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Summary Essential trace elements play pivotal roles in numerous structural and catalytic functions 

of proteins. Adequate intake of essential trace elements from the daily diet is indispensable to the 

maintenance of health, and their deficiency leads to a variety of conditions. However, excessive 

amounts of these trace elements may be highly toxic, and in some cases, may cause damage by the 

production of harmful reactive oxygen species. Homeostatic dysregulation of their metabolism 

increases the risk of developing diseases. Specific transport proteins that facilitate influx or efflux of 

trace elements play key roles in maintaining the homeostasis. Recent elucidation of crucial functions 

significantly facilitated our understanding of the molecular mechanisms of absorption of the 

essential trace elements, such as iron (Fe), copper (Cu), and zinc (Zn), in the small intestine. This 

paper summarizes their absorption mechanisms, with a focus on indispensable functions of the 

molecules involved in it, and briefly discusses the mechanisms of homeostatic control of each 

element at the cellular and systemic levels. 
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   Essential trace elements, including iron (Fe), copper 1 

(Cu), and zinc (Zn), are important for a variety of 2 

physiological functions in all living organisms. These 3 

elements play critical roles that of a cofactor or of a 4 

structural component for numerous enzymes and proteins 5 

involved in many biological processes. Though, they are 6 

required in minor quantities, they are important and their 7 

deficiency can lead to a variety of disorders. For example, 8 

iron deficiency leads to anemia and zinc deficiency causes 9 

dermatitis and taste disorder (1,2). However, excessive 10 

intake of these elements can lead to toxicity. For example, 11 

the iron overload disorder, hemochromatosis, is very 12 

common and is characterized by iron deposition in the 13 

liver resulting in fibrosis, while surplus amounts of copper 14 

leads to progression of liver damage and neurological 15 

dysfunction because of their redox potential via Fenton-16 

type reactions (1,3). Thus, it is important to tightly control 17 

the homeostasis of each metal, in particular, iron, copper, 18 

and zinc, at both systemic and cellular levels. Each metal 19 

is taken in from the apical side of intestinal epithelial cells 20 

and excreted into the portal blood for its delivery to the 21 

peripheral tissues, in which specific transport proteins are 22 

equipped for its mobilization across the biological 23 

membranes (Table 1). Moreover, specific chaperones 24 

facilitate the vectorial transport of iron and copper in 25 

intestinal epithelial cells. Thus, these molecules play key 26 

regulatory roles in maintaining systemic and cellular 27 

homeostasis of the elements. This article briefly 28 

summarizes the intestinal absorption mechanisms of two 29 

redox metals, iron and copper, and one non-redox metal, 30 

zinc, focusing on the functions of molecules involved in 31 

their uptake or excretion. The molecular mechanisms 32 

regulating the metabolism of these three metals in generic 33 

cells and other specific cells have been described in many 34 

literatures, hence is not discussed here in detail (4-10).  35 

 36 

Iron Absorption 37 

Iron is important for various cellular proteins, including 38 

the oxygen transport protein, hemoglobin, and redox 39 

enzymes involved in electron transfer. Because of these 40 

critical roles in our body, all life would cease to exist 41 

without iron. Iron deficiency results in anemia. Conversely, 42 

since free iron is very toxic when present in excess, iron 43 

overload causes severe consequences in the body, 44 

including liver damage, fibrosis, cancer, and heart failure 45 

known as a hemochromatosis (2). As a result, iron levels 46 

must be tightly regulated, both, at the cellular level and 47 

systemically. Since mammals have no mechanism for 48 

excretion of iron, the systemic iron homeostasis is 49 

primarily controlled by regulating the balance of iron 50 

absorption in the small intestine, and storage in the 51 

peripheral tissues (11). 52 

Dietary iron exists in two forms: non-heme (inorganic) 53 

iron and heme iron. Non-heme iron is mainly found in 54 

plant foods, such as vegetables and seaweed, whereas 55 

heme iron is mainly present in animal foods, such as meat 56 

and fish (12). Both heme and non-heme iron are taken up 57 

on the apical brush border membrane of the small intestine 58 

by an independent pathway. Dietary non-heme iron 59 

(mostly ferric, Fe
3+
) is taken up by the divalent metal 60 

transporter 1 (DMT1) in intestinal epithelial cells, which is 61 

a proton-coupled transporter located on the apical 62 

membrane (13). The ferric form (Fe
3+
) has to be reduced to 63 

the ferrous form (Fe
2+
) by a ferrireductase duodenal 64 

cytochrome B (DcytB), before its uptake by DMT1 65 

because DMT1 transports Fe
2+
 but not Fe

3+
 (14). The 66 
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critical function of DMT1 in iron uptake is clearly 67 

