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Abstract 
Omnidirectional mobile robots with conventional wheels avoid the drawbacks (e.g., shock, slippage, and low 
load capacity) of omnidirectional mobile robots with wheels that have special structures. We previously 
proposed such a robot, called the slidable-wheel omnidirectional mobile robot (SWOM), as well as its 
controller for point-to-point movement. However, for practical applications, such as transporting goods in 
factories and warehouses, SWOM needs to be able to follow a predefined trajectory. In this paper, we present 
the design of a trajectory tracking controller for SWOM. Given that SWOM is a nonlinear system with 
constraints on both inputs and outputs, model predictive control (MPC) is adopted. Due to the high 
computational demands and time consumption associated with nonlinear MPC, linear MPC is used to achieve 
trajectory tracking. By expanding the previous research, an original method for generating a reference path that 
includes not only state variables but also inputs is proposed in this paper for the trajectory tracking task. The 
linearized kinematic model of SWOM is obtained using a first-order Taylor expansion around reference points 
on the reference path. Simulations considering slippage are conducted and the results show that SWOM can 
well track the reference path. Experiments conducted on a prototype also validate the effectiveness of the 
proposed control method. 

Keywords: Model predictive control, Omnidirectional mobile robot, Trajectory tracking, Linearization, 
Reference path generation 

 
1. Introduction 

 
Omnidirectional mobile robots, which can move in any direction instantaneously, have become increasingly 

important in the field of mobile robotics. Omnidirectional movement can be achieved using specialized wheels, such as 
caster wheels (Lin et al., 2024; Kato and Wada, 2020; Medina and Hacohen, 2021), spherical wheels (Navabi et al., 
2017; Zarei et al., 2018), and Mecanum wheels (Liu et al., 2017; Terakawa et al., 2023). However, the performance of 
robots that use such wheels is limited by the wheel structure. For example, caster wheels rotate around the steering axis 
with a small pause (Taheri and Zhao, 2020), which could cause shock or slippage, spherical wheels often have a 
relatively large volume, and Mecanum wheels tend to have a relatively low load capacity. To avoid these problems, the 
present authors previously proposed an omnidirectional mobile robot that uses conventional wheels, called the 
slidable-wheel omnidirectional mobile robot (SWOM) (Terakawa et al., 2018), as shown in Fig. 1. 
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Fig. 1 Diagram of slidable-wheel omnidirectional mobile robot (SWOM) (Terakawa et al., 2018). 

 

SWOM has a base block connected by three sliding rails. Each sliding rail has a driving unit connected to it via a 

passive sliding joint, which consists of a wheel and two motors. By using conventional wheels, SWOM avoids the 

drawbacks mentioned above. Previous research studied the kinematics and singularity of SWOM. A controller for the 

point-to-point movement of SWOM was also designed (Terakawa et al., 2019). However, further research is required 

before SWOM can be applied for practical applications. The next step is to develop trajectory tracking control, which 

would enable the robot to move along a pre-planned path designated by the user. 

Trajectory tracking control has been extensively studied (Amoozgar et al., 2012; Li et al., 2016; Wang et al., 2014). 

Sliding mode control has been applied to trajectory tracking in various fields, including underwater vehicles (Qiao and 

Zhang, 2019, 2020), flapping-wing micro aerial vehicles (He et al., 2021), and mobile robots (Wendemagegn et al., 

2024). A trajectory tracking control method for automated guided vehicles based on the Udwadia-Kalaba approach was 

proposed by Yu et al. (2024). Trajectory tracking from the perspective of port-controlled Hamiltonian systems was 

discussed by Fujimoto et al. (2003). Model predictive control (MPC) is commonly used for trajectory tracking (Neunert 

et al., 2016; Shen et al., 2018; Wang et al., 2018). The fundamental concept of MPC is to evaluate the system’s future 

dynamics and minimize a cost function determined by the input. Due to its conceptual simplicity and ability to handle 

complex systems with strict control constraints and multiple inputs and outputs (Mayne, 2014), MPC is widely used in 

various industries, such as process control (Steyn and Sandrock, 2013), power electronics (Dragicevic and Novak, 

2019), and manufacturing (Liu and Zhang, 2014; Wehr et al., 2020). MPC can be categorized into nonlinear MPC and 

linear MPC (LMPC) depending on the presence or absence of nonlinear terms, respectively. Compared to LMPC, 

nonlinear MPC requires greater computational effort as its optimization problems are often nonlinear and must be 

solved in real time. In practice, the nonlinear components of a problem can be linearized, allowing LMPC to be applied 

to problems involving nonlinearities. 

Due to its low computational complexity, ease of implementation, and ability to handle constraints on inputs and 

outputs, LMPC was adopted to achieve trajectory tracking for SWOM. Building on the kinematic equations of SWOM 

proposed in previous research, this study introduces a novel method for generating reference trajectories. The generated 

reference trajectories encompass not only all state variables of SWOM but also the corresponding reference inputs. 

Subsequently, the linear motion equations of SWOM were derived through a first-order Taylor expansion at the 

reference points along the trajectory. Finally, the LMPC method was successfully applied to achieve trajectory tracking 

for SWOM, and its effectiveness was validated through both simulations and prototype experiments.  

The rest of this paper is organized as follows. Section 2 reviews the kinematic model and singularity for SWOM. 

Section 3 presents the proposed methodology for generating reference trajectories and motion planning. Section 4 

describes the linearization of the kinematic equations for SWOM and the application of LMPC to the trajectory 

tracking problem. A numerical simulation is conducted to verify the effectiveness of the proposed method. Section 5 

presents and discusses the experimental results. 

 

2. Kinematic analysis of slidable-wheel omnidirectional mobile robot 

 

The global reference frame and local reference frame are shown in Fig. 2(a). The origin of the local reference 

frame is fixed at the center of the base block, with the 𝑋𝑅 axis parallel to a sliding rail. To distinguish the three driving 

units, the unit that slides on the rail parallel to the 𝑋𝑅 axis is labeled as driving unit 1. The other two driving units are 
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labeled as driving units 2 and 3, respectively, in the counterclockwise direction. Figure 2(b) shows more detailed 

parameters describing the SWOM’s configuration in the local reference frame. The angle between each sliding rail and 

the 𝑋𝑅 axis is denoted as 𝛼. 𝑙 is the displacement of the slider, 𝑟 is the wheels’ radius, �̇� is the rotation speed of 

the wheel, and 𝛽 is the angle between the wheel axle and the sliding rail indicating the orientation of the wheel. We 

use the subscript 𝑖 to indicate the parameters belonging to driving unit 𝑖 (𝑖 = 1, 2, 3). 

