w_1, w_2 \lambda) A_k(w_2, \lambda)$ が成り立つ.

補題 3.10. $k \in \mathcal{K}_{\mathbb{C},reg}$ とする. $\mathcal{A}_k(w,\lambda)$ が定義されるとき, $\mathcal{P}_k(\lambda) = \mathcal{P}_k(w\lambda) \circ \mathcal{A}_k(w,\lambda)$ が成り立つ.

同一視 $\operatorname{Map}(\mathfrak{a}_{\mathbb{C}}^*, \mathbb{C}W) = \prod_{\lambda \in \mathfrak{a}_{\mathbb{C}}^*} I_k(\lambda); \ \Phi \leftrightarrow (\Phi(\lambda)v_\lambda)_{\lambda \in \mathfrak{a}_{\mathbb{C}}^*} \ \text{により,} \ \operatorname{Map}(\mathfrak{a}_{\mathbb{C}}^*, \mathbb{C}W) \ \text{を} \ \boldsymbol{H}_k$ 加群と見なすと, $\mathcal{P}W(\mathfrak{a}_{\mathbb{C}}^*) \otimes \mathbb{C} \subset \mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*) \otimes \mathbb{C}W \subset \operatorname{Map}(\mathfrak{a}_{\mathbb{C}}^*, \mathbb{C}W)$ は部分加群の列になる. $\mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*) \otimes \mathbb{C}W$ の元 $\Phi(\lambda)$ で条件

$$\Phi(\lambda)(\mathbf{k}_{\alpha} + 2\mathbf{k}_{2\alpha} - \lambda(\alpha^{\vee})r_{\alpha}) = \Phi(r_{\alpha}\lambda)(\mathbf{k}_{\alpha} + 2\mathbf{k}_{2\alpha} - \lambda(\alpha^{\vee})) \quad (\forall \alpha \in \mathcal{B})$$

を満たすもの全体を $\tilde{\mathcal{I}}_k$ とする.上の条件は

$$\mathcal{A}_{k}(r_{\alpha},\lambda)\Phi(\lambda) = \Phi(r_{\alpha}\lambda) \quad (\lambda: ジェネリック, \forall \alpha \in \mathcal{B})$$

と同値なので、 \tilde{I}_k および $I_k := \tilde{I}_k \cap \mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*) \otimes \mathbb{C}$ も H_k 加群 $\operatorname{Map}(\mathfrak{a}_{\mathbb{C}}^*, \mathbb{C}W)$ の部分加群である。命題 3.12 で、 I_k が Opdam -Cherednik 変換 \mathcal{H}_k の終域の別の実現であることが示される。 Opdam が [10] で定義したオリジナルの終域と実質的に同じである。 I_k の定義は若干複雑だが、その元 $\Phi(\lambda)$ への H_k の作用は,値である各主系列の要素への作用という簡単なものである。つまり,終域を I_k とすることにより,「 I_k と I_k を始域とした方が構成しやすく,Plancherel の定理における前ヒルベルト空間の構造も I_k を通じて構成される。

3.4 H_k 加群 $\mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*)$

1 次元の自明な W 加群 $\mathbb{C}v_+$ からの誘導 H_k 加群 $\operatorname{Ind}_{\mathbb{C}W}^{H_k}\mathbb{C}v_+ = H_k \otimes_{\mathbb{C}W}\mathbb{C}v_+ = S(\mathfrak{a}_{\mathbb{C}}) \otimes_{\mathbb{C}}\mathbb{C}v_+$ は $S(\mathfrak{a}_{\mathbb{C}})$ と同一視できる.この同一視による H_k の $S(\mathfrak{a}_{\mathbb{C}})$ への作用を \overline{w}_k と記すと, $\phi(\lambda) \in S(\mathfrak{a}_{\mathbb{C}})$ に対して

$$(\varpi_{\mathbf{k}}(p)\phi)(\lambda) = p(\lambda)\phi(\lambda) \qquad (p(\lambda) \in S(\mathfrak{a}_{\mathbb{C}}))$$
$$(\varpi_{\mathbf{k}}(r_{\alpha})\phi)(\lambda) = \phi(\lambda) - \frac{\lambda(\alpha^{\vee}) + \mathbf{k}_{\alpha} + 2\mathbf{k}_{2\alpha}}{\lambda(\alpha^{\vee})}(\phi(\lambda) - \phi(r_{\alpha}\lambda)) \qquad (\alpha \in \mathcal{B})$$

