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ABSTRACT

Objective: Many models for predicting various disease prognoses have achieved high performance
without laboratory test results. However, whether laboratory test results can improve performance
remains unclear. This study aimed to investigate whether laboratory test results improve the model
performance for coronavirus disease 2019 (COVID-19).

Methods: Prediction models were developed using data from the electronic healthcare record data-
base in Japan. Patients aged >18years hospitalized for COVID-19 after February 11, 2020, were
included. Their age, sex, comorbidities, laboratory test results, and number of days from February 11,
2020, were collected. We developed a logistic regression, XGBOOST, random forest, and neural net-
work analysis and compared the performance with and without laboratory test results. The perform-
ance of predicting in-hospital death was evaluated using the area under the curve (AUC).

Results: Data from 8,288 hospitalized patients (females, 46.5%) were analyzed. The median patient
age was 71years. A total of 6,630 patients were included in the training dataset, and 312 (4.7%) died.
In the logistic regression model, the area under the curve was 0.88 (95% confidence interval
[CI]=0.83-0.93) and 0.75 (95% Cl = 0.68-0.81) with and without laboratory test results, respectively.
The performance was not fundamentally different between the model types, and the laboratory test
results improved the performance in all cases. The variables useful for prediction were blood urea
nitrogen, albumin, and lactate dehydrogenase.

Conclusions: Laboratory test results, such as blood urea nitrogen, alboumin, and lactate dehydrogenase
levels, along with background information, helped estimate the prognosis of patients hospitalized for
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Introduction

Studies have attempted to develop models to predict the
future onset of diseases or the prognosis of patients. Indeed,
scoring systems based on studies developing prediction
models, such as the Framingham coronary heart disease pre-
diction scores and quick sequential organ failure assessment
(qSOFA) scores for sepsis, are used in clinical practice'.
Recently, studies on the development of prediction mod-

els have been increasing, with models using a database of
real-world data, such as electronic healthcare records (EHR)
or claims data®®. In general, EHR and claims databases
include large amounts of data on patients with various back-
grounds. EHR databases usually include information on out-
comes such as laboratory test results. However, when
conducting studies using a database of real-world data, it is
difficult for researchers to use data not included in the
selected database. Therefore, it is important to select a data-
base that contains sufficient data for each study.

Although laboratory test results are used to consider the
diagnosis or prognosis of diseases in clinical practice, various
prediction models predicting disease prognoses achieve high
performance without laboratory test results, such as in cases
of atrial fibrillation and chronic obstructive pulmonary dis-
ease>*. However, this does not mean that laboratory test
results are not required for high performance in all diseases.
It is unclear whether laboratory test results can improve the
performance of prediction models.

Coronavirus disease 2019 (COVID-19), caused by severe
acute respiratory syndrome coronavirus 2, has had a major
impact worldwide®"". Many models for predicting death in
COVID-19 have been reported®'> ', Some used laboratory
test results®'?7'*, whereas others did not'>'®. Previous stud-
ies have reported that various laboratory test results, such as
elevated D-dimer levels, are risk factors for death in patients
with COVID-19"""%,

We hypothesized that the use of laboratory test results
can improve the prediction model performance by using a
database of real-world data and COVID-19. Accordingly, we
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aimed to quantitatively measure the usability of the informa-
tion gained from laboratory test results in improving COVID-
19 prediction model performance.

Methods
Study design and setting

The RWD database was used in this study. The RWD data-
base is owned by the Health, Clinic, and Education
Information Evaluation Institute (HCEl, Kyoto, Japan) and
operated by Real World Data Co., Ltd. (Kyoto, Japan). The
RWD database includes the demographic data, diagnoses,
laboratory test results, medication prescriptions, and medical
procedures of approximately 20 million patients (both inpa-
tients and outpatients) from approximately 190 medical insti-
tutions across Japan as of July 2021"°°. The data collection
began in 2015. The data in this database are continuously
updated from the electronic medical records of each medical
institution. The RWD database does not include the identifi-
cation of individual information. This study was conducted in
accordance with the principles of the Declaration of Helsinki.
The Investigation and Ethics Committee of Kyoto University
approved this study (Approval No. R2895-1; a study on pre-
diction models for in-hospital deaths of patients with COVID-
19). This study was initially approved on May 6, 2021, with a
modified application approved on May 22, 2023.