 

 

 

(a) (b) 

Fig. 2 (a) Global and local reference frames for SWOM. (b) Wheel parameters in the local reference frame 

(Terakawa et al., 2019). 

 

The kinematic model of SWOM is derived as: 

 

[sin(𝛼𝑖 + 𝛽𝑖)   − cos(𝛼𝑖 + 𝛽𝑖)     − 𝑙𝑖cos𝛽𝑖]𝑅(𝜃) [
�̇�
�̇�
�̇�

] + 𝑟�̇�𝑖 + 𝑙�̇�sin𝛽𝑖 = 0 (1) 

[cos(𝛼𝑖 + 𝛽𝑖)   sin(𝛼𝑖 + 𝛽𝑖)    𝑙𝑖sin𝛽𝑖]𝑅(𝜃) [
�̇�
�̇�
�̇�

] + 𝑙�̇�cos𝛽𝑖 = 0 (2) 

 

where 

 

𝑅(𝜃) =  [
cos𝜃 sin𝜃 0
−sin𝜃 cos𝜃 0

0 0 1
] (3) 

and �̇� represents the velocity of SWOM along the O𝑋𝐼  axis in the global coordinate system, while �̇� represents its 

velocity along the O𝑌𝐼  axis in the same system. 

These equations are derived under the assumption of no-slip conditions, based on the relationship between the 

SWOM's body velocity and the velocities of its three wheels. Equation (1) describes the scenario where, under no-slip 

conditions, the actual rotational speed of the wheel equals the velocity component of the point on the sliding rail 

coinciding with the wheel in the local coordinate system, projected in the direction parallel to the wheel orientation, 

plus the displacement velocity of the wheel along the sliding rail in the same direction. Under no-slip conditions, the 

wheel's velocity component perpendicular to its orientation is zero. Accordingly, Eq. (2) states that the velocity 

component of the point on the sliding rail coinciding with the wheel in the local coordinate system, projected in the 

direction perpendicular to the wheel orientation, plus the displacement velocity of the wheel along the sliding rail in the 

same perpendicular direction, must sum to zero. 

By combining Eqs. (1) and (2), we can eliminate 𝑙.̇ The forward and inverse kinematics can be expressed by Eqs. 

(4) and (5), respectively. 
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[
Ẋ
�̇�
�̇�

] = 𝑅(𝜃)−1 [

− sin 𝛼1 cos 𝛼1 𝑙1
−sin 𝛼2 cos 𝛼2 𝑙2
−sin 𝛼3 cos 𝛼3 𝑙3

]

−1

[

𝑟 cos 𝛽1 0 0
0 𝑟 cos 𝛽2 0
0 0 𝑟 cos𝛽3

] [

φ̇1

φ̇2

φ̇3

] (4) 

[

�̇�1

�̇�2

�̇�3

] = [

𝑟 cos 𝛽1 0 0
0 𝑟 cos 𝛽2 0
0 0 𝑟 cos𝛽3

]

−1

[

− sin 𝛼1 cos 𝛼1 𝑙1
−sin 𝛼2 cos 𝛼2 𝑙2
−sin 𝛼3 cos 𝛼3 𝑙3

] 𝑅(𝜃) [
Ẋ
�̇�
�̇�

] (5) 

 

The robot will fall into a singular configuration if the orientation of any of the wheels is parallel to the sliding rail. 

In this paper, we constrain 𝛽 to the range of (−𝜋 2⁄ , 𝜋 2⁄ ) to avoid the singularity. Substituting 𝛼1 = 0, 𝛼2 = 2𝜋 3⁄ ,
and 𝛼3 = 4𝜋 3⁄  into the inverse kinematic equation yields 

 

[

�̇�1

�̇�2

�̇�3

] = [

𝑟 cos 𝛽1 0 0
0 𝑟 cos 𝛽2 0
0 0 𝑟 cos𝛽3

]

−1

∗

[
 
 
 
 

−�̇�sin𝜃 + �̇�cos𝜃 + �̇�𝑙1

 �̇� (−
√3

2
cos𝜃 +

1

2
sin𝜃) + �̇� (−

√3

2
sin𝜃 −

1

2
cos𝜃) + �̇�𝑙2

�̇� (
√3

2
cos𝜃 +

1

2
sin𝜃) + �̇� (

√3

2
sin𝜃 −

1

2
cos𝜃) + �̇�𝑙3 ]

 
 
 
 

 (6) 

 

Due to the limitations of the motors and the restricted length of the sliding rail, SWOM has constraints on both 

inputs and outputs. We can satisfy the constraints on the inputs by directly controlling their magnitude. From Eq. (2), 

when − 𝜋 2⁄ < 𝛽𝑖 < 𝜋 2⁄ , the time dependence of 𝑙𝑖 can be expressed as: 

 

𝑙�̇� = −�̇�(cos(𝜃 + 𝛼𝑖) − tan𝛽𝑖sin(𝜃 + 𝛼𝑖)) − �̇�(tan𝛽𝑖cos(𝜃 + 𝛼𝑖) + sin(𝜃 + 𝛼𝑖)) − 𝑙𝑖�̇�tan𝛽𝑖 (7) 

 

From Eq. (7), it is possible to keep 𝑙𝑖 within the constraint limits by controlling the orientation of the wheel.  

 

3. Reference path generation 

 

Since the kinematic system is linearized using a first-order Taylor expansion at reference points on the reference 

path, we need a reference trajectory for SWOM that includes not only its configuration but also the corresponding 

inputs. We first define the target velocity for SWOM and then calculate the reference value for the wheels’ rotational 

speed. Based on this, the orientation of each wheel is adjusted to ensure that 𝑙𝑖 remains within the specified range. 

Consequently, reference values for 𝑙𝑖, 𝛽𝑖, and �̇�𝑖 are obtained. The procedures for reference path generation are as 

follows. 