となる. $\mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*) \supset S(\mathfrak{a}_{\mathbb{C}})$ であるが、上の等式を用いて H_k 作用 ϖ_k を $\mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*)$ まで延長できる. $\mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*)^W = \mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*)^{\varpi_k(W)}$ に注意. また、古典的な Fourier 変換を用いると、 $\mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*)$ が H_k 加群 $\mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*)$ の部分加群であることを示すことができる.

(1.2), 補題 3.2, 補題 3.5 などから次を得る.

定理 3.11 ([10]). $\mathcal{H}_k: C_0^{\infty}(\mathfrak{a}) \to \mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*)$ は H_k 準同型.

命題 3.12. 写像

$$\tilde{\mathcal{I}}_{k} \ni \Phi(\lambda) = \sum_{w} \phi_{w}(\lambda) \otimes w \mapsto \phi(\lambda) = \phi_{w_{0}}(w_{0}\lambda) \in \mathcal{O}(\mathfrak{a}_{\mathbb{C}}^{*})$$

は H_k 加群の同型で、逆写像 $\tilde{\mathcal{Q}}_k:\mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*) \to \tilde{\mathcal{I}}_k$ は

$$\tilde{\mathcal{Q}}_{k}\phi(\lambda) = \sum_{w \in W} (\varpi_{k}(w_{0}w^{-1})\phi)(w_{0}\lambda) \otimes w$$

で与えられる. $\tilde{\mathcal{Q}}_k$ の $\mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*)$ への制限により, H_k 加群の同型 $\mathcal{Q}_k: \mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*) \xrightarrow{\sim} \mathcal{I}_k$ が導かれる.

4 Paley-Wiener の定理

この節の目標は次を示すことである.

定理 4.1. $k \in \mathcal{K}_1$ とする. $\mathcal{F}_k : C_0^{\infty}(\mathfrak{a})^W \to \mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*)^W$ が $\mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*)^W$ の上への単射であるとき, $\mathcal{H}_k : C_0^{\infty}(\mathfrak{a}) \to \mathcal{O}(\mathfrak{a}_{\mathbb{C}}^*)$ も $\mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*)$ の上への単射である.

 $F(\lambda, \mathbf{k}; x)$ の理論において、"シフト作用素"と呼ばれるx に関する微分(差分)作用素は、異なる \mathbf{k} に対する $F(\lambda, \mathbf{k}; x)$ の間の関係を与えるという重要な役割を果たす.

シフト作用素の公式の 1 つを $G(\lambda, \mathbf{k}; x)$ に対するものに拡張しよう。W の元を列挙して, $w_1=1, w_2, \ldots, w_m$ とする。 $\mathfrak{a}_{\mathbb{C}}^*$ 上の W 調和多項式の空間 $H_W(\mathfrak{a}_{\mathbb{C}}^*)$ ([6, Ch. III] 参照)の同次元からなる基底 $\{h_1, \ldots, h_m\}$ を 1 つ取り,正方行列 $P=(w_i h_j)_{1 \leq i,j \leq m}$ を作る。 $\pi=\prod_{\alpha \in \mathcal{R}^+ \setminus \frac{1}{2}\mathcal{R}} \alpha^\vee$ とすると $\det P=c\pi^{m/2}$ となることが知られているが,必要ならば h_1 を調整して c=1 とする。P の余因子行列の $1/\pi^{m/2-1}$ 倍を Q とする。Q の各成分は $S(\mathfrak{a}_{\mathbb{C}})$ の元になる。また,Q の第 1 列を q_1, \ldots, q_m とすると $Q=(\mathrm{sgn}(w_j)w_jq_i)_{1 \leq i,j \leq m}$ である。1 を $\mathcal{R}\setminus \frac{1}{2}\mathcal{R}$ 上 1 で $\mathcal{R}\cap \frac{1}{2}\mathcal{R}$ 上 0 である重複度関数 とし, $\Delta=\prod_{\alpha \in \mathcal{R}^+ \setminus \frac{1}{2}\mathcal{R}}(e^{\alpha/2}-e^{-\alpha/2}) \in C^\infty(\mathfrak{a})$ とすると次が成り立つ。

