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Abstract 

This paper reflects on a soft time windows variant of the Vehicle Routing Problem (VRP) that only considers penalties on late 
arrival while waiting on early arrival is allowed without cost, namely the Vehicle Routing and scheduling Problem with Semi 
Soft Time Windows (VRPSSTW). A column generation (Dantzig-Wolfe decomposition) based exact optimisation approach is 
presented to obtain exact solutions for the VRPSSTW. While the computation time for the exact approach is adequate for smaller 
instances, the computation time for large-sized problems is very large for the exact solution technique, which favours the use of 
heuristics for the soft time windows variants of the VRP, in city logistics-related research. Therefore, as an application, this paper 
shows that how these exact solutions can be used as benchmark solutions to evaluate the performance of heuristics on smaller 
instances before applying these heuristics to large VRPSSTW instances. Errors between the optimal solutions and approximate 
solutions were used to calibrate a genetic algorithm heuristic for the VRPSSTW. Large errors instigated a change in the 
initialization procedure in the genetic algorithm heuristic, which resulted in the improved performance in terms of cost and 
computation time. 
© 2010 Elsevier Ltd. 
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1. Introduction 

The aim of city logistics is to optimise urban freight movement with respect to the public and private costs and 
benefits (Taniguchi et al., 2001). Traffic congestion, parking issues, accidents and environmental problems are also 
considered in the design and evaluation of city logistics-related measures and policies. The Vehicle Routing and 
scheduling Problem with Time Windows (VRPTW) is a typical route optimisation technique employed in city 
logistics. It is also used to evaluate many types of city logistics measures, for example, the optimal location of 
logistics terminals (Yamada et al., 2001) and cooperative delivery systems (Qureshi and Hanaoka, 2005), etc. City 
logistics focuses on practical logistics problems, which are often set in soft time windows environment where late 
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deliveries (with respect to time windows [ai, bi]) are possible at some penalty cost; this scenario is modelled using 
the Vehicle Routing and scheduling Problem with Soft Time Windows (VRPSTW).  

At present, no efficient exact optimisation approach is available for the VRPSTW due to its complex cost 
structure that includes the early and late arrival penalties based on the arrival time, and mostly heuristics 
(approximate) solutions have been used for the VRPSTW in city logistics-related research. Solutions for the large 
instances are required within a reasonable time in city logistics research, which has also favoured the predominant 
use of heuristics in this field.  

However, heuristics are sometimes faster and more easily implemented, yet they do not guarantee to identify the 
exact solution or state how close to the exact solution a particular feasible solution is (Thompson and Duin, 2003). 
On the other hand, many exact optimisation approaches have been reported for the hard time windows variant 
(VRPHTW) in the literature such as column generation (Feillet et al., 2004) and Lagrangian relaxation (Kallehauge 
et al., 2006), even though it not so practical due to the stringent restriction on late deliveries. The simple cost 
structure of the VRPHTW that allows waiting without any penalty and follows the cost triangular inequality, makes 
it attractive to the researchers in the exact optimisation field. 

This paper presents an exact optimisation approach for a variant of the VRPTW named, the Vehicle Routing and 
scheduling Problem with Semi Soft Time Windows (VRPSSTW). It retains the best features from both the 
VRPSTW and the VRPHTW, the cost triangular inequality is reserved by allowing waiting at no cost (similar to the 
VRPHTW), whereas the practicality of the VRPSTW is incorporated by allowing late deliveries with late arrival 
penalties. This type of time window is very important from a practical point of view for logistics managers, as it 
offers more economical use of resources at minimum delays in delivery due to the penalties for late arrival. A 
branch and price algorithm is presented for the VRPSSTW by extending the column generation solution of the 
VRPHTW. These exact VRPSSTW solutions can be used to calculate the errors (between optimal and approximate 
solutions) and to calibrate the heuristics on smaller instances before the heuristics are used to solve large scale 
instances.  

Therefore, as an application, exact solutions of benchmark problems have also been compared with approximate 
solutions from a simple genetic algorithm heuristic (hereafter referred as GA-1) and the relative error in delivery 
costs and computation time requirements are reported. Large errors in the GA-1 results required some changes to 
improve the quality of heuristics solutions. Consequently, another genetic algorithm heuristic (hereafter referred as 
GA-2) is also evaluated, which uses a different initialization procedure than the GA-1. Such an evaluation of 
heuristics on the exact benchmark solutions will provide researchers in the city logistics field with more confidence 
and stronger foundations to appraise and support city logistics-related policies, which are assessed using the 
heuristics solutions of the VRPSSTW.  

2. Literature Review 

Column generation-based algorithms have been very popular in the exact optimisation field for the VRPHTW. 
Dantzig-Wolfe decomposition (commonly known as column generation) of the VRPHTW results in the set 
partitioning master problem and an Elementary Shortest Path Problem with Resource Constraints (ESPPRC) as its 
sub-problem. While the master problem remains the same, many researchers have worked with various shortest path 
variations as sub-problems in their column generation schemes for the VRPHTW. For instance, Desrochers et al. 
(1992) presented the first column generation-based approach for the VRPHTW, using 2-cycle elimination while 
solving the relaxed shortest path sub-problem. Irnich and Villeneuve (2003) used a relaxed shortest path sub-
problem with k-cycle elimination (with k ≥ 3) in their column generation scheme for the VRPHTW. Recently, 
Feillet et al. (2004) and Chabrier (2006) have used the ESPPRC as the sub-problem in a very efficient Dantzig-
Wolfe decomposition-based approach for the VRPHTW.  

Using the same principle, this study decomposes the VRPSSTW into a set partitioning master problem and an 
Elementary Shortest Path Problem with Resource Constraint and Late Arrival Penalties (ESPPRCLAP) sub-problem. 
To our knowledge, no exact solution algorithm for the VRPSSTW is available; however, Taillard et al. (1997) and 
Gendreau et al. (1999) have used similar semi-soft time windows settings in their tabu search heuristics, arguing for 
their practicality and a trade-off between fleet size and service quality to customers (i.e., delivery within time 
windows).  
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Earlier research on exact solutions incorporating soft time windows have focused on the schedule optimisation of 
a given fixed path considering linear (Sexton and Bodin, 1985) and/or generalized convex penalty functions (Dumas 
et al., 1990). Recently, Tagmouti et al. (2007) presented an arc routing problem with soft time windows, where 
vehicles are not allowed to wait along their routes. In their column generation scheme, they have used a modified 
labelling algorithm for the Shortest Path Problem with Time Windows and Time Costs (SPPTWTC) sub-problem 
earlier given by Ioachim et al. (1998). The vehicle arrival pattern has been represented by a continuous variable 
resulting in very high computation times and limited the maximum size of problem solved to 40 customers. Unlike 
our column generation scheme that iteratively adds the feasible routes of marginal negative cost from the sub-
problem to the set partitioning master problem, Calvete et al. (2007) exploited goal programming to enumerate all 
feasible routes in the first stage and then used the set partitioning problem to solve a VRP with soft time windows, 
heterogeneous fleet and multiple objectives. In a similar approach, Fagerholt (2001) solved a ship-scheduling 
problem with soft time windows. The Traveling Salesman Problem with Capacity, Hard Time Windows and 
Precedence Constraint (TSP-CHTWPC) was used to enumerate all feasible routes and then their schedules were 
optimised using soft time windows, before optimising a set partitioning problem based on these routes.  

As said earlier, the bulk of the research targeting the soft time windows is in heuristics domain such as local 
search heuristics (Hashimoto et al., 2006), Tabu search (Duin et al., 2007) and heuristics presented by Balakrishnan 
(1993) based on the nearest neighbour, Clarke-Wright savings and space-time rules. Particularly, genetic algorithm 
(GA) based heuristics have been used abundantly in solving complex and close to real life VRPSTW instances in 
city logistics; for example, Taniguchi and Heijden (2000) used GA solutions of the VRPSTW to evaluate many city 
logistics measures such as cooperative delivery systems (CDS) and load factor controls. Taniguchi et al. (2001) used 
a GA to solve a Probabilistic VRPSTW (VRPSTW-P) that incorporates the uncertainties of travel times on a road 
network. Yamada et al. (2004) used a similar GA approach for VRPSTW-P to study the travel time reliability of a 
road network.  

Utilising the VICS (Vehicle Identification and Communication System) data and the data from 66 days operation 
of probe pickup/delivery trucks, Ando and Taniguchi (2007) applied the VRPSTW-P and its GA solution to an 
actual delivery system in Osaka, Japan. Yamada et al. (2001) combined logistics terminal location, CDS and the 
VRPSTW into a single framework. The combined model was solved using a GA heuristic, and the results were 
compared to a base case that did not use the CDS. Qureshi et al. (2009) presented a hybrid genetic algorithm 
embedded in the flexible framework of the column generation scheme in an effort to reduce the computation time of 
the VRPSTW heuristics solution. A detailed review and discussion concerning the VRPSTW can be found in 
Taniguchi et al. (2001), while excellent reviews of the heuristic methods applied to the VRPTW are available in 
Braysy and Gendreau (2005a; 2005b). 

3. Model Formulation 

The VRPSSTW is defined on a directed graph G  = (V, A). The vertex set V includes the depot vertex 0 and set of 
customers C = {1, 2, . . ., n}. The arc set A consists of all feasible arcs (i, j), i, j  V. Both cost cij as well as time tij 
are associated with each arc (i, j)  A. Time tij includes the travel time on arc (i, j) and the service time at vertex i, 
and a fixed vehicle utilisation cost is added to all outgoing arcs from the depot, i.e. in c0j, j  C. A set of identical 
vehicles (represented by K) with capacity q stationed at the depot, is available to service customers’ demands. With 
every vertex of V there is an associated demand di, with d0 = 0, and a time window [ai, bi] representing the earliest 
and the latest possible service start times.  

This study incorporates the semi-soft time windows constraint by extending the latest possible service start time 
bi to bi’ as shown in Figure 1. To obtain the maximum limit bi’, a maximum late arrival penalty equivalent to the 
cost of a dedicated single vehicle route only serving the concerned vertex was used. Taking cl as the unit late arrival 
penalty cost, the maximum limit of bi’ can be defined as equation (1).  
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Figure 1 Penalty cost function for the VRPSSTW 

Let sjk define the service start time at a vertex j  C by a vehicle k  K. For all arcs (i, j)  A, except arcs which 
violate the inequality, ai + tij ≤ bj’, the modified time dependent travel cost, c’ijk is defined as a function of sjk 
(equation (2)). The VRPSSTW can be mathematically formulated as equations (3) to equations (11). 
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The model contains two decision variables: sjk determines the service start time at customer j as well as the travel 

cost of arc (i, j), and xijk represents whether arc (i, j) is used in the solution (xijk = 1) or not (xijk = 0). The objective 
function (3) minimises the delivery cost; whereas, constraints (4)-(10) ensures that all routes must start and end at 
the central depot, serving every customers once within their relaxed time windows [ai, bi’], and that the vehicle 
routes do not violate the capacity constraint. Finally, constraint (11) defines the integration of the arc flow variables 
xijk. 
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4. Column Generation based Exact Solution of the VRPSSTW 

Using the Dantzig-Wolfe decomposition, the VRPSSTW is decomposed into a set partitioning master problem 
and an ESPPRCLAP as its sub-problem. The ESPPRCLAP gives the feasible shortest path subject to constraints 
(4)–(10). The objective function (3) is a non-linear function; however, the same decomposition methodology can be 
adopted for the exact solution of the non-linear optimisation problem (3)–(11) as that used for a variant of the 
Capacitated Arc Routing Problem (CARP) (Tagmouti et al., 2007). The master problem remains linear while the 
non-linearity is handled at the sub-problem level using dynamic programming. The master problem, which consists 
of selecting a set of feasible paths of minimum cost, is described mathematically in equations (12)-(14), where P is 
the set of all feasible paths. The variable yp takes value 1 if the path p  P is selected and 0 otherwise. The cost of 
path p is denoted by cp, and aip represents the number of times path p serves customer i. As the set P can grow 
exponentially with the number of customers, a restricted master problem is optimised based on the available number 
of columns (routes) represented by set P

~
. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Flowchart of the exact solution algorithm for the VRPSSTW 
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During this optimisation, dual variables’ values (prices) i , i  C, are obtained as a by-product, which are used 

to find the reduced costs (marginal costs) ijc  as per equation (15). The ESPPRCLAP sub-problem is called with 

these reduced costs and it returns columns with negative reduced costs, which are used to augment the partial set P
~

. 
Finally, the column generation procedure was embedded in a branch and price scheme to obtain integer solutions. 
Figure 2 shows the complete exact solution algorithm for the VRPSSTW. 
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5. The ESPPRCLAP Sub-problem 

 In the VRPSSTW, all vehicles are considered identical; therefore, the ESPPRCLAP sub-problem is solved on 
the same network as the VRPSSTW, with the arc costs being reduced by the corresponding dual variables (prices) 
generated in the master problem using equation (15). A new labelling algorithm was developed for the ESPPRCLAP, 
which is based on the template-labelling algorithm for shortest path problem described in Irnich and Villenuve 
(2003). Every path from origin depot to a customer vertex is represented by a label that contains some information 
about that path. In the labelling algorithm, a label is selected based on some criteria and subjected to a usefulness 
test (label dominance). If found useful, the path associated with this label is extended to all possible successor 
vertices (path extension). The main features of the labelling algorithm for the ESPPRCLAP are described next.  

5.1. Label representation 

A label was represented in the form of a row of a matrix, containing |V|+7 entries, which show the important 
aspects of the associated path such as the last vertex on the path (the resident vertex), the service start time at the 
resident vertex (the time resource), capacity of the vehicle consumed so far along the path (the capacity resource) 
and the reduced cost of the path. A vector (vis(L)) is also a part of the label L with |V| entries, where an entry of 1 
represents the already visited or unreachable vertex, and possible successors are marked with zero entries. The sum 
of these entries is also kept to show the total number of unreachable vertices. A unique label number is associated 
with every label (Label no.), which is used to link them with their predecessor labels using the label number of its 
predecessor label (pred(L)). Figure 3 shows an example of a label created at customer 6 for an instance with V = {0, 
1, 2, . . ., 7}.  

5.2. Dominance rule 

A labelling algorithm generates new states or labels from previously generated labels, dominance rules are 
implemented to avoid proliferation of labels. The role of dominance rules is to identify labels (thus associated paths), 
extension of which will never generate an optimum path so that such labels shall not be considered in the path 
extension step. As long as the cost function and consumption of resources follow a non-decreasing function such as 
in the case of ESPPRCLAP, the dominance rules developed for any ESPPRC variant remain the same (Larsen, 
1999). Next, the dominance rules are described which are same as ESPPRC dominance rules described in  
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1 0 0 1 0 0 1 0 1 

Time resource: t(L) 

-15.31 47 25.4 6 4 1024 2137 

 vis(L) 

Resident vertex: res(L) 6 

25.4 

Capacity resource: q(L) 47 

Reduced cost of label: c(L) -15.31 

Predecessor label No. : pred(L) 1024 

Current label No. : Label no. 2137 

Total unreachable vertices: S(L) 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Label representation in the ESPPRCLAP labeling algorithm 

Feillet et al. (2004). Consider two labels L1 and L2 both having same resident vertex, res(L1) = res(L2). To verify 
whether the label L1 dominates the other label L2, the following dominance criteria (equation (16)-equation (20)) are  
validated in the given sequence. For example, the label L1 shown in the Figure 4 dominates the Label L2, because it 
satisfies all of the dominance criteria sequentially. 
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5.3. Path extension 

In labelling algorithms for various variants of shortest path problem, dominance rules and path extension steps 
form the two main building blocks (Irnich and Villenuve, 2003). During the path extension step, an existing label at 
vertex i is extended to all new possible labels, one at every possible successor of i, by updating the resource 
consumptions and cost. In the labelling algorithm for the ESPPRCLAP, if a label Li with res(Li) = i is to be extended 
to Lj with res(Lj) =  j using arc (i, j), the following rules were used to update the associated resources and cost. 
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A newly generated label inherits the vector of visited vertices from its processor label. This vector is further 

updated by assigning a value of 1 for the vertices h having a 0 entry in vis(Li), which becomes unreachable from 
new resident vertex j due to violation of any of the conditions given by equation (24) and equation (25). Finally, the 
total number of unreachable nodes S(Lj) in the new state is calculated as the sum of vis(Lj), and the label number of  
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Figure 4 Dominance of label L1 on label L2 

Li is set as the immediate predecessor in pred(Lj). New path extension rules were defined for the ESPPRCLAP to 
incorporate the variable costs (due to possible late arrival penalty) and in update rules for vis(Li) to consider relaxed 
time windows [ai, bi’] as shown in equation (23) and equation (24), respectively. 
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6. Genetic Algorithm (GA) Heuristics 

 As discussed earlier, meta-heuristics solution techniques have been applied to obtain good solutions for the 
VRPSTW. It is very difficult to evaluate a heuristics approach in absolute terms as they do not state the gap between 
their best feasible solution and any lower bound. In this study, as an application, the exact VRPSSTW solutions are 
used to evaluate the relative error and computation time requirement for a simple GA (GA-1). It was found that the 
GA-1 results contain considerably large errors; therefore in order to improve its quality, some of the procedures and 
parameters of GA-1 were changed to formulate another GA heuristic (GA-2). Some important procedures and 
parameters are described below for both the GAs.  

6.1. Chromosome representation and population 

 GA-1: The population is composed of 1000 integer valued individuals or chromosomes, each representing a 
complete feasible VRPSSTW solution. A greedy look-ahead insertion heuristic based on time windows matching is 
used to generate a feasible solution. Half of the initial population is obtained by randomly swapping one to four 
customers in this feasible solution, while the remaining half is generated randomly. Figure 5 shows a chromosome 
for a twelve customer instance and its interpretation in the GA-1 for new vehicles due to the presence of a depot 
gene or due to the violation of capacity or time window constraints. Two continuous variables (qsum0 = 0 and 
twroute0) for each vehicle are initiated (as per equation (26)) and updated every time that vehicle travels from i to j 
according to the equation (27) and equation (28).  
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GA-2: The chromosome representation and interpretation remain the same as the GA-1. The number of 

chromosomes is reduced to 200. But all of these chromosomes are obtained using a Stochastic Push Forward 
Insertion Heuristics (SPFIH) (Alvarenga et al., 2007), modified to incorporate soft time windows. Let (i0, i1, i2, . . ., 
im) be a partial route in the SPIFH that starts and ends at the depot (i.e. i0 = im = 0). The service start time

ri
s , waiting 

time
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w  and late arrival time
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l  are known for 0 ≤ r ≤ m. Insertion of a customer vertex u between ip-1 and ip, causes  
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Figure 5 VRPSSTW chromosome coding and interpretation in GA 
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insertion position of customer u. Similar to Solomon (1987), the best feasible insertion place is determined using 
equation (29) for each un-routed customer u; however, an additional term is added to consider the changes in late 
arrival penalties for the customers ir, p+1 ≤ r ≤ m-1 in order to find the insertion cost (equation (30)) of each un-
routed customer u. Finally, the best customer u* to be inserted in the route, is obtained using equation (31). 
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6.2. Crossover, mutation and elitism 

Both the GA-1 and GA-2 share the same settings for crossover, mutation and elitism. To generate the population 
for the next generation, individuals from the present population are selected using the Stochastic Universal Selection 
(SUS) method (Chipperfield et al., 1994) based on their fitness value. To maintain the feasibility of the 
chromosomes, i.e., to avoid duplication of the same customer gene, an ordered-based two-point crossover is used 
with a crossover rate of 98%. A simple swap mutation is used to stirrup the search pattern at a mutation rate of 10%. 
To ensure that each iteration of the GA always finds a new or maintains the best solution found so far, elitism is 
adopted thereby keeping the best 2% individuals of the current population in the population of the next generation.  

6.3. Number of generations and population re-generation 

In order to relate the optimisation effort with the instance size, the maximum number of iterations (generations) is 
kept as 250 times the number of customers in the instance. The population is regenerated after every 500 generations. 
During this step, a new population is generated by keeping 2% of the elite individuals of the current population and 

(29) 
 
(30) 

 
(31) 
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the remaining 98% is generated using the same procedures as used in the initialization. However, in GA-1, the first 
half of the population was based on the neighbourhood of the current best solution instead of the greedy insertion 
solution (used in the initialisation).  

7. Results and Discussions 

The algorithms were implemented in MATLAB, and were run on a computer with 2.4 GHz AMD Athlon with 64 
x 2 dual core processors and 2 GB of RAM. The test instances are based on the Solomon’s R101 benchmark 
instance (Solomon, 1987). The R101 contains 100 randomly located customers, and the smaller instances are 
obtained by considering first 25, 50 and 75 customers. The nomenclature “R101-50-10” shows an instance derived 
from R101 with 50 customers and with a time windows relaxation (bi’- bi) by 10 minutes. In the maximum time 
windows relaxation the limit bi’ is found as per equation (1). The vehicle operating cost (VOC) was taken as 14.02 
Japanese yen (JPY)/minute and a fixed cost of 10417.50 JPY/vehicle. The unit late arrival penalty cost (cl) was set 
to five times that of the VOC. These parameter settings are based on an interview survey of logistics firms in Japan. 
A scaled cost matrix was used in programs taking VOC = 1 (travel cost = travel time), and all costs were also scaled 
to the same level. Figure 6 shows the convergence of such a scaled objective function (upper bound) in the exact 
solution of the R101-50-20 instance along with the lower bound. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Upper and lower bound convergence in exact solution of R101-50-20 

The operation time of a vehicle is composed of the time required for starting from the depot, serving all the 
customers along its route, and returning back to the depot. Table 1 provides the details of the exact solutions such as 
the number of required vehicles (routes) (Col. 2) their cumulative operation time (Col. 3) and late arrival time (Col. 
4). Columns 5-7 and 8-10 provide the corresponding data for the best solutions obtained using GA-1 and GA-2, 
respectively. As compared to the exact solutions, the late arrival penalties were less in the GA-1 solutions, but it 
failed to simultaneously reduce the number of required vehicles. This resulted in substantially higher delivery cost, 
which is composed of the fixed vehicle utilisation cost, operation cost and the late arrival penalties. On the other 
hand, GA-2 was able to produce solutions with almost the same number of vehicles as in the exact solution. Table 2 
provides the comparison of delivery cost and computation time for all the three approaches, i.e., the exact approach, 
GA-1 and GA-2. 

One of the objectives of this paper is to introduce the exact VRPSSTW solutions as benchmark solutions, used to 
evaluate and calibrate the heuristics approaches. The relative error in delivery cost and the relative computational 
burden between the heuristics and the exact solutions of the VRPSSTW have been used in this regard. The relative 
cost error shows the percentage error in the delivery cost of a heuristics solution to the exact solution, found by 
using the data of Table 2. For example, in the case of GA-1, it was found by ((Col.(4)-Col.(2))*100/Col.(2)). 
Similarly, the relative computational burden for GA-1 was found using ((Col.(5)-Col.(3))*100/Col.(3)). Table 3 
reports these factors for both GAs.  
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Table 1 Details of exact solutions and best solutions obtained in GA-1 and GA-2 

 Exact Solution  GA-1  GA-2 

Instance Veh. OT LAT  Veh. OT LAT  Veh. OT LAT 

(1) (2) (3) (4)  (5) (6) (7)  (8) (9) (10) 

R101-25-10 7 855.4 7  7 855.4 7  7 855.4 7 

R101-50-10 9 1566 39.9  11 1529.8 3.2  10 1508.5 17.8 

R101-75-10 13 2139.9 55.7  16 2164.4 3.4  14 2157 31.1 

R101-25-20 5 801.8 118.5  6 835.8 33  5 798.3 126.4 

R101-50-20 8 1482.9 160.3  10 1541.4 25.5  8 1488.7 180.3 

R101-75-20 11 1985.4 212.2  14 2199.7 47.7  12 2155.3 261.9 

R101-25-max 5 782.3 98.3  5 782.3 98.3  5 782.3 98.3 

R101-50-max* 8 1425.5 184.5  9 1561.8 47.2  8 1458.2 193.2 

Veh. = Required number of vehicles,  OT = Operation time (minute),  LAT = Late arrival time (minute) 

Table 2 Comparison of delivery cost and computation time 

 Exact Solution  GA-1  GA-2 

Instance 
Delivery 
Cost 

Computation 
Time 

 Delivery 
Cost 

Computation 
Time 

 Delivery Cost 
Computation 
Time 

 (JPY) (Seconds)  (JPY) (Seconds)  (JPY) (Seconds) 

(1) (2) (3)  (4) (5)  (6) (7) 

R101-25-10 85405.9 1.639  85405.9 766.378  85405.9 172.482 

R101-50-10 118509.8 22.785  136264.6 1997.999  126572.0 1652.603 

R101-75-10 169333.5 1132.870  197263.2 5554.983  178266.3 3068.613 

R101-25-20 71635.6 3.465  76536.2 599.943  72140.3 321.580 

R101-50-20 115367.3 128.966  127573.0 2295.015  116850.6 651.805 

R101-75-20 157303.0 1385.912  180028.6 10428.610  173586.5 3375.351 

R101-25-max 69946.2 70.941  69946.2 3439.813  69946.2 165.909 

R101-50-max† 116259.0 45983.000  118962.7 9849.979  117327.3 299.588 

 
As far as the cost is concerned, GA-1 performed better for the smaller instances with 25 customers, but for the 

larger instances (50 and 75 customers) its performance significantly suffered, which is the typical case with most of 
the heuristics. For a particular size of problem, a marked trend is that the relative computational burden goes on 
decreasing in GA-1 as the time windows relaxation increases. For example it started up with a very high value 
(8669.06%) for R101-50-10, reduced to a moderate value (1679.55%) for R101-50-20 and eventually became 
negative for R101-50-max, which means that the computation time of the GA-1 was less than the exact approach; in 
fact the R101-50-max was not solved to optimality and only the best integer solution is reported in the tables. This is 
due to the fact that the time complexity of the shortest path sub-problem in the exact approach is a function of the 
width of time windows (Desrochers et al., 1992), and most of the computation time in exact approach is consumed 
to solve the sub-problem. This also elaborates the significance of heuristics as viable solution approaches for larger 
instances with large time windows. In order to control the high relative cost error for larger instances the 
initialization procedure was changed in GA-1 to formulate GA-2. Table 3 shows the positive effects of this change 
in terms of lower relative cost errors for GA-2 as compared to GA-1. In addition, the change in the initialization also 
worked well with the relative computational burden, which was also reduced noticeably for most of the cases. 

 

† Best integer solution found in more than 12 hours of computation time, is reported under the exact solution column. 
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Table 3 Performance evaluation of GA-1 and GA-2 

 GA-1  GA-2 

Instance 
Relative 
Cost Error 

Relative 
Computational 
Burden 

 
Relative Cost 
Error 

Relative 
Computational 
Burden 

(1) (2) (3)  (4) (5) 

 (%) (%)  (%) (%) 

R101-25-10 0 46650.35  0 10421.67 

R101-50-10 14.98 8669.06  6.80 7153.15 

R101-75-10 16.49 390.35  5.28 170.87 

R101-25-20 6.84 17216.88  0.70 9182.14 

R101-50-20 10.58 1679.55  1.29 405.41 

R101-75-20 14.45 652.47  10.35 143.55 

R101-25-max 0 4748.86  0 133.87 

R101-50-max‡ 2.33 -78.58  0.92 -99.35 

8. Conclusion  

An exact solution approach using column generation framework is presented for the VRPSSTW problem. As the 
size of an instance (number of customers) and the size of time windows limit the viability (as per computation 
burden) of the exact solution approach for the VRPSSTW, the use of heuristics for larger instances with wider time 
windows width is inevitable. However, the exact solutions can be used as benchmark solutions to evaluate and 
calibrate the heuristics approaches on small sized instances before the heuristics are applied to large-sized instances. 
This idea was also elaborated with an exemplary evaluation of two heuristics based on genetic algorithms (GA), in 
this paper.  

It was found that the relative cost error (as compared to the exact solution) in a GA heuristics with a larger initial 
population size (1000 individuals) based on greedy algorithm can be decreased if a modified stochastic push forward 
insertion heuristic is used instead of the greedy algorithm even with a smaller population size (200 individuals). This 
change in the initialization policy also worked well to decrease the relative computational burden (as compared to 
the exact solution) of the GA heuristics. Use of exact benchmark solutions and evaluation of heuristics on these 
benchmarks will provide the researchers in the city logistics field with more confidence and they will be in better 
position to appraise and support city logistics-related policies, which are assessed using the heuristics solutions of 
the VRPSSTW. Future research includes the use of the developed exact method for the VRPSSTW in evaluating 
city logistics policies for practical logistics instances based on real road network data.  
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