explained by mutant and knockout (KO) animals. The 68 

G185R mutation in the DMT1 gene is responsible for 69 

severe anemia in the microcytic anemia (mk) mouse and 70 

the anemic Belgrade (b) rat. (15,16). Moreover, the 71 

intestine-specific (conditional) DMT1 KO mouse develops 72 

severe hypochromic microcytic anemia due to the 73 

impaired intestinal iron absorption (17,18). The iron, taken 74 

up into the intestinal epithelial cells, is delivered to the 75 

target organelles by an iron chaperone, poly C binding 76 

protein 2 (PCBP2) (19). PCBP2, which functions as iron 77 

chaperone in the delivery of iron to the cytosolic iron 78 

storage protein, ferritin, binds to DMT1 and ferroportin 79 

(FPN), the iron exporter at the basolateral membrane (20-80 

22). Thus, PCBP2 is considered to be responsible for 81 

delivering iron from the apical side to the basolateral side 82 

of the intestinal epithelial cells. Since, FPN is a major 83 

cellular iron exporter from intestinal epithelial cells to the 84 

portal vein, the conditional deletion of FPN in the intestine 85 

causes accumulation of iron in the cells, and severe iron 86 

deficiency anemia (23). Excreted ferrous iron (Fe
2+
) by 87 

FPN is rapidly oxidized to ferric iron (Fe
3+
) by hephaestin, 88 

a multicopper ferroxidase, and then Fe
3+
 is bound to 89 

transferrin for delivery to various tissues via circulation 90 

(24). 91 

 In contrast to the defined pathway of non-heme iron 92 

uptake, that of heme iron is obscure. Two heme transport 93 

proteins have been proposed thus far for its uptake- heme 94 

carrier protein 1 (HCP1) and heme responsive gene-1 95 

(HRG-1). HCP1 has been identified to be involved in 96 

heme absorption; however it has been revealed that HCP1 97 

exhibits high affinity for folate, and thus, rather functions 98 

as a folate transporter (25). A recent study has revealed 99 

that HRG-1 has high affinity for heme and may mediate 100 

heme transport into the cytosol via the endocytosis 101 

pathway (26). Then, heme is degraded by heme oxygenase 102 

and generates ferrous iron (Fe
2+
), which is subsequently 103 

metabolized in the same pathway as that of the non-heme 104 

iron (27). Further investigation is needed to fully 105 

understand the heme absorption process. 106 

To maintain iron homeostasis, strict regulations of the 107 

systemic balance of iron storage, distribution, and 108 

utilization are essential where hepcidin is a primary 109 

regulator of iron homeostasis. Hepcidin is a 25 amino-acid 110 

peptide hormone, synthesized and secreted by liver, which 111 

controls FPN expression by mediating degradation of FPN 112 

via direct binding (28,29). Excessive increase of iron 113 

levels stimulates the expression of hepcidin, that degrades 114 

FPN in intestinal epithelial cells, leading to reduction of 115 

the plasma iron. In contrast, the hepcidin level is decreased 116 

in the iron deficient condition, thereby sustaining FPN 117 

expression, thus delivering iron to the plasma (30). Apart 118 

from intestinal epithelial cells, FPN is also highly 119 

expressed in macrophages and hepatocytes, both of which 120 

are essential for iron recycling, because after an average 121 

lifespan of 120 days, erythrocytes are degraded by 122 

macrophages, and surplus iron is stored in the liver as 123 

ferritin (31). Hence, iron transport into plasma from 124 

dietary sources and from recycled sources is regulated by 125 

hepcidin. 126 

 127 

Copper Absorption 128 

 Copper is a critical functional component of a 129 

number of essential enzymes such as superoxide dismutase 130 

(SOD) in the cytosol, cytochrome C oxidase (CCO) in the 131 

mitochondria, and tyrosinase and lysyl oxidase in the 132 

secretory compartments (32). On the other hand, like iron, 133 

excess amounts of copper, is also toxic as it is a potential 134 

generator of free radicals via Fenton chemistry. Thus, 135 

copper homeostasis must also be strictly regulated in the 136 

systemic, cellular, and subcellular levels as dysregulation 137 

causes severe consequences such as Menkes disease, 138 

characterized by copper deficiency and Wilson disease by 139 

excessive accumulation of copper (3). 140 

Dietary cupric copper (Cu
2+
) needs to be reduced to 141 

cuprous copper (Cu
+
) before uptake across the apical 142 

membrane by copper transporter 1 (CTR1), a high affinity 143 

copper uptake transporter (33). The reduction is thought to 144 

be mediated by several reductases such as ferrireductase, 145 

DcytB, and STEAP2 metalloreductase (34,35). Cuprous 146 

copper (Cu
+
) is taken up by CTR1, which localizes to the 147 

apical membrane, and early endosomes in the intestinal 148 

epithelial cells (36). The cell surface expression of CTR1 149 

is likely to be regulated by cellular copper levels: excess 150 

copper promotes clathrin-mediated endocytosis of CTR1, 151 

whereas copper deficiency restores the CTR1 expression 152 

on the apical membrane (37,38). The intestinal epithelial 153 

cell-specific Ctr1-KO mice show severe copper deficiency 154 

(39,40). These evidences demonstrate a crucial role for 155 

copper acquisition through CTR1. In intestinal epithelial 156 

cells, the copper chaperone, antioxidant-1 (ATOX1), 157 

shuttles copper to the copper-transporting ATPase, 158 

ATP7A, which excretes copper into the portal blood (4,41). 159 

Mutations in ATP7A genes are associated with Menkes 160 

disease, an X-linked recessive copper deficiency disorder 161 

characterized by neurological defects, growth failure, and 162 

kinky hair (42,43). ATP7A is normally located to the 163 

trans-Golgi network, but in response to high extracellular 164 

copper, it is known to relocate to the cytosolic vesicles and 165 

undergo trafficking to the basolateral membrane (44-47). 166 

However, how copper is excreted to the portal blood is not 167 

yet completely characterized. A possible mode is that 168 

ATP7A may mobilize copper into vesicles, which then 169 

fuses with the basolateral membrane to release it for 170 

excretion.  171 

Copper excreted from the intestinal epithelial cells binds 172 

to albumin or α 2-macroglobulin in the blood and is 173 

transported to the liver, where copper loading onto 174 

ceruloplasmin occurs for systemic circulation (48,49). 175 

Ceruloplasmin binds 95% of copper in serum (50); this 176 

copper loading is critical and mediated by another copper-177 

transporting ATPase, ATP7B (46). ATP7B is important 178 

for copper excretion from the liver, and therefore, 179 

mutations in ATP7B leads to Wilson disease, which is 180 

characterized by hepatic and neurological disorder caused 181 

by copper overload (51).  182 

In cellular homeostasis, copper chaperones like ATOX1 183 

play pivotal roles. ATOX1 delivers copper to ATP7A and 184 
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ATP7B, both of which are located to the trans-Golgi 185 