命題 4.2. $k \in \mathcal{K}_{\mathbb{C},reg}$ のとき $k+1 \in \mathcal{K}_{\mathbb{C},reg}$ である. 0 でない定数 c_k があって,

$$G(\lambda, \mathbf{k}) = c_{\mathbf{k}} \sum_{i=1}^{m} h_i(\lambda) T(\mathbf{k}, q_i) \Delta F(\lambda, \mathbf{k} + \mathbf{1})$$

となる. (この c_k は明示的に書ける.)

この命題と、[11, Theorem 2.5] による $F(\lambda, k+1; x)$ の評価式から次を得る.

系 4.3. $k \in \mathcal{K}_{\mathbb{C},reg} \cap \mathcal{K}$, $C \subset \mathfrak{a}$ はコンパクト集合, $p \in S(\mathfrak{a}_{\mathbb{C}})$ とする. このとき, 適当な A > 0 と $n \in \mathbb{N}$ により

$$|p(\partial_x)G(\lambda, \boldsymbol{k}; x)| \le A(1 + ||\lambda||)^n e^{\max_{w \in W} \Re w \lambda(x)}$$

がすべての $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ と $x \in C$ に対して成り立つ. これから特に, $k \in \mathcal{K}_1$ のとき

$$\operatorname{Im} \mathcal{H}_k \subset \mathcal{PW}(\mathfrak{a}_\mathbb{C}^*)$$

が成り立つ. (定理 4.1 の仮定は不要.)

定理 4.1 の証明の概略 変数分離公式 $S(\mathfrak{a}_{\mathbb{C}}) = H_W(\mathfrak{a}_{\mathbb{C}}^*) \otimes S(\mathfrak{a}_{\mathbb{C}})^W$ ([6, Ch. III] 参照) は、 $S(\mathfrak{a}_{\mathbb{C}})$ を $\mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*)$ に拡げても成り立つ:

$$\mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*) = H_W(\mathfrak{a}_{\mathbb{C}}^*) \otimes \mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*)^W = \operatorname{Ind}_{S(\mathfrak{a}_{\mathbb{C}})^W \otimes \mathbb{C}W}^{H_k} \mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*)^W.$$

よって定理の仮定のもと、 $S(\mathfrak{a}_{\mathbb{C}})^W \otimes \mathbb{C}W$ 準同型 $\mathcal{F}_k^{-1}: \mathcal{P}W(\mathfrak{a}_{\mathbb{C}}^*)^W \to C_0^\infty(\mathfrak{a})^W$ から H_k 準同型 $\mathcal{J}_k: \mathcal{P}W(\mathfrak{a}_{\mathbb{C}}^*) \to C_0^\infty(\mathfrak{a})$ が得られる.明らかに $\mathcal{H}_k \circ \mathcal{J}_k = \mathrm{id}$ である. $\mathcal{J}_k \circ \mathcal{H}_k = \mathrm{id}$ の証明には,Opdam による $k \in \mathcal{K}_+$ のときの議論([10] の Lemma 9.3,Corollary 9.4,Lemma 9.5)が適用できる.

5 内積の構成

ここから先は、 $\S 2$ の (拡張 2) の設定下で議論する。ただし、結果が大きく変わる r>1 かつ $\boldsymbol{k}_m=0$ の場合は除外する。

まず、 λ が $D_k(\Theta_r) = D_k(\mathcal{B})$ に属するとする.このとき [7, §3] により $F(\lambda, \mathbf{k}; x) \in L^2(\mathfrak{a}, |W|^{-1}\delta_k(x)dx)$ である.これは, $F(\lambda, \mathbf{k}; x)$ を \mathfrak{a} の正チェンバー \mathfrak{a}_+ の無限遠点における漸近展開の先頭指数に関する Casselman と Miličić の条件([1, Theorem 7.5])から分かる. $C_k^\omega(\mathfrak{a}, \lambda)$ の各元 f(x) も \mathfrak{a}_+ の無限遠点で漸近展開できるが,(1) $f(x) \in L^2(\mathfrak{a}, |W|^{-1}\delta_k(x)dx)$ であることは,(2)各 $w \in W$ について (wf)(x) の漸近展開の先頭指数が Casselman と Miličić の条件を満たすことと同値である.一方,(2)の条件は $T(\mathbf{k}, \cdot)$ の作用で不変であることが容易に分かるので,

$$\boldsymbol{H_k}F(\lambda,\boldsymbol{k};x) \subset L^2(\mathfrak{a},|W|^{-1}\delta_{\boldsymbol{k}}(x)dx)$$