The inputs of the system are the rotation and steering velocity of the wheels, �̇�𝑖 and �̇�𝑖, which means we cannot 

directly control the steering angle of the wheel. At the 𝑘 -th time step, the reference translation velocity 

(�̇�𝑟𝑒𝑓(𝑘), �̇�𝑟𝑒𝑓(𝑘))  and rotation velocity �̇�ref(𝑘)  of SWOM are first specified. The configurations of SWOM, 

including 𝑋(𝑘), 𝑌(𝑘), 𝜃(𝑘), 𝑙𝑖(𝑘), and 𝛽𝑖(𝑘), are measured by sensors. We can then calculate the necessary rotation 

velocity of the three wheels �̇�𝑖𝑑(𝑘) using Eq. (6). 

Next, the reference steering velocity of the wheels �̇�𝑖ref(𝑘) is designed to stabilize the displacement of the slider. 

Let 𝐸𝑙𝑖 = 𝑙𝑖𝑟𝑒𝑓 − 𝑙𝑖𝑑 be the distance between the slider’s position and the desired position, where 𝑙𝑖𝑑 denotes the 

desired position of the slider. Generally, it is set to be at the middle of the sliding rail. If 𝑙�̇�ref = −𝐾𝑖𝐸𝑙𝑖 , 𝑙𝑖ref will 

converge to 𝑙𝑖𝑑. With 𝑙�̇�ref = −𝐾𝑖𝐸𝑙𝑖 , from Eq. (7), we can obtain the reference orientation of the wheel 𝛽𝑖ref as: 

 

𝛽𝑖ref = arctan (
�̇�refcos(𝜃+𝛼𝑖)+�̇�refsin(𝜃+𝛼𝑖)−𝐾𝑖𝐸𝑙𝑖

�̇�refsin(𝜃+𝛼𝑖)−�̇�refcos(𝜃+𝛼𝑖)−𝑙𝑖�̇�ref
) (8) 

 

At the 𝑘-th time step, the rate of change of the position of the slider 𝑙�̇�ref(𝑘) is first derived according to Eq. (7). 

Then, the position of the slider at the next time step 𝑙𝑖ref(𝑘 + 1) and the distance between the slider and its desired 

position at the next time step 𝐸𝑙𝑖(𝑘 + 1) can be predicted. Using Eq. (8), the reference steering angle of the wheel for 

the next time step 𝛽ref(𝑘 + 1) is derived to control the displacement of the slider. Thus, the reference angular velocity 
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�̇�𝑖ref(𝑘) can be calculated from the rate of change of the steering angle between two steps to ensure the angular 

velocity at the next step reaches the desired value (i.e., �̇�𝑖ref(𝑘) =  (𝛽𝑖ref(𝑘 + 1) − 𝛽𝑖ref(𝑘))/𝑑𝑡). If �̇�refsin(𝜃 + 𝛼𝑖) −

�̇�refcos(𝜃 + 𝛼𝑖) − 𝑙𝑖�̇�ref = 0, 𝛽𝑖ref(𝑘 + 1) becomes 𝜋/2 or −𝜋/2, which violates the constraints placed on the 

steering angle of the wheel. For this situation, we simply set 𝛽𝑖ref(𝑘 + 1) to the value at the previous step and 

�̇�𝑖ref(𝑘) = 0. 

The reference position for SWOM can be calculated by integrating �̇�ref, �̇�ref, and �̇�ref. Finally, we obtain the 

reference path for SWOM, which consists of the reference configuration and the corresponding inputs.  

An example of a reference trajectory and the corresponding reference position of the sliders are shown in Fig. 3. To 

demonstrate the robot’s omnidirectional mobility, the reference trajectories are set to be unsmooth and 

non-differentiable. The target velocity of the robot is (�̇� = 0.05m s⁄ , �̇� = 0.00m s⁄ ) for the first 20.0 s and (�̇� =

0.00m s⁄ , �̇� = 0.05m s⁄ ) for the next 20.0 s. The target rotation speed is 0.08 rad/s. The target position of the sliders is 

set to 𝑙𝑖𝑑 = 0.20 m and the limits on the position of the sliders are 𝑙min = 0.12 m and 𝑙max = 0.30 m. 𝐾𝑖  (𝑖 =

1, 2, 3) is set as 1. In the subsequent simulations and experiments, the value of 𝐾𝑖 has also been set to 1. Figure 3(b) 

shows the reference position of the sliders as the robot moves along the reference trajectory. From the graph, we can 

conclude that the position of the sliders can be limited to a small range from the specified position using the proposed 

method. 

 

  

(a) (b) 

Fig. 3 (a) Reference path and (b) reference position for sliders on sliding rails. 

 

The graph of the position of the sliders has some peaks. There are two main reasons for this phenomenon. First, 

when the velocity of the robot suddenly changes a lot, the orientation of the wheels 𝛽 also needs to change a lot. Since 

we set an upper limit on the acceleration of 𝛽, the desired value is not reached immediately, so the displacement of the 

slider continues to change. Second, the direction of the velocity at the point on the robot that is in contact with an 

arbitrary slider is parallel to the direction of its sliding rail (i.e., �̇�refsin(𝜃 + 𝛼𝑖) − �̇�refcos(𝜃 + 𝛼𝑖) − 𝑙𝑖�̇�ref = 0). At 

this point, 𝛽𝑖 needs to be 𝜋/2 or −𝜋/2, which is prohibited, and Eq. (7) becomes: 

 

𝑙�̇� = −�̇�refcos(𝜃 + 𝛼𝑖) − �̇�refsin(𝜃 + 𝛼𝑖) (9)  

 

The rate of change of the displacement of the slider 𝑙�̇� equals the velocity of the robot in the direction of the sliding 

rail. Therefore, the displacement of the slider continues to change and the speed becomes the same as that of the robot 

in the direction of the sliding rail. 

 

4. Trajectory tracking for SWOM 

 

4.1 Linearization of kinematic equation 

We first define the state variables and inputs for SWOM as: 
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𝑞 = [𝑋, 𝑌, 𝜃, 𝑙1, 𝑙2, 𝑙3, 𝛽1, 𝛽2, 𝛽3],  

 𝑈 = [�̇�𝑖 , �̇�2, �̇�3, �̇�1, �̇�2, �̇�3] (10) 

 

The derivatives of 𝑋, 𝑌, and 𝜃 can be calculated from 𝑈 using Eq. (4). By substituting Eq. (4) into Eq. (2), we 

can calculate [𝑙1̇, 𝑙2̇, 𝑙3̇] from 𝑈 as   

 

[

𝑙1̇
𝑙2̇
𝑙3̇

] = − [

cos 𝛽1 0 0
0 cos 𝛽2 0
0 0 cos 𝛽3

]

−1

[

cos 𝛽1 sin 𝛽1 𝑙1 sin 𝛽1

cos ( 𝛽2 +𝛼2) sin(𝛽2 + 𝛼2) 𝑙2 sin 𝛽2

cos ( 𝛽3 +𝛼3) sin(𝛽3 + 𝛼3) 𝑙3 sin 𝛽3

] ∗

                  [

− sin 𝛼1 cos 𝛼1 𝑙1
− sin 𝛼2 cos 𝛼2 𝑙2
− sin 𝛼3 cos 𝛼3 𝑙3

]

−1

[

𝑟 cos 𝛽1 0 0
0 𝑟 cos 𝛽2 0
0 0 𝑟 cos 𝛽3

] [

𝜑1̇

𝜑2̇

𝜑3̇

] (11)  

 

In addition, 𝛽𝑖 can be calculated by integrating �̇�𝑖. Therefore, the derivative of 𝑞 can be expressed as a function 

of 𝑞 and 𝑈. 

 

�̇� = 𝑓(𝑞, 𝑈) (12) 

 

We discretize the system at the 𝑘-th time step as 

 

𝑞(𝑘 + 1) = 𝑞(𝑘) + �̇�(𝑘)𝑑𝑡 = 𝑞(𝑘) +  𝑓(𝑞(𝑘), 𝑈(𝑘))𝑑𝑡 (13) 

 

The state variables at the next time step can be represented by a function of the state variables and inputs of the 

current time step. 

 

𝑞(𝑘 + 1) = 𝐹(𝑞(𝑘), 𝑈(𝑘)) = 𝑞(𝑘) +  𝑓(𝑞(𝑘), 𝑈(𝑘))𝑑𝑡 (14) 

 

At the point on the reference path at time step (𝑞𝑑(𝑘), 𝑈𝑑(𝑘)), the system also satisfies 

 

𝑞𝑑(𝑘 + 1) = 𝐹(𝑞𝑑(𝑘), 𝑈𝑑(𝑘)) = 𝑞𝑑(𝑘) +  𝑓(𝑞𝑑(𝑘), 𝑈𝑑(𝑘))𝑑𝑡 (15) 

 

For 𝑞(𝑘), 𝑈(𝑘) close to 𝑞𝑑(𝑘), 𝑈𝑑(𝑘), from Taylor’s theorem, 𝐹(𝑞(𝑘), 𝑈(𝑘)) can be calculated as 

 

𝑞(𝑘 + 1) = 𝐹(𝑞(𝑘), 𝑈(𝑘))  

                  = 𝐹(𝑞𝑑(𝑘), 𝑈𝑑(𝑘)) + 
𝜕𝐹

𝜕𝑞
|
𝑞=𝑞𝑑(𝑘)

∗ (𝑞(𝑘) − 𝑞𝑑(𝑘)) +  
𝜕𝐹

𝜕𝑈
|
𝑈=𝑈𝑑(𝑘)

∗ (𝑈(𝑘) − 𝑈𝑑(𝑘)) (16) 

 

where 𝜕𝐹 𝜕𝑞⁄ |𝑞=𝑞𝑑(𝑘)  and  𝜕𝐹 𝜕𝑈⁄ |𝑈=𝑈𝑑(𝑘)  are the partial derivatives of the function 𝐹(𝑞(𝑘), 𝑈(𝑘))  at 

(𝑞𝑑(𝑘), 𝑈𝑑(𝑘)) with respect to 𝑞 and 𝑈, respectively. The linear and discrete kinematic equations for SWOM are thus 

obtained. 

 

4.2 Trajectory tracking control using model predictive control 

In Eq. (16), 𝐹(𝑞𝑑(𝑘), 𝑈𝑑(𝑘)) = 𝑞𝑑(𝑘 + 1). We define the state error as 𝑒𝑞(𝑘) =  𝑞(𝑘) − 𝑞𝑑(𝑘) and the input 

error as 𝑒𝑈(𝑘) =  𝑈(𝑘) − 𝑈𝑑(𝑘). Then, 

 

6



2
© 2025 The Japan Society of Mechanical Engineers[DOI: 10.1299/jamdsm.2025jamdsm0011]

Xu, Terakawa and Komori, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.19, No.1 (2025) 

𝑒𝑞(𝑘 + 1) =  
𝜕𝐹

𝜕𝑞
|
𝑞=𝑞𝑑(𝑘)

𝑒𝑞(𝑘) +
𝜕𝐹

𝜕𝑈
|
𝑈=𝑈𝑑(𝑘)

𝑒𝑈(𝑘) (17) 

 

𝑒𝑞(𝑘 + 1) is the predicted state error of the (𝑘 + 1)-th time step at the 𝑘-th time step, so we denote it as 

𝑒𝑞(𝑘 + 1|𝑘). 𝜕𝐹 𝜕𝑞⁄ |𝑞=𝑞𝑑(𝑘) and 𝜕𝐹 𝜕𝑈⁄ |𝑈=𝑈𝑑(𝑘), which are the partial derivatives of the function 𝐹(𝑞(𝑘), 𝑈(𝑘)) at 

(𝑞𝑑(𝑘), 𝑈𝑑(𝑘)), can be rewritten as 𝐴(𝑘) and 𝐵(𝑘), respectively. 