Study population

Patients hospitalized for COVID-19 and aged >18years were
included. Patients with COVID-19 were defined as those
assigned confirmed disease names corresponding to the
International Classification of Diseases 10th Revision (ICD10)
codes U071 or U072 on or after February 11, 2020 and
before June 7, 2021, the administrative end of the database.
Hospitalization due to COVID-19 was defined as hospitaliza-
tion within 7days before or after the ICD10 codes were
assigned. Patients who met the inclusion criteria more than
once were included in the study only once. Patients without
any prescriptions, laboratory test results, or medical proced-
ure data during hospitalization were excluded. Patients with-
out a documented discharge date and those who died on
the day of admission were excluded.

Variables and outcomes

We used baseline background features, including age, sex,
smoking, body mass index, comorbidities, laboratory test
results at the time of admission, and the number of days
elapsed since the naming date of COVID-19 by the World
Health Organization as exploratory variables. The detailed
codes used to define comorbidities are summarized in
Supplementary Table S1. We selected laboratory test items
that are often measured during off-duty hours. To make the
results available at the time of admission (or very early in
the admission period), the explanatory variables that could
be identified at that time were selected. Laboratory test

results at the time of admission were defined as the results
of the test performed closest to the date of admission
among the tests performed from 7 days prior to admission to
3days after admission for each item. Body mass index data
were identified using the Diagnosis Procedure Combination
(DPC) data. DPC is a payment approach used only in Japan
and is based on case-mix classification?’. Only acute care
hospitals can choose DPC, and most acute care hospitals in
Japan have adopted this payment scheme. The outcome was
defined as in-hospital death in the primary analysis. In-
hospital death was identified using a combination of the
date of death, date of admission/discharge, and DPC data.

In the secondary analysis, outcomes were defined as
admission to the intensive care unit (ICU), extracorporeal
membrane oxygenation (ECMO), and invasive mechanical
ventilation.

Model development

Descriptive statistics were calculated to summarize the base-
line background features, comorbidities, laboratory test
results, and features of the hospital in which each patient
was hospitalized. The number of missing values for each vari-
able was calculated.

We developed models to predict the outcomes of the pri-
mary and secondary analyses. We used all of the variables
described above, except for the features of the hospital, as
explanatory variables. Patients without values on smoking
were regarded as non-smokers, and missing values in the
continuous variables were complemented by a value calcu-
lated using a chained equation. In addition, to address
abnormal outliers, values below the 0.05 quantile and values
greater than the 0.95 quantile were rounded to the 0.05
quantile and the 0.95 quantile, respectively, for each continu-
ous variable. We randomly split the data into training and
test data at a ratio of 4:1. We developed logistic regression
models, XGBOOST, random forest, and neural network mod-
els to predict the outcomes of the primary and secondary
analyses with and without laboratory test values. The logistic
regression model has been frequently used in studies that
have developed prediction models with binary outcomes,
and we assume that this model could serve as a benchmark.
In the logistic regression model, the boundary between one
class and another was assumed to be linear. However, this
boundary is often non-linear in the real-world setting.
Machine learning methods such as XGBOOST, random forest,
and neural networks can solve the classification problem
with a non-linear boundary. Given the possibility that out-
comes may rarely occur, down-sampling for the training data
combined with random forest, synthetic minority oversam-
pling technique (SMOTE) combined with XGBOOST, and
SMOTE combined with random forest were used in the ana-
lysis. The scale of the variables was standardized to develop
the logistic regression and neural network models. In add-
ition, in the case of XGBOOST and the neural network, we
split all the data except the test data using a ratio of 4:1 into
training data and data to evaluate early stopping to prevent
overfitting. We trained the models with training data, and



the hyperparameters were tuned using grid search and ran-
dom search using k-fold cross-validation (k=10). K-fold
cross-validation is a method in which training data are div-
ided into k parts, one of which is used as validation data
and the remaining k-1 pieces of data are used as training
data, and the model performance for each set of hyperpara-
meters is evaluated by iterating this process k times and
integrating the results. The grid search searches for all com-
binations of enumerated parameters, whereas the random
search selects combinations of parameters to search. After
tuning the hyperparameters, except for the cases of models
using down-sampling or SMOTE, the models were trained
again using the entirety of the training data with hyperpara-
meters corresponding to the best performance in the pro-
cess of hyperparameter tuning.