が成り立つ. つまり、 $H_kF(\lambda, k; x)$ は既約ユニタリ H_k 加群である.

次に $i=0,\ldots,r$ とし、 $W(\Theta_i)$ は $\{r_\alpha \mid \alpha \in \Theta_i\}$ で生成される W の部分群とする.また,この部分群の最長元を $w_0(\Theta_i)$ とする. $\lambda \in D_k(\Theta_i)$, $\mu \in \sqrt{-1}\mathfrak{a}_{\Theta_i}^*$ とすると, $-\lambda + \mu$ と $w_0(\Theta_i)$ は (3.3) の条件を満たし, $\mathcal{A}_k(w_0(\Theta_i), -\lambda + \mu)$ が定まる.

$$w_0(\Theta_i)(-\lambda + \mu) = \lambda + \mu = -\overline{(-\lambda + \mu)}$$

なので、補題 3.6 を用いて $I_k(-\lambda + \mu)$ 上に半双線形形式

$$\langle \cdot, \cdot \rangle = \langle \cdot, \mathcal{A}_{k}(w_{0}(\Theta_{i}), -\lambda + \mu) \cdot \rangle_{W}$$

が定まり、 $\langle h\cdot,\cdot\rangle=\langle\cdot,h^\star\cdot\rangle$ $(h\in \boldsymbol{H_k})$ という $\boldsymbol{H_k}$ 不変性を持つ.

(5.1)
$$\left\langle \sum_{w} w v_{-\lambda+\mu}, \sum_{w} w v_{-\lambda+\mu} \right\rangle = 1$$

に注意.

 $\mathfrak{a}_{\Theta_i,\mathrm{reg}}^* = \{(\lambda_{i+1},\ldots,\lambda_r)\,|\,\lambda_p,\lambda_p\pm\lambda_q
eq 0\}$ とする.

命題 5.1. $\lambda \in D_k(\Theta_i), \ \mu \in \sqrt{-1}\mathfrak{a}_{\Theta_i,\mathrm{reg}}^*$ とする.

(1) $\lambda + \mu \in \mathfrak{a}_{\mathbb{C}, \text{reg}}^*$.

- (2) $\lambda + \mu$ は (3.2) の条件を満たし、 $\mathcal{P}_k(\lambda + \mu) : I_k(\lambda + \mu) \to C_k^{\omega}(\mathfrak{a}, \lambda + \mu)$ は同型. よって $I_k(\lambda + \mu)$ は唯一の既約部分加群を持ち、 $I_k(-\lambda + \mu)$ は唯一の既約商加群を持つ.
- (3) $\Theta_i^{\lambda} := \{ \alpha \in \mathcal{R}_0 \mid (\lambda + \mu)(\alpha^{\vee}) = \mathbf{k}_{\alpha} + 2\mathbf{k}_{2\alpha} \}$ は μ に依らず、 Θ_i の部分集合になる。 $\lambda + \mu$ に対する補題 3.4 (3) の条件を満たす w の全体は $W^{\Theta_i^{\lambda}} w_0(\Theta_i)$ である。ただし、 $W^{\Theta_i^{\lambda}} = \{ w \in W \mid w \Theta_i^{\lambda} \subset \mathcal{R}^+ \}$ とする。よって補題 3.4 (4) より

$$\boldsymbol{H}_{k}F(\lambda+\mu,\boldsymbol{k};x) = \sum \{\mathbb{C}G(w(\lambda+\mu),\boldsymbol{k};x) \mid w \in W^{\Theta_{i}^{\lambda}}w_{0}(\Theta_{i})\}.$$