network, and thus are functional for facilitating copper 186 

transport into the lumen of the organelles (52). In addition, 187 

other copper chaperones, such as CCS and COX17, are 188 

essential for copper metabolism. The former is functional 189 

for loading copper to the SOD1, while the latter is 190 

necessary for copper mobilization into the mitochondria 191 

(53,54). Excess copper in the cytosol binds to the 192 

metallothionein, thereby reducing free copper ions, which 193 

is thought to be important for avoiding the toxicity caused 194 

by free copper ions. 195 

 196 

Zinc Absorption 197 

Zinc is a stable divalent cation and does not require a 198 

redox reaction during the membrane transport process, as 199 

observed for iron and copper metabolism. Thus, 200 

expression of zinc transporters under strict spatiotemporal 201 

regulation is crucial for the membrane transport of zinc for 202 

maintaining systemic and cellular zinc homeostasis. Zinc 203 

influx and efflux are controlled by two zinc transporter 204 

families, Zn transporter (ZNT) and Zrt-, Irt-related protein 205 

(ZIP). To date, 9 ZNT, and 14 ZIP transporters have been 206 

identified, which is larger in number than those of iron and 207 

copper transporters [55,56]. Both the transporter families 208 

play crucial roles in regulating systemic and cellular zinc 209 

homeostasis by exhibiting tissue-specific localization and 210 

expression (57). Among these transporters, ZIP4 is 211 

essential for uptake of dietary zinc on the apical membrane 212 

in intestinal epithelial cells (58,59), and thus, mutations in 213 

ZIP4 result in the occurrence of acrodermatitis 214 

enteropathica (AE), a rare genetic recessive disorder 215 

associated with zinc deficiency (60-62). AE patients are 216 

characterized by acral dermatitis, alopecia, and diarrhea 217 

(62). The importance of ZIP4 in zinc homeostasis is 218 

confirmed by using intestine-specific Zip4-KO mouse that 219 

die unless fed with a high zinc diet (63). Moreover, AE 220 

patients with symptoms of zinc deficiency are treated with 221 

oral zinc supplementations (64). These facts raise the 222 

possibility that other transporters may contribute towards 223 

the uptake of zinc into the intestinal epithelial cells, but the 224 

secondary zinc transporter has not yet been identified.  225 

 ZIP4 expression is tightly regulated by cellular 226 

zinc at the post-translational level. Zinc deficiency causes 227 

stabilization of ZIP4 mRNA, resulting in ZIP4 protein 228 

accumulation on the apical membrane (65). If excess zinc 229 

is added, this surface accumulation of ZIP4 under zinc 230 

deficiency is rapidly internalized by endocytosis and 231 

degraded via the ubiquitin proteasome pathway degraded, 232 

thereby suggesting that the ZIP4 protein escapes from its 233 

degradation when the zinc level is decreased (66,67). ZIP4 234 

protein accumulation on the apical membrane by zinc 235 

deficiency is rapid. For instance, Zip4 accumulation is 236 

detected in rat jejunum by immunoblotting as early as one 237 

day following a zinc-deficient diet [59]. Under prolonged 238 

zinc deficiency, the extracellular amino-terminal domain 239 

of ZIP4 protein, which is recently shown to form 240 

homodimers (68), is proteolytically cleaved (processed), 241 

and consequently, the ZIP4 protein lacking amino-terminal 242 

portion accumulates on the apical membrane (59,62,63) . 243 

         Zinc taken up by the intestinal epithelial cells is 244 

thought to be excreted to the portal blood by ZNT1, 245 

although it has not yet been directly demonstrated (69). 246 

This idea is supported by the evidence that ZNT1 in 247 

Drosophila (dZnt1) is localized to the basolateral 248 

membrane of the intestinal epithelial cells and plays a key 249 

role in zinc excretion (70). ZNT1 mRNA expression is 250 

upregulated by excess zinc content. The ZNT1 promoter 251 

has the metal-response element for the binding site of 252 

metal-response element-binding transcription factor-1 253 

(MTF-1), which is responsible for metal-induced 254 

transcription (71,72). However, how upregulation of ZNT1 255 

mRNA contributes to ZNT1 protein expression on the 256 

basolateral membrane remains unknown. Zinc excreted by 257 

ZNT1 from the intestinal epithelial cells into the portal 258 

vein binds to albumin and α2-macroglobulin for delivery 259 

to the peripheral tissues. 260 

During the zinc absorption process, the process of zinc 261 

trafficking from the apical membrane (ZIP4) to the 262 

basolateral membrane (ZNT1) in the intestinal epithelial 263 

cells is yet to be understood. The cytosolic zinc binds to 264 

metallothionein (73) or is mobilized into the vesicles, 265 

which may be involved in the transcellular trafficking (74). 266 

Zinc chaperone, like PCBP2 in iron absorption or ATOX1 267 

in copper absorption, might be operative in zinc absorption 268 

as well. Further investigations are needed to clarify this 269 

point.  270 

 271 

Conclusion and Perspectives 272 

Recent progress reveals that the absorption of iron, 273 

copper, and zinc occurs by means of a sophisticated 274 

control system in which unique transport proteins are 275 

operative for each metal. Unintended imbalance in the 276 

concentrations of these metals can lead to deficiency or 277 

overload disorders as described above, which may cause 278 

some diseases. For example, excess zinc is known to 279 

induce copper deficiency, leading to reduction of iron 280 

absorption (eventually anemia) (75,76). Moreover, 281 

intricate interactions between iron, copper, and zinc have 282 

been found, although the molecular mechanisms 283 

underlying these interactions are not yet known [10]. 284 

Several transporters involved in iron, copper, and zinc 285 

metabolism may be involved in the absorption of other 286 

essential metal elements. Recent studies reveal that 287 

manganese mobilization is conducted by some iron and 288 

zinc transporters (77-80), and thus, these non-substrate 289 

metal elements might affect the absorption efficiency of 290 

iron, copper, and zinc. Further investigation is required to 291 

clarify the interactions and relationships between 292 

transporters and substrates in the absorption processes. 293 

Among iron, copper, and zinc, deficiency of iron and 294 

zinc has got serious and widespread nutritional disorders 295 

in the world. Thus, to increase their absorption, various 296 

strategies have extensively been explored; specifically, 297 

consumption of iron/zinc fortified cereals, reduction of 298 

inhibitors (e.g., phytic acid) for better iron/zinc absorption, 299 

and dietary factors that have positive effects on absorption 300 

(81-83). Complete understanding of their absorption 301 

processes at the molecular level would significantly 302 
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facilitate development of strategies for preventing metal 303 

deficiency.  304 

 305 
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 728 

 729 

Fig. 1.  730 

Molecules involved in the absorption of iron, copper, 731 

and zinc in the intestinal epithelial cells. 732 

(A)   Dietary non-heme ferric iron (Fe
3+
) is reduced to 733 

ferrous iron (Fe
2+
) by DcytB and taken up by DMT1 at the 734 

apical membrane. After this uptake, iron is stored to the 735 

ferritin or conveyed to the basolateral membrane by iron 736 

chaperon PCBP2, and then is excreted to the portal blood 737 

by FPN and oxidized to ferric iron (Fe
3+
) by hephaestin. 738 

Excreted iron is bound to transferrin and delivered to the 739 

various peripheral tissues. Heme may be taken up by 740 

HRG-1 via the endocytosis pathway. After the uptake, 741 

heme is degraded by heme oxygenase. The released iron 742 

from heme is transported to the portal blood by FPN in the 743 

same manner as that for the non-heme iron. 744 

(B)   Dietary copper (cupric form, Cu
2+
) is probably 745 

reduced by several reductases and taken up by CTR1 at the 746 

plasma membrane. After the uptake, copper is transferred 747 

to ATOX1, and then delivered to ATP7A for excretion 748 

into the portal vein. ATP7A may transport copper to the 749 

TGN or vesicles to exocytose it to the portal blood, or may 750 

directly excrete copper at the basolateral membrane. 751 

Excreted copper is transported to the liver. Cytosolic 752 

excess copper binds to metallothionein for reducing 753 

copper toxicity. 754 

(C)   Dietary zinc is taken up by ZIP4, and is delivered 755 

to the basolateral membrane or bound to the 756 

metallothionein; the molecular mechanism behind this 757 

process has not yet been elucidated. Zinc is excreted to the 758 

portal vein by ZNT1, and delivered to the peripheral 759 

tissues. 760 

 761 
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Table 1. Properties of transporters involved in absorption of iron, copper, and zinc in intestinal epithelial cells. 

*Putative structure, which is predicated by the 3D structure of bacterial homologues, and partial structure. 

Protein 

name 

Gene 

name 

Physiologic

al substrate 

Transmembrane 

helices 

Multimeric 

complex* 

Length of human 

protein (A.A.) 

Localization in the cells Reference 

DMT1 SLC11A2 Iron 11 or 12 Dimer 561  Apical membrane [13,84,85] 

FPN SLC40A1 Iron 12 Dimer 571  Basolateral membrane [22,86] 

CTR1 SLC31A1 Copper 3 Trimer 190  Apical membrane [87] 

ATP7A ATP7A Copper 8 Monomer 1500  TGN, Cytosolic vesicles, 

Basolateral membrane 

[42,43,88]  

ZIP4 SLC39A4 Zinc 8 Dimer 647  Apical membrane [55,68,89]  

ZNT1 SLC30A1 Zinc 6 Dimer 507 Basolateral membrane [55,90]  
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要約要約要約要約 

 必須微量元素は、多数の酵素の補因子としての働きやたんぱく質の構造維持な

ど、生体内において多岐に渡る役割を担っている。したがって、日々の食事か

ら必須微量元素を十分量摂取することは重要であり、その摂取不足は我々の健

康を大きく損なう。一方で、必須微量元素の過剰摂取も種々の疾患の引き金と

なるため、生体内の微量金属ホメオスタシスは厳密に制御される必要がある。

微量金属ホメオスタシスの維持においては、細胞内への微量金属の取り込みや

排出に関わる複数の分子が働いており、特にトランスポーターが重要な役割を

担っている。近年、栄養素の体内への吸収において中心的な役割を担う腸管に

おいて、微量金属トランスポーターの機能が明らかにされ、特に、鉄・銅・亜

鉛の吸収制御機構においてはその理解が飛躍的に進展している。本稿では、鉄・

銅・亜鉛の吸収に関わるトランスポーターの機能を中心に、細胞・生体レベル

での微量金属ホメオスタシス維持機構について解説する。 
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