We evaluated the performance of the models using the
area under the receiver operating characteristic (ROC) curve
(AUCQ) for the test data and its 95% confidence interval (Cl).
Moreover, the calibration curves of all models developed in
the primary analysis are shown, and the Shapley additive
explanation (SHAP) values are shown to visualize the contri-
bution of each variable to the results. The SHAP is a popular
framework for interpreting predictions and evaluating the
predictive importance of each variable®>. One of the main
criticisms of machine learning is that it is unclear which vari-
ables contributed to the prediction. SHAP is a recently pro-
posed method to overcome this problem, analogous to the
odds ratios of logistic regression. In general, the higher
the absolute value of the SHAP value, the more important
the variable®,

Finally, subgroup analyses were performed according to
age and sex as females aged <50years, males aged
<50years, females aged >50years, and males aged
>50years, and we tried to define cutoff values of laboratory
test items for each group. Laboratory test items correspond-
ing to the top five absolute values of SHAP values in the
case of at least one type of model were selected. The cutoff
value was defined as the value corresponding to a point on
the ROC curve nearest to the coordinate (0, 1) (upper left
corner) for each laboratory test item. In addition, for each
part of the split data, the sensitivity and specificity corre-
sponding to the number of laboratory test items exceeding
the cutoff values were calculated.

Python 3.7.6 was used for all data analyses. Additional
information regarding the Python code used is provided in
Supplementary Appendix 1.

Results
Characteristics of the study population

Patients with a diagnosis of COVID-19 between March 7,
2020 and May 27, 2021 were included. In total, 9,065
patients fulfilled the inclusion criteria and 777 patients were
excluded. Finally, 8,288 patients were included in the ana-
lysis, of whom 3,854 (46.5%) were female; the median age
was 71 years (interquartile range = 51-82 years). The number
of patients for whom data were available after 2021 was
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5,338 (64.4%). A summary of the explanatory variables and
hospital characteristics is presented in Table 1.

Results of the primary analysis

In the case of XGBOOST and the neural network, data from
5,304 patients were assigned to the training data (1,326 to
validation data and 1,658 to test data), and 250 (4.7%)
patients in the training dataset died. For the other models,
data from 6,630 patients were assigned to the training data
(1,658 for test data), and 312 (4.7%) patients in the training
dataset died.

First, we observed the results of the models that included
laboratory test results. The AUC was 0.88 (95% Cl = 0.83-
0.93) in the case of logistic regression. The AUC for each
model is shown in Table 2 and the ROC curve for
each model is shown in Figure 1. The calibration curves for
each model are shown in Figure 2. The SHAP values of each
variable in the case of logistic regression, XGBOOST, random
forest, and neural networks are shown in Figure 3.

Second, we presented the results of the models without
laboratory test results as exploratory variables. The AUC was
0.75 (95% Cl = 0.68-0.81) in the case of logistic regression,
and the value of the AUC for each model is shown in
Table 3.

Results of the secondary analysis

Finally, the results of the secondary analysis are presented.
The number of patients assigned to the training data was
6,630, and the number of patients admitted to the ICU and
those who received invasive mechanical ventilation were 5
(0.07%) and 25 (0.37%), respectively. None of the patients
had received ECMO. In the cases of prediction of admission
or transfer to the ICU and the induction of invasive mechan-
ical ventilation, the values of the AUC were 0.92 (95% Cl =
0.54-1.00) and 0.81 (95% Cl = 0.61-1.00) with logistic regres-
sion, respectively.

Cut-off values of laboratory test results

Laboratory test items with the top five absolute values of
SHAP values in at least one type of model were blood urea
nitrogen (BUN), albumin, lactate dehydrogenase (LDH), blood
glucose, aspartate aminotransferase (AST), D-dimer, pro-
thrombin time, and C-reactive protein (CRP). The calculated
cutoff values for these items in each age and sex subgroup
are shown in Table 4. In addition, the ROC curve for each
laboratory test item is shown in Supplementary Figure S1 in
Supplementary Appendix 1. The combinations of sensitivity
and specificity when three items among BUN, albumin, LDH,
blood glucose, AST, D-dimer, prothrombin time, and CRP
exceed the cutoff were calculated. For females aged
<50years, males aged <50years, females aged >50years,
and males aged >50 years, the sensitivity and specificity of
the combinations were 1.00 and 0.70; 1.00 and 0.69; 0.89
and 0.51; and 0.93 and 0.49, respectively. When six items
exceeded the cutoff, the sensitivity and specificity of the
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Table 1. