
Sayama et al. 
Progress in Earth and Planetary Science           (2025) 12:17  
https://doi.org/10.1186/s40645-025-00691-w

RESEARCH ARTICLE Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Progress in Earth and
      Planetary Science

Parameter regionalization of large‑scale 
distributed rainfall–runoff models using 
a conditional probability method
Takahiro Sayama1*   , Masafumi Yamada1   , Ayato Yamakita2 and Yoshito Sugawara1    

Abstract 

Given the evident impact of climate change, the frequency of severe flood events has increased worldwide. For vari-
ous risk-reduction measures, covering all rivers in a country or regions including small-to-medium-sized rivers, flood 
risk assessment and real-time forecasting based on large-domain and high-resolution distributed rainfall–runoff 
models are fundamental. Due to limited observed records in such small-to-medium-sized rivers, the used distributed 
model must be robust and physically sound with the regionalized model parameters. Specifically, rather than opti-
mizing parameters in many independent river basins, leading to a patched parameter distribution, regionalization 
should reflect the spatial distribution of hydrological signatures, such as soil and geology types. However, optimizing 
the parameters with existing methods incurs computational costs, posing difficulties in the parameter regionalization 
of large-domain and high-resolution distributed runoff models. To address this challenge, we propose a parameter 
regionalization method based on conditional probability. The key feature of this method is that the calibration phase 
calculation assumes spatially uniform parameter sets within the calibrating basins, significantly reducing computa-
tional costs. However, the resulting parameter sets are spatially distributed corresponding to the region’s pre-prepared 
soil or geological maps. It was achieved by introducing the Bayes’ theorem to estimate the conditional probability 
of the parameter set. The proposed method was applied to the distributed rainfall–runoff–inundation (RRI) model 
developed for Japan with a resolution of 150 m. The model performance in the validation phase, in which the per-
formance was evaluated with 2723 flood events at 711 gauging stations, the median Nash–Sutcliffe efficiency (NSE) 
being 0.87, comparable or even improved to the performance in the calibration phase (NSE = 0.83) with 525 flood 
events at 75 dam reservoirs. Overall, the obtained nationwide high-resolution model is robust with good perfor-
mance, even in ungauged basins. Furthermore, the proposed regionalization is a simple and useful way reflecting 
spatially distributed hydrologic signatures in the model parameters, and it can be utilized for any distributed rainfall–
runoff model. 
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1  Introduction
The intensification of various hydro-meteorological haz-
ards including river floods is a growing concern amid 
climate change (IPCC 2022). For real-time flood predic-
tions and climate change impact assessment, distributed 
hydrological models have been widely used. These mod-
els can predict streamflow discharges in both gauged 
and ungauged basins, allowing for spatially consistent 
hydrological predictions over large areas (Archfield et al. 
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2015; Merz et al. 2022). Utilizing a distributed model that 
explicitly considers basin characteristics, such as topog-
raphy, soil type, and land use, can better represent hydro-
logical processes than lumped models (Clark et al. 2015; 
Fan et al. 2019). By comprehensively treating a wide area, 
it becomes possible to utilize observation data so that 
the comparison between models and observations can 
also be carried out at multiple sites (Merz et  al. 2022). 
Such large-sample hydrology (Addor et  al. 2020; Gupta 
et al. 2014) may advance the understanding of hydrologi-
cal processes and identify hydrological model structures 
from comparative hydrological perspectives.

Large-domain distributed models typically have grid 
scales ranging from 100 to 1000 m, making it impractical 
to express all processes using physical governing equa-
tions and determine parameters solely from field obser-
vations. Instead, these models approximate the physical 
behavior and introduce parameters equivalent to proper-
ties, such as hydraulic conductivity and soil layer thick-
ness. The parameter estimation process should reflect 
the spatial signatures present in the basin, such as soil 
and geological types, land use, and vegetation, through 
parameter regionalization (Abdulla and Lettenmaier 
1997; Carrillo et  al. 2011; Schweppe et  al. 2022; Young 
2006). This makes constructing a more spatially consist-
ent distributed model possible and avoid a patch-like 
parameter distribution, which results in incontiguous 
runoff responses. It also helps to clarify how soil and 
geology affect rainfall–runoff processes by examining 
the correspondence between estimated parameters and 
spatial signatures (Mizukami et al. 2017; Samaniego et al. 
2010). Furthermore, the collective use of basin informa-
tion allows hydrological projections in ungauged basins 
and more robust and stable parameters to be estimated 
without overfitting in a particular basin.

Several approaches have been proposed to achieve 
parameter regionalization in large-domain hydrologi-
cal models (Beven and Chappell 2021). These param-
eter regionalization methods can be classified based on 
whether spatially uniform or distributed parameters are 
used for the first training stages in gauged basins and 
whether a transfer function relates the spatial signatures 
and model parameters or estimates the model param-
eters directly.