The state error for the next 𝑁 time steps can be calculated using Eq. (17), giving 

 

𝑒𝑞(𝑘 + 1|𝑘) = 𝐴(𝑘)𝑒𝑞(𝑘) +  𝐵(𝑘)𝑒𝑈(𝑘) 

𝑒𝑞(𝑘 + 2|𝑘) = 𝐴(𝑘 + 1|𝑘)𝑒𝑞(𝑘 + 1|𝑘) +  𝐵(𝑘 + 1|𝑘)𝑒𝑈(𝑘 + 1) 

                        =  𝐴(𝑘 + 1|𝑘) 𝐴(𝑘)𝑒𝑞(𝑘) +  𝐴(𝑘 + 1|𝑘)𝐵(𝑘)𝑒𝑈(𝑘) + 𝐵(𝑘 + 1|𝑘)𝑒𝑈(𝑘 + 1) 

⋮ 

𝑒𝑞(𝑘 + 𝑁|𝑘) = 𝐴(𝑘 + 𝑁 − 1|𝑘)𝐴(𝑘 + 𝑁 − 2|𝑘) …𝐴(𝑘)𝑒𝑞(𝑘) 

                            +(𝑘 + 𝑁 − 1|𝑘)𝐴(𝑘 + 𝑁 − 2|𝑘) …𝐴(𝑘 + 1|𝑘)𝐵(𝑘)𝑒𝑈(𝑘) 

                            +(𝑘 + 𝑁 − 1|𝑘)𝐴(𝑘 + 𝑁 − 2|𝑘) …𝐴(𝑘 + 2|𝑘)𝐵(𝑘 + 1|𝑘)𝑒𝑈(𝑘 + 1) 

                            +⋯ 

                            +𝐵(𝑘 + 𝑁 − 1|𝑘)𝑒𝑈(𝑘 + 𝑁 − 1) (18) 

 

where 𝑒𝑞(𝑘 + 𝑁|𝑘) is the predicted state error of the (𝑘 + 𝑁)-th time step at the 𝑘-th time step, 𝑒𝑈(𝑘 + 𝑁 − 1) is 

the input error at the (𝑘 + 𝑁 − 1)-th time step, and 𝐴(𝑘 + 𝑁 − 1|𝑘) = 𝜕𝐹 𝜕𝑞⁄ |𝑞=𝑞𝑑(𝑘+𝑁−1) and 𝐵(𝑘 + 𝑁 − 1|𝑘) =

𝜕𝐹 𝜕𝑈⁄ |𝑈=𝑈𝑑(𝑘+𝑁−1) are respectively the predicted partial derivatives of the function 𝐹(𝑞(𝑘), 𝑈(𝑘)) with respect to 

𝑞 and 𝑈 at the 𝑘-th time step at (𝑞𝑑(𝑘 + 𝑁 − 1), 𝑈𝑑(𝑘 + 𝑁 − 1)). 

At time step 𝑘, the predicted state and input error for the next 𝑁 steps can be written as 

 

𝑋(𝑘 + 1) =  

[
 
 
 
 
𝑒𝑞(𝑘 + 1|𝑘)

𝑒𝑞(𝑘 + 2|𝑘)

𝑒𝑞(𝑘 + 3|𝑘)
⋮

𝑒𝑞(𝑘 + 𝑁|𝑘)]
 
 
 
 

 , 𝑈(𝑘) =  

[
 
 
 
 

𝑒𝑈(𝑘)

𝑒𝑈(𝑘 + 1)

𝑒𝑈(𝑘 + 2)
⋮

𝑒𝑈(𝑘 + 𝑁 − 1)]
 
 
 
 

 (19) 

 

Equation (16) becomes 

 

𝑋(𝑘 + 1) =  �̅�𝑒𝑞(𝑘) + �̅�𝑈(𝑘) (20) 

 

where 

 

�̅� =  [

𝐴(𝑘)

𝐴(𝑘 + 1|𝑘)𝐴(𝑘)
⋮

𝐴(𝑘 + 𝑁 − 1|𝑘)… 𝐴(𝑘)

] (21) 

 

�̅� =  

(

𝐵(𝑘) ⋯
𝐴(𝑘 + 1|𝑘)𝐵(𝑘) 𝐵(𝑘 + 1|𝑘)

⋯ 0
⋯ 0

⋮ ⋮
𝐴(𝑘 + 𝑁 − 1|𝑘) …𝐴(𝑘 + 1|𝑘)𝐵(𝑘) 𝐴(𝑘 + 𝑁 − 1|𝑘)… 𝐴(𝑘 + 2|𝑘)𝐵(𝑘 + 1|𝑘)

⋱ ⋮
⋯ 𝐵(𝑘 + 𝑁 − 1|𝑘)

) (22) 
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Then, the cost function is defined as  

 

𝐽 ̅ =  𝑋(𝑘 + 1)𝑇�̅�𝑋(𝑘 + 1) + 𝑈(𝑘)𝑇�̅�𝑈(𝑘) (23) 

 

where �̅� and �̅� are weight coefficient matrices. 

Substituting Eq. (17) into Eq. (19) yields 

 

𝐽 ̅ = (�̅�𝑒𝑞(𝑘) + �̅�𝑈(𝑘))
𝑇

�̅� (�̅�𝑒𝑞(𝑘) + �̅�𝑈(𝑘)) +  𝑈(𝑘)𝑇�̅�𝑈(𝑘) 

= 𝑈(𝑘)𝑇(�̅�𝑇�̅��̅� + �̅�)𝑈(𝑘) + 𝑒𝑞(𝑘)𝑇�̅�𝑇�̅��̅�𝑈(𝑘) + 𝑈(𝑘)𝑇�̅�𝑇�̅��̅�𝑒𝑞(𝑘) + 𝑒𝑞(𝑘)𝑇�̅�𝑇�̅��̅�𝑒𝑞(𝑘)  

=
1

2
𝑈(𝑘)𝑇𝐻(𝑘)𝑈(𝑘) + 2𝑓(𝑘)𝑇𝑈(𝑘) + 𝑑(𝑘) (24) 

 

where 𝐻(𝑘) = 2(�̅�𝑇�̅��̅� + �̅�),  𝑓(𝑘)𝑇 = 𝑒𝑞(𝑘)𝑇�̅�𝑇�̅��̅�, and 𝑑(𝑘) = 𝑒𝑞(𝑘)𝑇�̅�𝑇�̅��̅�𝑒𝑞(𝑘). 

The minimization of the cost function becomes a quadratic programming problem with constraints on the inputs 

and outputs: 

 

min
𝑈(𝑘)  𝐽

̅ =
1

2
𝑈(𝑘)𝑇𝐻(𝑘)𝑈(𝑘) + 2𝑓(𝑘)𝑇𝑈(𝑘) + 𝑑(𝑘)  

s.t. 

𝑙min ≤ 𝑙𝑖 ≤ 𝑙max, 

−
𝜋

2
< 𝛽𝑖 <

𝜋

2
, 

�̇�min ≤ �̇�𝑖 ≤ �̇�max, 

�̇�min ≤ �̇�𝑖 ≤ �̇�max, 𝑖 ∈ {1,2,3} (25) 

 

At the 𝑘-th time step, the quadratic programming problem is solved and the optimal input error 𝑈(𝑘) is derived. 

We only use the optimal input for the present time step and then advance to the next step. 

A simulation of SWOM tracking the reference path shown in Fig. 3 was conducted to verify the effectiveness of the 

LMPC-based trajectory tracking method. Both the acceleration and deceleration of the robot were considered. Initially, 

the robot started with �̇�𝑑 = 0.00 m s⁄ , �̇�𝑑 = 0.00 m s⁄ , and �̇�𝑑 = 0.00 rad s⁄ , and accelerated at �̈�𝑑 = 0.01 m s2⁄  and 

�̈�𝑑 = 0.02 rad s2⁄ . After 5.0 s, the robot moved at a constant speed of �̇�𝑑 = 0.00 m s⁄ , �̇�𝑑 = 0.05 m s⁄ , and �̇�𝑑 =

0.1 rad s⁄ . When the robot approached the corner, �̈�𝑑  became −0.01 m s2⁄  and  �̈�𝑑  became −0.02 rad s2⁄ . After 4.0 s, 

�̈�𝑑 became 0 and �̈�𝑑 remained at −0.01 m s2⁄ . The robot finally stopped at the corner after one more second and 

rotated at �̇�𝑑 = 0.02 rad s⁄ . After that, the robot accelerated again at �̈�𝑑 = 0.01 m s2⁄  and  �̈�𝑑 = 0.02 rad s2⁄  one 

second later. The accelerated rotation lasted 4.0 s and the accelerated movement in the 𝑋 direction lasted 5.0 s. Then, 

the robot started moving at a constant speed of �̇�𝑑 = 0.05 m s⁄ , �̇�𝑑 = 0.00 m s⁄ , and �̇�𝑑 = 0.1 rad s⁄  until the end of 

the simulation. 

The reference position for the sliders was set to 𝑙𝑖𝑑 = 0.20 m and the limits on the position of the sliders were 

𝑙min = 0.12  m and 𝑙max = 0.30  m. The constraints on the inputs were �̇�min = −1.00 rad s⁄ , �̇�max =

1.00 rad s⁄ , �̇�min = −2.50  rad s⁄ , and �̇�max = 2.50 rad s⁄ . In the optimization problem of MPC, the state weight 

matrix is designed as �̅� = diag(1000, 1000, 500, 100, 100, 100, 1, 1, 1), and the control weight matrix is �̅� = 𝐼3×3. 

In the simulation, we simulate the effect of wheel slippage by adding random disturbances with an amplitude of 

0.005 m to the position coordinates of the three wheels in the global coordinate system. Additionally, we use two 

different weights (500 and 50) for the errors related to 𝜃 to observe their impact on the simulation results. The 

tracking error of each simulation is recorded in Table. 1. Figure 4 presents the results of the four simulations, it can be 

observed that SWOM is able to track the reference path effectively in the simulation. In Fig. 4(b), it is evident that, 
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after 40 seconds, when the weights of the errors related to 𝜃 are the same, the difference between considering or not 

considering slipping is minimal. However, when the weight of the error related to 𝜃 is larger, SWOM is able to track 

the reference value of 𝜃 more effectively. 

 

Table 1 Tracking error of simulations 

Weight of 𝜃 = 500, 

without slippage 

Mean squared error 

Max position error 

Max angle error 

0.0004 

0.0385 

0.0201 

Weight of 𝜃 = 50, 

without slippage 

Mean squared error 

Max position error 

Max angle error 

0.0036 

0.0361 

0.1156 

Weight of 𝜃 = 500, 

with slippage 

Mean squared error 

Max position error 

Max angle error 

0.0009 

0.0572 

0.0502 

Weight of 𝜃 = 50, 

with slippage 

Mean squared error 

Max position error 

Max angle error 

0.0050 

0.0417 

0.1421 

 

  

(a) (b) 

Fig. 4 (a) Simulated and reference paths and (b) simulated and reference orientations for SWOM. 

 

Figure 5 shows the simulated position of the sliders as SWOM moved along the single-corner reference path. The 

tracking error is small and the simulation results remain in a small range from the reference position of the sliders. 

Compared to Fig. 3, there are fewer peaks in reference value of 𝑙𝑖 because when we consider the acceleration and 

deceleration of the robot, there are no rapid changes in the velocity of the robot. The peaks only occur when the 

direction of the velocity at the point on the robot that is in contact with the slider is parallel to the direction of the 

sliding rail (i.e., when 𝛽𝑖 needs to be 𝜋/2 or −𝜋/2). Compared to the case with wheel slippage, when slippage is not 

considered, the position of the sliders changes more smoothly because there are no disturbances in the position of the 

wheels. 
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Fig. 5 Simulated and reference positions of sliders on SWOM. 

 

 

Fig. 6 Simulated and reference orientations of wheels on SWOM. 

 

Figure 6 shows the orientation of the robot’s wheels during the simulation compared to the reference values. The 

results show that the controller works well and that the wheels’ orientations are almost the same as the reference values. 

It can also be seen that whether or not wheel slippage is considered, as well as the weight of the error related to 𝜃, does 

not affect the tracking of the reference value for the wheel orientation. 
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5. Experiment 

 

The previous section demonstrated that the proposed controller works well in a simulation. In this section, we 

conduct trajectory tracking experiments on a prototype to verify the effectiveness of the proposed controller. 