(4) $-\lambda + \mu \in W^{\Theta_i^{\lambda}} w_0(\lambda + \mu)$ より、 $\operatorname{Im} \mathcal{P}_k(-\lambda + \mu) = \mathbf{H}_k F(\lambda + \mu, \mathbf{k}; x)$ は既約. よって、補題 3.10 より

$$J_{k,\Theta_i}(-\lambda + \mu) := I_k(-\lambda + \mu) / \operatorname{Ker} \mathcal{A}_k(w_0(\Theta_i), -\lambda + \mu)$$

$$\simeq \operatorname{Im} \mathcal{A}_k(w_0(\Theta_i), -\lambda + \mu) \simeq \mathbf{H}_k F(\lambda + \mu, \mathbf{k}; x)$$

も既約.

(5) $I_k(-\lambda + \mu)$ 上の半双線形形式 $\langle \cdot, \cdot \rangle$ は対称で半正定値. $J_{k,\Theta_i}(-\lambda + \mu)$ 上の内積を誘導し、 $J_{k,\Theta_i}(-\lambda + \mu)$ はユニタリ H_k 加群になる.

証明 (5) の半正定値性以外は難しくない. $\langle \cdot, \cdot \rangle$ は $J_{k,\Theta_i}(-\lambda + \mu)$ 上の非退化 H_k 不変半双線形形式を誘導する. そのような双半線形形式は高々 1 次元しかないので,(5.1) より $J_{k,\Theta_i}(-\lambda + \mu)$ がユニタリ化可能であることをいえばよい. i = r のときは,本節の最初で証明済みである. i < r のときは H_k の Levi 部分環 $H_k(\Theta_i) = S(\mathfrak{a}_{\mathbb{C}}) \otimes \mathbb{C}W(\Theta_i)$ の主系列 $I'_k(-\lambda + \mu)$ の唯一の既約商加群 $J'_{k,\Theta_i}(-\lambda + \mu)$ はユニタリ化可能である (i = r) の場合の議論が適用できる). このとき、

$$I_{k}(-\lambda + \mu) = \operatorname{Ind}_{H_{k}(\Theta_{i})}^{H_{k}} I'_{k}(-\lambda + \mu) \to \operatorname{Ind}_{H_{k}(\Theta_{i})}^{H_{k}} J'_{k,\Theta_{i}}(-\lambda + \mu) \to 0$$

が完全で、2番目の加群がユニタリ化可能になる。 $I_k(-\lambda+\mu)$ の極大部分加群は1 つしかないので、2番目の加群は既約で、 $J_{k,\Theta_i}(-\lambda+\mu)$ と同型になる。

6 Plancherel の定理と逆変換公式

前節の設定を引き継ぐ.

補題 6.1. $J_{k,\Theta_i}(-\lambda + \mu) = \lambda + \mu \in D_k(\Theta_i) + \sqrt{-1}\mathfrak{a}_{\Theta_i,\mathrm{reg}}^*$ とする.

(1) $I_k(-\lambda + \mu)/\operatorname{Ker} \mathcal{A}_k(w_0(\Theta_i), -\lambda + \mu)$ の基底として

$$\left\{ v_{-\lambda+\mu}^w := \left(\prod_{\alpha \in \mathcal{R}_0^+ \cap -w^{-1}\mathcal{R}_0} ((-\lambda+\mu)(\alpha^\vee) + \boldsymbol{k}_\alpha + 2\boldsymbol{k}_{2\alpha}) \right)^{-1} \tau_w v_{-\lambda+\mu} \, \middle| \, w \in W^{\Theta_i^\lambda} \right\}$$

が取れる.

(2) 各 $w \in W^{\Theta_i^{\lambda}}$ について,

$$(6.1) \quad \mathcal{A}_{\boldsymbol{k}}(w_{0}(\Theta_{i}), -\lambda + \mu)v_{-\lambda + \mu}^{w}$$

$$= \left(\prod_{\alpha \in \mathcal{R}_{0}^{+} \cap -w_{0}(\Theta_{i})^{-1}w^{-1}\mathcal{R}_{0}} ((\lambda + \mu)(\alpha^{\vee}) + \boldsymbol{k}_{\alpha} + 2\boldsymbol{k}_{2\alpha})\right)^{-1} \tau_{ww_{0}(\Theta_{i})}v_{\lambda + \mu}$$

$$=: v_{\lambda + \mu}^{ww_{0}(\Theta_{i})},$$

(6.2)
$$\mathcal{P}_{\boldsymbol{k}}(\lambda+\mu)v_{\lambda+\mu}^{ww_0(\Theta_i)} = |W|^{-1}G(ww_0(\lambda+\mu), \boldsymbol{k}; x).$$

(3) $\phi \in \mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*)$ に対して

$$Q_{\mathbf{k}}(\phi)(\lambda + \mu) = \sum_{w \in W^{\Theta_i^{\lambda}}} \phi(ww_0(\Theta_i)(\lambda + \mu)) \prod_{\alpha \in \mathcal{R}_0^+} \left(1 - \frac{\mathbf{k}_{\alpha} + 2\mathbf{k}_{2\alpha}}{ww_0(\Theta_i)(\lambda + \mu)(\alpha^{\vee})}\right) v_{\lambda + \mu}^{ww_0(\Theta_i)}.$$

(4) $\mathcal{B}_i = \{\beta_r - \beta_{r-1}, \dots, \beta_{i+2} - \beta_{i+1}, \beta_{i+1}\}$ と置くと、W における \mathfrak{a}_{Θ_i} の正規加群 $N_W(\mathfrak{a}_{\Theta_i})$ は $\{r_{\alpha} \mid \alpha \in \mathcal{B}_i\}$ で生成される Weyl 群であり

$$\mathfrak{a}_{\Theta_{i,+}}^* := \{ (\lambda_{i+1}, \dots, \lambda_r) \mid 0 \le \lambda_{i+1} \le \dots \le \lambda_r \}$$

は $N_W(\mathfrak{a}_{\Theta_i}) \curvearrowright \mathfrak{a}_{\Theta_i}^*$ の正チェンバーである. さらに,

$$W^{\Theta_i^{\lambda}} := \{ w \in W^{\Theta_i^{\lambda}} \mid w \mathcal{B}_i \subset \mathcal{R}^+ \}$$

に対して分解 $W^{\Theta_i^{\lambda}} = {}^{\backprime}W^{\Theta_i^{\lambda}} \times N_W(\mathfrak{a}_{\Theta_i})$ が成り立つ.

 $\mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*) = \operatorname{Ind}_{S(\mathfrak{a}_{\mathbb{C}})^W \otimes \mathbb{C}W}^{H_k} \mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*)^W$ より,(2.3) を延長する $\mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*)$ 上の H_k 不変内積は一意的である.

定理 **6.2** (Plancherel の定理). $\mathcal{PW}_k(\mathfrak{a}_{\mathbb{C}}^*)$ は内積

$$\langle \phi, \psi \rangle = \sum_{i=0}^{r} \int_{D_{k}(\Theta_{i}) + \sqrt{-1} \mathfrak{a}_{\Theta_{i}, \text{reg}}^{*}} \langle \mathcal{Q}_{k}(\phi)(-\lambda + \mu), \overbrace{\mathcal{Q}_{k}(\psi)(-\lambda + \mu)}^{\in I_{k}(-\lambda + \mu)} \rangle d\nu_{k,\Theta_{i}}(\lambda + \mu)$$

$$= \sum_{i=0}^{r} 2^{r-i} (r-i)! \int_{D_{k}(\Theta_{i}) + \sqrt{-1} \mathfrak{a}_{\Theta_{i},+}^{*}} \langle \mathcal{Q}_{k}(\phi)(-\lambda + \mu), \mathcal{Q}_{k}(\psi)(-\lambda + \mu) \rangle d\nu_{k,\Theta_{i}}(\lambda + \mu)$$

により $C_0^{\infty}(\mathfrak{a}) \subset L^2(\mathfrak{a}, \delta_k(x)dx)$ と同型な前ヒルベルト空間になる.

逆変換の方も同様に、(2.4) を延長する H_k 準同型 $\mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*) \to C_0^{\infty}(\mathfrak{a})$ は一意的である.

定理 6.3 (逆変換公式). $\phi \in \mathcal{PW}(\mathfrak{a}_{\mathbb{C}}^*)$ に対して

$$\mathcal{H}_{k}^{-1}\phi(x) = \sum_{i=0}^{r} \int_{D_{k}(\Theta_{i})+\sqrt{-1}\mathfrak{a}_{\Theta_{i},\text{reg}}^{*}} \mathcal{P}_{k}(\lambda+\mu) \underbrace{\left(\mathcal{Q}_{k}(\phi)(\lambda+\mu)\right)}_{\in \text{Im } \mathcal{A}_{k}(w_{0}(\Theta_{i}),-\lambda+\mu)} d\nu_{k,\Theta_{i}}(\lambda+\mu)$$

$$= \sum_{i=0}^{r} \int_{D_{k}(\Theta_{i})+\sqrt{-1}\mathfrak{a}_{\Theta_{i},+}^{*}} \frac{2^{r-i}(r-i)!}{|W|} \sum_{w \in W^{\Theta_{i}^{\lambda}}w_{0}(\Theta_{i})} \left\{ \phi(w(\lambda+\mu)) G(w(\lambda+\mu), \mathbf{k}, x) \right.$$

$$\cdot \prod_{\alpha \in \mathcal{R}_{0}^{+}} \left(1 - \frac{\mathbf{k}_{\alpha} + 2\mathbf{k}_{2\alpha}}{w(\lambda+\mu)(\alpha^{\vee})}\right) \right\} d\nu_{\mathbf{k},\Theta_{i}}(\lambda+\mu)$$

$$= \sum_{i=0}^{r} \int_{D_{k}(\Theta_{i})+\sqrt{-1}\mathfrak{a}_{\Theta_{i}}^{*}} \frac{2^{r-i}(r-i)!}{|W|} \sum_{w \in W^{\Theta_{i}^{\lambda}}w_{0}(\Theta_{i})} \left\{ \phi(w(\lambda+\mu)) G(w(\lambda+\mu), \mathbf{k}, x) \right.$$

$$\cdot \prod_{\alpha \in \mathcal{R}_{0}^{+}} \left(1 - \frac{\mathbf{k}_{\alpha} + 2\mathbf{k}_{2\alpha}}{w(\lambda+\mu)(\alpha^{\vee})}\right) \right\} d\nu_{\mathbf{k},\Theta_{i}}(\lambda+\mu).$$

参考文献

- [1] W. Casselman and D. Miličić, Asymptotic behavior of matrix coefficients of admissible representations, Duke. Math. 49 (1982), 869–930.
- [2] I. Cherednik, A unification of Knizhnik-Zamalodchikov and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), no. 2, 411–432.
- [3] I. Cherednik, Inverse Harish-Chandra transform and difference operators, Internat. Math. Res. Notices 1997 (1997), 733–750.
- [4] G. J. Heckman and E. M. Opdam, Root systems and hypergeometric functions I, Comp. Math. **64** (1987), 329–352.
- [5] G. J. Heckman and E. M. Opdam, Jacobi polynomials and hypergeometric functions associated with root systems, in Chapter 8 of T. H. Koornwinder and J. V. Stokman (Eds.), Encyclopedia of Special Functions II: Multivariable Special Functions, Cambridge University Press, (2020), 217–257.
- [6] S. Helgason, Groups and Geometric Analysis, Amer. Math. Soc., 2000, c1984.

- [7] T. Honda, H. Oda and N. Shimeno, Inversion formula for the hypergeometric Fourier transform associated with a root system of type BC, J. Math. Soc. Japan Advance Publication 1–37, December, 2022. https://doi.org/10.2969/jmsj/88728872.
- [8] A. Matsuo, Integrable connections related to zonal spherical functions, Invent. Math. 110 (1992), 95–121.
- [9] H. Oda, Inversion formula for the Opdam-Cherednik transform associated with a root system of type BC, in preparation.
- [10] E. M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995), 75–121.
- [11] E. M. Opdam, Cuspidal hypergeometric functions, Methods Appl. Anal. 6 (1999), 67–80.
- [12] E. M. Opdam, Lectures on Dunkl operators, Part I of Lecture notes on Dunkl operators for real and complex reflection groups, Math. Soc. Japan Mem. 8, Math. Soc. Japan, Tokyo, 2000.