An example of a parameter regionalization approach is 
the regional calibration approach developed by Hunde-
cha and Bardossy, (2004), which calibrates the functional 
dependency of model parameters on catchment descrip-
tors for all catchments. Another approach is multiscale 
parameter regionalization (MPR) proposed by Sam-
aniego et al., (2010), which uses transfer functions to con-
vert geophysical properties at their original spatial scale 
into aggregate model parameters at the desired model 

resolution. The MPR is a type of simultaneous regionali-
zation that operates at a finer resolution (data input level) 
to account for the sub-grid variability of basin predic-
tors. It utilizes transfer functions such as pedotransfer 
functions to link model parameters and basin predictors 
through transfer functions or global parameters. The 
effective parameters at a coarser grid scale were obtained 
by upscaling the calibrated parameters using the appro-
priate operations. The MPR allows for spatially consist-
ent parameter estimation and provides application-ready 
estimates of spatial parameter fields over a large geo-
graphical domain (Mizukami et al. 2017; Samaniego et al. 
2017). Other large-scale modeling approaches include 
the Parameter Set Shuffling method proposed by (Merz 
et al. 2020), which combines local calibration and region-
alization using machine learning tools without requiring 
a priori selection of the dominant catchment descriptors 
for each parameter.

The choice of the parameter regionalization method 
depends on factors such as the scale and amount of spa-
tial signature information, the computational cost of the 
model simulation, and the desired model resolution. 
The selection should also consider the balance between 
simultaneously incorporating diverse maps and main-
taining a high model resolution. For the specific case 
of a high-resolution model (~ 150  m) focusing on flash 
flood simulations, it is important to avoid overly com-
plex parameter distributions and consider reductions in 
spatial dimensionality. Calibration should involve select-
ing uniform parameter sets within the basin and choos-
ing parameter sets corresponding to soil and geological 
maps based on likelihood information. Although some 
parameter regionalization methods have been proposed 
and applied to large-domain distributed rainfall–run-
off models, there is no computationally efficient method 
that allows to estimate spatially distributed parameters 
reflecting a signature map based on spatially uniform 
parameters in the calibration phase.

The objective of this study is to propose a regional 
integration method based on conditional probability for 
parameters corresponding to soil and geological maps. 
In this approach, multiple small basins were targeted, 
and simulations were conducted using spatially uni-
form parameters within the basins. The results of these 
simulations were then used to estimate the parameters 
corresponding to the soil and geology using conditional 
probability.

2 � Conditional probability parameter 
regionalization (CPPR)

2.1 � Outline of the proposed method
In this study, we propose a method for estimating the 
spatial distribution of a parameter according to the 
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classification of soil or geological maps based on con-
ditional probability. We call this the conditional prob-
ability parameter regionalization (CPPR) method. CPPR 
comprises the following two steps. The first-step involves 
conducting multiple simulations in the calibration catch-
ments using spatially uniform candidate parameter sets. 
The second step is to compute the likelihood of each 
parameter set for different soil or geological types based 
on a conditional probability concept derived from the 
first-step simulation results. The main advantage of the 
CPPR is that, for the first-step simulation, we can con-
duct simulations with spatially uniform candidate param-
eter sets; hence, we can limit the number of first-step 
simulations. In the second step, the CPPR method identi-
fies the best parameter set for each soil or geologic type 
among the candidate sets, so that this method enables to 
estimate spatially distributed parameter sets correspond-
ing to the soil or geological map.

2.2 � Steps of the CPPR method
The following are the steps of the proposed CPPR 
method.

1)	 Prepare sets of candidate parameters.
2)	 Perform model simulations using all the candidate 

parameter sets for all the calibration basins. In this 
step, simulations were performed using spatially uni-
form parameter sets within the calibration basins.

3)	 Compare the calculated and observed discharges and 
estimate the likelihood of each candidate parameter 
set for all calibration basins. The method used to esti-
mate the likelihood can be determined according to 
the objectives of the model application. In this study, 
as we focused on the robustness of the model for 
flash flood predictions, we used the number of events 
satisfying the criteria, composed of the relative peak 
difference (RPD) and correlation coefficients (CC) 
between the simulated and observed hydrographs. 
The details are explained in Sect.  3.4 and the Sup-
plement. The estimated likelihoods p

(

qk |dj
)

 for each 

calibration basin are summarized in Fig. 1, where qk 
is the potential parameter set k and dj is the exam-
ined river basin j.

4)	 Compute areal occupation ratios p
(

si|dj
)

 of each soil 
type or geological type from a soil or geological map 
for all calibration basins, where si is the soil or geo-
logic type i.

5)	 Estimate the probability indicating which candidate 
parameter sets should be assigned for each soil or 
geology type p(qk |si) based on the following condi-
tional probability theorem:

6)	 Select for each soil or geology type, a parameter set 
with the highest p(qk |si).

3 � Model and data used in this study
3.1 � Nationwide rainfall–runoff–inundation (RRI) model
The distributed model used in this study was the rainfall–
runoff–inundation (RRI) model. The RRI model, which 
was applied to all of Japan and had a spatial resolution of 
5 s (approximately 150 m), was used in this study (here-
after referred to as the JRRI model). For the development 
of the JRRI model, Japan was divided into 14 regions 
(Figure B.1 in the supplement) so as not to straddle any 
river basin but to limit the size of each regional model. 
We used the Japan Flow Direction Map (J-FlwDir) as the 
basis for the distributed model (Yamazaki et al. 2018). As 
the original J-FlwDir was prepared with a spatial resolu-
tion of 1 s (approximately 30 m) based on digital elevation 
models provided by the Geographical Survey Institute of 
Japan, the dem and flow directions were upscaled to 5 s 
by maintaining the main flow directions using the algo-
rithm proposed by Masutani et al., (2006).

The RRI model simultaneously simulates both rainfall 
runoff and flood inundation. It applies a two-dimensional 
diffusive wave model to the land and a one-dimensional 

(1)p(qk |si) =

n
∑

j=1

p
(

si|dj
)

p
(

dj
)

p(si)
p
(

qk |dj
)

Fig. 1  The steps of the CPPR method for computing the likelihood of parameter sets for each soil or geology type
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diffusive wave model to the river channel. The model also 
computes water interaction between lands and rivers by 
considering river cross sections, including embankment 
heights, based on overtopping formulas. For the land cal-
culations, the simulated rainfall–runoff processes were 
categorized into three types: vertical infiltration domi-
nant, lateral subsurface dominant, or only lateral surface 
flow. The RRI model can include three runoff processes in 
a single model based on the parameter settings. Typically, 
we apply the vertical infiltration process to the gentle 
topography of paddy or crop fields, the lateral subsurface 
process for mountainous forests, and overland flow for 
urban areas. We used a land use map to classify it into 
three categories. Among the three classes, we particu-
larly focus on the second one, rainfall–runoff processes 
from forest mountains, since about 70 percent of Japan is 
covered by forest, which is the dominant source of flood 
runoff and makes it difficult to regionalize the model 
parameters. For flat areas, including paddy, cropping, and 
urban areas, we estimated a parameter set for each land 
use and excluded it from our calibration. Note that most 
of the basins are occupied by mountainous forests, owing 
to their topographic features. For mountainous forests, 
the current RRI model uses the following stage-discharge 
relationship to represent unsaturated and saturated sub-
surface and overland flows (Sayama and McDonnell 
2009; Tachikawa et al. 2004). The first line of Eq. (2) is to 
represent unsaturated subsurface flow in soil matrix. The 
second line is to simulate both saturated subsurface flow 
in soil matrix and macro pores. The third line represents 
saturated subsurface flow in the soil and overland flow:

where qx is the flow rate in the x-direction, h is the water 
depth from the interface between the bedrock and soil 
layer, and H is the water stage from the datum. The ka 
is lateral saturated hydraulic conductivity, da is the soil 
depth multiplied by the effective porosity, dm is the water 
depth equivalent to the maximum water content in the 
capillary pores, and n is Manning’s roughness on the 
land. To ensure the continuity of the discharge change 
when h = dm, the lateral hydraulic conductivity in the 
unsaturated zone (km) was computed as km = ka/β. Hence, 
β is the parameter to be identified instead of km. Five 
parameters were used to characterize the stage-discharge 
relationship.

When dm is set to zero, the model does not consider 
unsaturated flow and becomes a saturated subsurface 

(2)qx =















−kmdm

�
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∂H
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∂H
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and surface flow model. In this case, the model had only 
three parameters and did not tend to underestimate 
the flood discharge. For our previous model application 
study (Sayama et  al. 2020), we used a spatially uniform 
parameter set without considering the unsaturated flow, 
whose values were da = 0.471  m, dm = 0  m, ka = 0.1  m/s 
and n = 0.4 m−1/3 s called this model parameter setting as 
the default parameter set of the JRRI model. According 
to our previous study of JRRI model applications (Sayama 
et  al. 2020) to a torrential rainfall event in the western 
part of Japan in July 2018 and Typhoon Hagibis in Octo-
ber 2019, the former case focusing on the western part 
of Japan showed relatively high performance even with 
the default parameter setting, while the latter case in the 
eastern part of Japan showed overestimations of peak dis-
charges with the default parameter setting. Sayama et al. 
(2020) discussed a possible reason for the difference in 
geologic settings. The eastern part of Japan, particularly 
in the northern Kanto and part of Tohoku regions, has 
volcanic soil and geology that store more precipitation 
in the soil and bedrock, even during such severe storm 
events.

Yamada et al. (2022) incorporated 26,032 cross section 
data for the length of 7734.7 km, accounting for 72.9% of 
the total river length managed by the MLIT. Because the 
cross-sectional data include the height of the embank-
ment, the JRRI model used in this study can consider 
their impact. For other small-to-medium-sized rivers, 
whose detailed cross-sectional information is not avail-
able, we represent them in a rectangular shape. Widths 
and depths were estimated as functions of the upstream 

contributing area. This empirical equation was obtained 
from our previous study conducted in the Chikusa River 
Basin, and its applicability was validated in other river 
basins (Yamada et al. 2020).

3.2 � Selection of flood events and calibration basins
This study selected 121 dam reservoir basins managed 
nationwide by the MLIT and the Japan Water Agency 
as candidates for the calibration basins. The reasons 
for focusing on the major dam reservoirs as calibration 
basins were the comparatively high quality of the inflow 
data and their positions, typically in mountainous for-
est regions. Among the potential 121 dam basins, we 
selected 100 based on the availability of observed records.
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The flood events used for calibration and validation 
were selected between June 2002 and December 2018. 
We set the start year as 2002 because of the availability 
of finer spatial resolution of the rainfall data used in this 
study. We used radar and gauged composite data pro-
vided by the Japan Meteorological Agency and the spa-
tial resolution became finer (2.5 km and 1 km after 2006) 
compared to 5  km before 2002. The accuracy has also 
improved since then. As described above, the JRRI model 
comprises 14 regional models covering Japan. There-
fore, we extracted 10 storm events for each region. To 
extract the 10 storm events, we checked the maximum 
daily inflow at 100 dams and listed 10 storm events for 
each dam in each region. Based on this information, we 
selected 10 storm events for each region by prioritizing 
the larger inflow events for each dam. It should be noted 
that because several dam basins exist in each region, not 
all of the selected 10 storm events resulted in major flood 
events in each dam basin. Therefore, although we ran the 
model for each region with 10 storm events, we focused 
only on the largest top seven flood events in terms of 
peak discharges at each dam basin for the following cali-
brations and validations.

3.3 � Soil and geological data
3.3.1 � Soil map
This study utilized a 1:200,000 scale National Digital Soil 
Map provided by the National Agriculture and Food 
Research Organization. This soil map is available as pol-
ygon in the Shapefile format and is distributed as open 
data (CC BY 4.0). Based on the latest classification crite-
ria established in 2011 (Comprehensive soil classification 
system of Japan-first approximation), the map is available 
for cultivated areas and forests. The map contains dif-
ferent categories in a hierarchical manner: the soil great 
group, soil group, soil subgroup, and soil series group. 
Assuming that we could represent runoff processes with 
a single parameter set in each soil great group, we used 10 
different soil types in the soil great group. These include 
man-made soils, organic soils, Podzols, Andosols, Dark 
Red soils, lowland soils, red-yellow soils, stagnant soils, 
Brown Forest soils, and Regiosols. For the following anal-
ysis, we added another type, Bare Rock, for areas without 
any soil type.

3.3.2 � Geological map
As for the geological map, the study adopts the 1:200,000 
Seamless Geological Map V2 provided by the Geological 
Survey of Japan, National Institute of Advanced Indus-
trial Science and Technology. This map includes geologi-
cal information about the era, rock type, and lithology, 
with over 2400 legends. Here, we primarily used clas-
sifications based on rock types, which include igneous 

rocks, sedimentary rocks, metamorphic rocks, and accre-
tionary complexes. Following the classification used by 
(Mushiake et al. 1981) in the geology runoff analysis, we 
divided the igneous rocks into tertiary (and before ter-
tiary) volcanic rocks, quaternary volcanic rocks, and plu-
tonic rocks. Consequently, we used six types in total.

3.4 � Estimation of likelihood p
(

qk |dj
)

The CPPR method requires the determination of the 
likelihood of each parameter set in all calibration basins, 
described as p

(

qk |dj
)

 . We introduced different metrics to 
evaluate model performance, including the CC and RPD:

where Qt
o and Qt

s are the observed and simulated dis-
charges at time step t , Qo and Qs are the temporal means, 
and Qp,o and Qp,s are the peak discharges of Qt

o and Qt
s.

Because we emphasize the robustness of the model, 
particularly the model’s capability to reproduce differ-
ent magnitudes of flood discharge with a parameter set, 
we evaluate p

(

qk |dj
)

 according to the number of events 
(Npass) satisfying the following criteria:

For our particular objective of model application, it was 
essential to include RPD in the criteria, while the shape of 
the hydrographs could be examined using the CC. Nev-
ertheless, we used the NSE and Kling-Gupta efficiency 
(KGE) for model validation, as described below. Further 
detailed procedure of computing p

(

qk |dj
)

 is provided in 
the Supplement.

3.5 � Experimental settings
As described in Sect.  3.1, there are five parameters to be 
calibrated. Let us suppose the five parameters are discre-
tized into six, as described later, within realistic ranges. 
In that case, the candidate parameter set becomes 65 
(= 15,625), which is practically very difficult or impos-
sible to test all the candidate parameter sets in many cali-
bration basins. However, according to our preliminary 
investigation, among the 15,625 candidate parameter sets, 
several sets resulted in nearly identical outputs. Therefore, 
we decided to conducted preliminary simulations in two 
river basins (Hiyoshi and Shimouke dam reservoir basins) 
focusing on two different storm events at each basin with 
all the 15,625 candidate parameter sets. Based on the simu-
lated hydrographs from the two basins, we clustered these 
parameters using the k-means method in to 40 parameter 

(3)RPD =
Qp,s−Qp,o

Qp,o

(4)CC =

∑T
t=1 (Q

t
o−Qo)(Qt

s−Qs)
√

(

∑T
t=1 (Qt

o−Qo)
2
)(

∑T
t=1 (Qt

s−Qs)
2
)

(5)|RPD|< 0.15 and CC> 0.85
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sets. In the following part, the number of candidate param-
eter are limited to 40, whose parameter values were shown 
in Table B.1 in the Supplement.

To evaluate the proposed method, we compared the 
model performance for the following five cases: The first 
case, referred to as the ‘‘Soil Case,” utilizes parameters 
reflecting the soil map with the CPPR method. The sec-
ond case, ‘‘Geology Case,” employs parameters reflecting 
the geology map with the CPPR method. The third case, 
labeled ‘‘Default Case,” uses default parameters from the 
JRRI model. The fourth and fifth cases, ‘‘Optimized Case 1’’ 
and ‘‘Optimized Case 2,’’ involve optimization without con-
sidering soil or geological maps.

Optimized Case 1" uses parameter sets that yield the 
highest evaluation metrics among the 40 sets of param-
eters. Although this case was constrained by the spatial 
uniformity inside the forest areas of each dam basin, the 
independent selection of parameter sets for each dam 
allowed flexibility. It is important to recall that the main 
objective of the parameter regionalization cannot be 
achieved by this “Optimized 1” because parameter sets 
cannot be decided outside of the calibrating dam basins, 
unlike the “Soil Case” or “Geology Case” of CPPR.

Optimized 2" selected a single parameter set that yielded 
the best performance for all dam basins. Performance was 
evaluated for 75 dams of classes A and B (see the Supple-
ment for the details on classes A and B), comprising 525 
events (75 dams and seven events). Note that the param-
eter set No. 12 in Table B.1 satisfied the most events (189 
among the 525) satisfying the above criteria and was 
adopted as the “Optimized 2” parameter set. Because this 
case assigns a single parameter set for the entire mountain-
ous region, applying the same parameter set (i.e., No. 12) 
is possible outside the calibrating dam basins. Neverthe-
less, this case does not consider the spatial distribution of 
the model parameters and therefore, cannot achieve the 
main objective of this study. The “Optimized Cases 1 and 
2” will be used to compare the performance of the “Soil 
Case” and “Geology Case” of the CPPR. We used NSE and 
KGE, RPD, and CC as evaluation indices to evaluate model 
performance.

(6)NSE = 1−

∑T
t=1 (Q

t
s−Qt

o)
2

∑T
t=1 (Qt

o−Qo)
2

(7)KGE = 1−
√

(CC − 1)2 + (γ − 1)2 + (α − 1)2

(8)α =
Qs/

√

1
T

∑T
t=1 (Qt

s−Qs)
2

Qo/

√

1
T

∑T
t=1 (Qt

o−Qo)
2

3.6 � Method for verification at many observation points 
in Japan

In addition to assessing the model performance at the 
121 dam reservoir basins whose observed inflow was 
used to calibrate the model, we validated the model at 
other gauging stations (a total of 711 stations), which are 
not used for the calibration. Among the storm events 
measured at all gauging points, we selected 2723 events. 
We selected flood events for validation based on the fol-
lowing criteria: The first criterion ensures the station’s 
reliability; therefore, the station must have a record of 
more than 10  years. The second criterion ensures the 
magnitude of flood events; therefore, the peak discharge 
during a flood event should be greater than the national 
average annual maximum discharge. To estimate the 
national average annual maximum discharge for the 
whole country considering basin areas, the following 
equation approximated from the Creager curve was used:

where Q is the annual mean maximum discharge (m3/s), 
A is the basin area (km2), and C is the coefficient esti-
mated from the observed records. The least-squares 
method was used for observation points where the 
annual maximum discharge was recorded for over 
10 years. Consequently, we obtained the parameter C = 
6.41 for all of Japan. This study uses C*, defined as the 
ratio of peak discharge of interest against the standard 
annual peak discharge Q estimated by (10) to quantify 
the magnitude of the flood event for different river basin 
sizes.

4 � Results and discussion
4.1 � Calibration at dam reservoir basins
The box plot (Fig.  2) and the cumulative distributions 
(Fig. 3) show the distributions of the NSE, RPD, KGE, and 
CC with different parameter settings. The cases include 
CPPR based on soil and geologic maps (“Soil” and “Geol-
ogy” cases), the default parameter settings (“Default”), 
and two different optimization cases (“Optimized 1” and 
“Optimized 2”). Both “Soil” and “Geology” cases by the 
CPPR method outperform the “Default” and “Optimized 
2” cases, both of which assume uniform parameter set 
in mountainous regions. The median NSE values for the 
“Soil” and “Geology” cases were 0.83 and 0.80, respec-
tively, surpassing the values of 0.70 for the “Default” 
case and equivalent to 0.82 for the “Optimized 2” case. 
Furthermore, the lower quartile values in the box plot 

(9)γ =
Qs

Qo

(10)Q = CAA−0.05
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highlight the superior accuracy of the soil case compared 
to the accuracy of the geological case.

In the “Soil” case context, the median NSE value of 0.83 
closely aligns with the NSE value of 0.88 achieved by the 
“Optimized 1” case. The RPD metric evaluation reveals 
an underestimation bias (RPD = − 0.15) in the “Opti-
mized 1” case. Conversely, employing soil distribution by 
the CPPR results in a smaller bias, with a median RPD of 
− 0.05. The implementation of regionalization based on 
the soil map indicates that 50% of flood events fall within 
the range of ± 20% concerning the relative peak error. 
Among the two cases by CPPR, the ‘‘Soil’’ case exhibits 
superior results to the ‘‘Geology’’ case, emphasizing the 
efficacy of considering soil distribution. Consequently, 
parameters reflecting soil maps are considered superior 
alternatives to “Default” or “Optimized 2” parameter sets 
for the nationwide RRI model.

4.2 � Validation at streamflow gaging stations
This section presents the validation results, focusing 
specifically on the soil case and the comparison with 

the “Optimized 2” case. The total number of events 
tested was 2723. The median NSE was 0.87, which was 
also good compared to the dam basin validation results 
shown in Fig. 2. Figures 4 and 5 show the box plots and 
cumulative distributions of NSE, RPD, KGE, and CC 
based on the parameter set obtained by the CPPR with 
the soil map (soil) and by the “Optimized 2” case. The 
results suggest that all indices are better or equivalent by 
the “soil” case compared to the “Optimized 2” case in the 
validation. Overall, the model performance was robust, 
with the NSE, RPD, KGE, and CC medians at 2723 sites 
being 0.87, − 0.071, 0.74, and 0.96, respectively by the 
“soil” case.

4.3 � Effects of river basin sizes
Figure  6 illustrates the variation in accuracy owing to 
differences in basin area. The smaller basins tended to 
have lower RPD, whereas the larger basins tended to 
have higher RPD. Specifically, in the three categories 
with basin areas less than 1000  km2, the median RPD 
was below zero, whereas in the two categories with areas 

Fig. 2  Box plots comparing the different parameter settings with four evaluation indices (a NSE, b RPD, c CC, d KGE) at 75 dam reservoir basins 
(total 525 events). Soil: parameter regionalization by CPPR with a soil map, Geology: parameter regionalization by CPPR with a geology map, Default: 
spatially uniform default parameter setting, Opt 1: the best parameter set for each dam reservoir basin, Opt 2: the best parameter set applied 
uniformly for the entire Japan
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Fig. 3  CDFs compare the different parameter settings with four evaluation indices (a NSE, b RPD, c CC, d KGE) at 75 dam reservoir basins (total 525 
events). The explanations of the parameter settings for Soil, Geology, Default, Opt 1, and 2 are the same as those in Fig. 1

Fig. 4  Box plots of the evaluation indices at 711 stations (total 2723 
events) by CPPR with a soil map and by Opt 2

Fig. 5  CDFs of the evaluation indices at 711 stations (total 2723 
events) by CPPR with a soil map (solid line) and by Opt 2 (dashed line)
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greater than 1000  km2, the median RPD became posi-
tive. Although the sample size was limited to 11 in basins 
with areas below 10  km2, there were no events where 
the peak discharge was overestimated, and all events 
resulted in underestimation. One of the possible reasons 
of the underestimations of peak discharges in small river 
basins is associated to the model structure and the set-
tings. The RRI model has a setting parameter called river 
threshold, which defines how many upstream contribut-
ing grid-cells are needed to start the river channel in the 
model. In this study, we set 50 grid-cells, equivalent to 
approximately 1 km2 of the upstream contributing area. 
For small river basins (i.e., 10 ~ 100  km2), the drainage 
density becomes lower compared to that for large river 
basins. Our investigations of small river basins revealed 
the importance of adjusting the starting position of the 
channel to avoid the underestimation bias in small river 
basins. Meanwhile, we have to compromise with the rea-
sonable threshold to avoid the increase of computational 
costs for more river calculations.

In contrast, it was observed that the median NSE drops 
to 0.60 in basins larger than 10,000  km2. These points 
are limited to the lower part of the Tone and Shinano 
River basins, primarily affected by timing discrepancies 
resulting from the inadequate reflection of flood reten-
tion effects inside the main river channels. A dynamic 
wave model, rather than the diffusive wave used in 
the RRI model, may be essential for flood tracking in 
major river channels. Overall, the reproducibility of this 
model for the entire country was particularly favorable 

in medium-sized basins. Specifically, for events ranging 
from 100  km2 to 1000  km2, the median NSE was 0.89, 
and the first quartile showed a value of 0.81.

4.4 � Effects of flood event magnitudes
The model’s predictive accuracy varies depending on 
the scale of flood events. In this context, the nationwide 
average annual maximum flood discharge correspond-
ing to the basin area was estimated using Eq.  (10), and 
the peak flow of each discharge was normalized relative 
to this result. In other words, events with higher C* val-
ues in Fig. 7 indicate larger-scale events, and an approx-
imate C* equal to 1 suggests an event of approximately 
the annual maximum discharge size. According to the 
evaluation using NSE, as the event size increased, the 
relative accuracy improved, particularly in the smallest 
class of C*: 1–1.5, where the average NSE was the lowest. 
The RRI model is physically based on a simple structure 
and exhibits a higher reproducibility for larger floods. 
For events with C* greater than 1.5, the median NSE was 
0.85, and there was no significant decrease in accuracy 
for floods larger than this scale. Regarding RPD, although 
there was a slight tendency toward overall underestima-
tion, there was no noticeable difference in the results 
based on the scale of discharge events.

4.5 � Differences among regions
The results of evaluating the accuracy of the model for 
the 14 regions across Japan, with the country divided 
into these regions, are shown in Fig.  8. Note that for 

Fig. 6  Box plots of the evaluation indices with a NSE and b RPD at 711 stations (total 2723 events) comparing different basin areas
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the southern island regions of Japan, the results are not 
shown as no observational data were meeting the cri-
teria for our model validation. The spatial distribution 
maps of the reproducibility indices are shown in Fig. 9. 
These maps illustrate the average values of each index 
for events at each observation point, represented by a 
continuous color map.

Significant regional variations in accuracy were 
observed. NSE generally yielded favorable results in 
western Japan, whereas regions such as Hokkaido, 

Hokuriku, and Okinawa showed room for improve-
ment. Particularly in Okinawa, there were many events 
with small CC values or significantly underestimated 
events, with instances in which the shape of the hydro-
graphs did not correspond to the observations. Severe 
floods can occur in the Okinawa region, where the 
basin area is relatively small, particularly when directly 
affected by typhoons. The mismatch in the shapes of 
the hydrographs may be associated with the spatial and 
temporal distributions and the accuracy of the radar 

Fig. 7  Box plots of the evaluation indices with a NSE and b RPD at 711 stations (total 2723 events) comparing different event sizes: larger C* 
represents the scale of flood peak discharges, where C* = 1 is considered annual maximum flood discharges considering the basin area

Fig. 8  Box plots of the evaluation indices with a NSE and b RPD at 711 stations (total 2723 events) comparing different regions
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and gauged composite data used in this study. Among 
the regions where the NSE showed good values, the 
RPD was slightly underestimated in the Chugoku, Shi-
koku and Kyushu regions.

In contrast, the median RPD in Chubu and Kinki 
was close to zero, with RPD values of 0.022 and 0.001, 
respectively, indicating small biases. The Hokkaido and 
Tohoku regions generally have fewer floods than west-
ern Japan. In addition, there are volcanic regions in 
northeastern Kanto, including Hokkaido and Tohoku. 
The current model may not reproduce the rainfall–run-
off process well, such as storage effects in deeper parts 
of the bedrock, which may contribute to an overall 
decrease in accuracy in these regions.

4.6 � On the selected parameter sets for different soil types
Table B.2 in the Supplement shows the selected param-
eter set by the CPPR method for each soil type. The 
smaller IDs of the parameter sets indicate quicker run-
off responses leading to larger peak flow, while the larger 
IDs result in slower runoff responses leading to smaller 
peak flow. Among the 11 soil types, the brown forest 
soil, Andosols and Podosols are the three dominant soil 
types, where parameter sets No. 22, No. 27 and No. 8 
were assigned, respectively. To understand the sensitiv-
ity of the parameter sets, we applied the three identified 
parameter sets to simulate a same storm event in the 
Katsura river basin (blue lines in Fig.  10). Compared to 
the 40 possible parameters (gray lines in Fig. 10), the one 
by No. 22 shows average behavior, while the ones by No. 
27 and No. 8 showed about 20% smaller or larger of the 
simulated peak discharges. Note that the figure shows the 
simulated results also by the other possible parameters 
that were identified as the 2nd, 3rd and 4th order of the 

parameter sets for each soil type (green lines in Fig. 10). 
They behave also similar to the best parameter set (blue 
lines) for each soil type. Such difference is reflected by 
incorporating different soil types in the model.

4.7 � Limitations of this study
The results of this analysis indicated that the accuracy of 
the runoff calculations was slightly higher when using the 
soil map than when using the geological map. This can 
be attributed to the JRRI model employed in this study, 
which predominantly represents runoff processes in the 
soil layer. Geological information may become more cru-
cial when we add deep ground water module to represent 
bedrock groundwater. Adding this component is neces-
sary especially for river basins where no single parameter 
set can reproduce observed hydrographs. More spe-
cifically, to improve the simulation for the Class C river 
basins (see the detail in the Supplement), the inclusion 
of the deep groundwater, accordingly the geologic infor-
mation, will be more important. Therefore, although the 
CPPR with the soil map exhibited slightly better perfor-
mance than the geology map, it is challenging to conclu-
sively assert that the former information is more critical 
for regionalization.

Another limitation of this approach is the model’s ini-
tial conditions, a crucial aspect of event-based simula-
tions. Despite the sensitivity of initial conditions to flood 
discharges depending on the complexity of model struc-
tures and our observation that our model, representing 
only the topsoil layer, has comparatively lower sensitiv-
ity to initial conditions, the assumption of no storage at 
the beginning of the simulations may also impact the 
calibrated parameters. Owing to the high computational 
demands of the 150 m resolution nationwide model, we 

Fig. 9  Spatial distributions of average a NSE and b RPD values by the CPPR with a soil map at 711 stations (total 2723 events)
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could not conduct continuous simulations with numer-
ous parameters. Assessment of the impacts of the initial 
conditions through a comparison of event-based and 
continuous simulations is left for future work.

5 � Conclusions
Parameter regionalization is crucial in improving the per-
formance of large-domain hydrological modeling. Chal-
lenges associated with parameter regionalization include 
reflecting spatially distributed signatures, such as soil or 
geologic maps, and maintaining seamless distributions of 
state variables and fluxes in large domains under the pro-
hibitively high computational cost of the model running. 
We propose a parameter regionalization method based 
on conditional probability to address these challenges. 
The advantage of the proposed CPPR method is that the 
first phase of model running can be achieved with spa-
tially uniform parameter sets in many calibration basins 
to estimate the likelihood of each parameter in each cali-
bration basin, that is p

(

qk |dj
)

 . Based on the calibration 
and areal occupation ratios p

(

si|dj
)

 of each soil or geol-
ogy type in the calibration basins, we can compute the 
likelihood of parameter sets that should be assigned for 
each soil or geology type p(qk |si) . The proposed method 
was applied to a nationwide distributed RRI model cov-
ering Japan with a 150 m spatial resolution. The conclu-
sions are summarized as follows:

1)	 The “Soil” case by the CPPR method outperforms the 
“Optimized 2” case, which uses a spatially uniform 
best parameter set across all calibration basins. The 
median NSE of the “Soil” case by the CPPR method 
was 0.83, which closely aligns with the NSE value of 
0.88 achieved by the “Optimized 1,” which selects the 
best parameter set individually at each calibration 
basin. While the “Optimized 1” case shows an under-
estimation bias (RPD = − 0.15), the “Soil” case by the 
CPPR results in a much smaller bias (RPD = − 0.05), 

whose characteristics are important for practical uses 
in flood predictions.

2)	 Among the two cases by CPPR, the ‘‘Soil’’ case exhib-
its superior results compared to the ‘‘Geology’’ case, 
emphasizing the efficacy of considering soil distribu-
tion. This is likely because the model structure and 
parameters used in this application focused on the 
subsurface of the soil layer and surface flow. Geol-
ogy information should play a more dominant role if 
we extend our model to bedrock groundwater, which 
may further improve model performance.

3)	 To validate the model, we evaluated its performance 
with 2723 flood events at 711 gauging stations based 
on the regionalized parameter set by the CPPR 
method with the “Soil” case. The median NSE value 
was 0.87, comparable to the above calibration results. 
The median CC was high at 0.96, and over 75% of the 
tested events had a CC of 0.94 or higher.

4)	 Flood events of larger magnitude tended to show 
higher NSE values, whereas the event size less 
affected the RPD. The median RPD was − 0.1 to 0.0 
for all magnitude categories, indicating some under-
estimation bias. Regarding the model performance 
and basin size, the scale of 100  km2–1000  km2 was 
the highest, with a median NSE of 0.89 for 1304 
events. The first quartile of NSE was 0.81, indicat-
ing good performance for this basin scale. Regional 
differences in model accuracy were significant, with 
NSE generally yielding good results in western Japan.

While the proposed parameter regionalization method 
improved the model accuracy, it was not able to per-
fectly represent all observed flood events. It is necessary 
to consider the uncertainties associated with the model 
structure, initial conditions, and input data to enhance 
model performance. Despite these challenges, the nation-
wide model holds promise for comprehensive flood risk 
assessment across Japan. The proposed CPPR method 

Fig. 10  The differences in simulated hydrographs by the three identified parameter sets applicable to the major soil types. The background gray 
lines show the hydrographs by all the 40 possible parameters, while the green lines show the results by the other possible parameter sets for each 
soil type (a Brown forest soil, b Andosols, c Podosols)
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is computationally efficient and effective for obtaining 
seamless state variables and fluxes that reflect hydrologi-
cal signature distributions.
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