 

5.1 Prototype of SWOM 

The prototype, whose basic structure is similar to that in Fig. 1, is shown in Fig. 7. A robot computer and a monitor 

were placed on the top of the base block. Three sliding joints were connected to the base block. The angles between the 

joints were 120°. Each sliding joint consisted of two linear guides. Three driving units were attached to the three sliding 

joints, respectively. The units could move freely in the direction of the linear guides. A driving unit mainly consisted of 

two motors and a wheel. The upper motor was responsible for wheel steering and the lower motor was responsible for 

wheel rotation. In addition, each wheel was equipped with two ball rollers as safety wheels to prevent the robot from 

tipping over. These rollers did not affect the movement of SWOM because they rarely touched the ground. 

 

 
Fig. 7 Prototype of SWOM (Terakawa et al., 2019). 

 

Figure 8 shows the control system of SWOM prototype. To measure the state variables for the robot to be used as 

inputs to the controller, a motion capture system (Bonita cameras, VICON) was used to measure the positions of the 

base block and the driving units and the displacement of the linear guides was calculated from the measured positions. 

The angle and speed of the wheels were measured by rotary encoders mounted on the motors. These measurements 

were sent to the robot computer, which then sent appropriate input commands to the motors via motor drivers. Details 

of the SWOM parameters are shown in Table 2. 
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Fig. 8 Control system of SWOM prototype (Terakawa et al., 2019). 

 

Table 2 Specifications of SWOM prototype (Terakawa et al., 2019). 

Whole system Weight 33kg 

Driving unit 

(Driving / Steering) 

Maximum speed 9.32 / 10.7 rad/s 

Maximum torque 38.0 / 41.7 N·m 

Resolution of encoder 1.35×10-5 / 1.54×10-5 rad 

Linear guide Movable range 0.122 m ≤ li ≤ 0.314 m 

Motion capture Operation period 1000 Hz 

 

5.2 Experiments results 

The prototype was tested on two different reference paths considering different weights of error of 𝜃. The first 

path is a single-corner path, similar to that used in the simulation. Such a non-smooth path can only be traced by an 

omnidirectional mobile robot. The acceleration and deceleration of the robot were the same as those for the reference 

path in the simulation. The reference position of the sliders 𝑙ref was set to 0.200 m and the limitation on the position 

of the sliders was 0.122 m ≤ 𝑙𝑖 ≤ 0.314 m. The constraints on the inputs were �̇�min = −1.00 rad s⁄ , �̇�max =

1.00 rad s⁄ , �̇�min = −1.50 rad s⁄ , and �̇�max = 1.50 rad s⁄ . The initial conditions were 𝑋 = 0.00 m, 𝑌 = 0.00 m, 

𝜃 = 0.00 rad, and 𝛽1 = 𝛽2 = 𝛽3 = 0.00 rad. The initial value of 𝑙𝑖 was set randomly so that the slider was located 

near the middle of the slide rail. 

Multiple experiments were conducted for different weights of the error of 𝜃, with the tracking errors recorded in 

Table 3. When the weights of the error of 𝜃 are not too small, SWOM performs well in tracking the reference 

trajectory. Figure 9 shows the robot’s path and the reference path during trial No. 2, as well as the robot’s orientation 

compared to the reference orientation. From the figure, we can visually observe that when the weights of the error of 𝜃 

are 500, 300, and 50, the tracking performance of the reference position is quite good. Moreover, when the weights of 

the error of 𝜃 are 500 and 300, the tracking of the robot's reference orientation is better compared to when the weights 

are 50 and 5. When the weight of the error of 𝜃 is 50 or 5, the orientation angle error may persist until the end. From 

the above, in this case, increasing the weights regarding the error of 𝜃 allows SWOM to better track the reference 

value of 𝜃. Furthermore, when the weight of the error of 𝜃 becomes sufficiently large, further increasing the weight 

does not improve the tracking performance. 
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Table 3 Tracking error of each experiment (single-corner path). 

  No. 1 No. 2 No. 3 No. 4 No. 5 

Weight of 𝜃 = 500 

Mean squared error 

Max position error 

Max angle error 

0.0016 

0.0565 

0.1020 

0.0015 

0.0578 

0.0874 

0.0014 

0.0502 

0.1031 

0.0019 

0.0624 

0.1060 

0.0018 

0.0663 

0.1132 

Weight of 𝜃 = 300 

Mean squared error 

Max position error 

Max angle error 

0.0015 

0.0518 

0.0880 

0.0013 

0.0467 

0.0968 

0.0022 

0.0687 

0.1084 

0.0015 

0.0589 

0.0982 

0.0018 

0.0627 

0.0955 

Weight of 𝜃 = 50 

Mean squared error 

Max position error 

Max angle error 

0.0057 

0.0395 

0.1336 

0.0087 

0.0455 

0.1917 

0.0082 

0.0437 

0.1633 

0.0112 

0.0522 

0.1955 

0.0077 

0.0398 

0.1778 

Weight of 𝜃 = 5 

Mean squared error 

Max position error 

Max angle error 

0.0610 

0.1365 

0.6021 

0.0911 

0.1738 

0.6740 

0.1152 

0.1975 

0.7273 

  

 

  

(a) (b) 

Fig. 9 (a) Real and reference paths and (b) real and reference orientations of SWOM in single-corner path experiment. 

 

Figure 10 shows the displacement of the sliders and the reference displacement during movement. The 

displacement of the sliders in the experiment did not match the reference value as closely as in the simulation, but it 

was consistently within the allowable range and remained close to the reference value. Figure 11 shows the orientation 

of the robot’s wheels during the experiment compared to the reference values. As can be seen in Fig. 11, the 

experimental values oscillate around the reference values. This may be due to the controller's inability to precisely 

control the actual value of 𝛽. First, in the prototype, the wheel orientation can be measured using a rotary encoder; 

however, the zero point was set manually and might be affected by measurement errors or assembly errors. As a result, 

the measured value of 𝛽 contains errors compared to the actual value. Secondly, when solving the optimization 

problem in the controller, we set the time step to 0.2 seconds, expecting the motor to rotate for 0.2 seconds at the 

specified speed each time it receives a command. However, in the experiment, the time step typically ranges from 

0.187 seconds to 0.203 seconds, meaning that we cannot transmit commands with perfect accuracy every 0.2 seconds 

and have the motor run exactly for 0.2 seconds. Consequently, the actual value of 𝛽 cannot reach the intended value 

accurately. These two factors lead to the controller’s inability to precisely control the actual value of 𝛽, causing 𝛽 to 

oscillate near the reference value to ensure that the other state variables of SWOM can track their reference values.  

Comparing the results in Table 3 and Table 1, under no-slip conditions, when the weight of the error related to 𝜃 is 

the same, the maximum position error and maximum angle error in the simulation are both smaller than those in the 

experiment. When slippage is considered, with the same weight for the error related to 𝜃, the maximum position and 

angle errors in the simulation are sometimes comparable to the experimental results. However, for the mean squared 

error, regardless of whether slippage is considered or not, the simulation results are better than the experimental results 

when the weight of the error related to 𝜃 is the same. This indicates that the controller's performance in the simulation 
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is better than in the actual experiment. The differences between the experiment and the simulation may be attributed to 

several factors, including the inability of the controller to send commands at fixed time steps as in the simulation, 

assembly errors present in the robot prototype, and discrepancies between the linearized motion model used in the 

simulation and the actual motion model. Since we derived the linear kinematic equations of the robot using a first-order 

Taylor expansion at reference points on the reference path, they become imprecise when the robot’s state deviates 

significantly from the reference value, making the controller less effective. 

 

 
Fig. 10 Real and reference positions of sliders on SWOM in single-corner path experiment. 
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Fig. 11 Real and reference orientations of wheels on SWOM in single-corner path experiment. 

 

The second reference path was smooth and circular. The robot needed to move along an arc with a radius of 0.5 m 

for 48 s at a speed of 0.03 m/s while rotating at 0.05 rad/s. The constraints on the inputs and outputs were the same as 

those for the single-corner path. The initial conditions were 𝑋 = 0.00 m, 𝑌 = 0.00 m, 𝜃 = 0.00 rad, and 𝛽1 = 𝛽2 =

𝛽3 = 0.00 rad. The initial value of 𝑙𝑖 was set randomly near the middle of the slide rail. 

We also conducted three experiments and recorded the tracking errors from each experiment in Table 4. Comparing 

the data in Table 3, it can be observed that under the same parameter conditions, SWOM performs better in tracking the 

circular path than the single-corner path. 

 
Table 4 Tracking error of each experiment (circular path). 

  No. 1 No. 2 No. 3 

Weight of 𝜃 = 50 

Mean squared error 

Max position error 

Max angle error 

0.0012 

0.0236 

0.1138 

0.0005 

0.0262 

0.0662 

0.0007 

0.0212 

0.0926 

 

15



2
© 2025 The Japan Society of Mechanical Engineers[DOI: 10.1299/jamdsm.2025jamdsm0011]

Xu, Terakawa and Komori, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.19, No.1 (2025) 

 
 

 
(a) 

 
(b) 

Fig. 12 (a) Real and reference paths and (b) real and reference orientations for SWOM in circular path experiment. 

 

The following figures show the results in trial No. 2. Figure 12 shows the reference and actual paths of the robot as 

it tracked a circular path, along with the reference and actual orientations. Figure 13 shows the displacement of the 

sliders and the reference values. The results show that the robot worked properly in this situation. In Fig. 13, the peaks 

in the reference paths of the sliders are smoother than those observed for the single-corner path. This is because the 

robot moved along a circular arc while rotating. As a result, the robot’s direction of motion changed more rapidly than 

it would moving in a straight line, preventing it from lingering too long in a direction parallel to the sliding rail.  

 

 
Fig. 13 Real and reference positions of sliders on SWOM in circular path experiment. 
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Fig. 14 Real and reference orientations of wheels on SWOM in circular path experiment. 

 

Figure 14 shows the orientation of the robot’s wheels during the experiment compared to the reference values. 

Similar to the single-corner path experiment, the experimental values oscillate around the reference values. This 

oscillation causes the wheels to rotate back and forth continuously, which can increase the likelihood of slippage. As 

explained in the discussion of the results from the single-corner path, if the position of 𝛽𝑖 could be measured and set 

more accurately, this oscillation could be reduced. 

The experiments using smooth and unsmooth reference paths confirm that the proposed controller works well, the 

tracking error is small, and the displacements of the sliders are controlled within the set limit. 

 

6. Conclusion 

 

In this paper, the LMPC method is applied to achieve trajectory tracking for SWOM. Building on the previous 

research, the linearized kinematic model of SWOM was obtained by performing a first-order Taylor expansion at 

reference points on the reference trajectory. We used only the reference trajectory to generate the linear kinematic 

model of SWOM and then used LMPC to compute the robot’s inputs during subsequent control. To perform a Taylor 

expansion on the reference trajectory, the trajectory must include not only the displacement and orientation of the robot 

but also the displacement of the sliders, the orientation of the wheels, the wheels’ rotation, and steering velocities. We 

proposed a simple and effective method for generating such a reference trajectory. By observing the generated 

reference trajectory, we found that when the target speed changes suddenly, the reference value of the sliders’ 

displacement exhibits a peak. Similarly, when the target speed at the point on the robot that is in contact with an 

arbitrary slider is parallel to the corresponding sliding rail, the slider’s displacement on that rail shows a peak. The 

peaks caused by sudden changes in speed can be mitigated by considering acceleration and deceleration. The peaks 

caused by the speed being parallel to the sliding rail can be reduced by increasing the rate of change in the robot’s 

speed direction, such as by accelerating the robot’s rotation or enabling it to move along a curve. 

We conducted simulations considering wheel slippage and different weights for SOWM’s orientation error in 

LMPC to validate the effectiveness of the proposed method. The results indicate that the SWOM's displacement, 

orientation, and wheel orientation are all able to effectively track the reference values. The displacement of the slider 

on the sliding rail is also kept within the allowable range. Experiments were also conducted on a prototype for both a 

single-corner path and a circular path. Due to the prototype’s inability to precisely control the actual value of 𝛽, the 
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wheel orientation oscillated around the reference values and the slider position did not exactly match the reference 

values. Nevertheless, as long as the weight for SOWM’s orientation error is not too small, the robot’s displacement and 

orientation still tracked the reference values well, confirming the effectiveness of the proposed control method. 
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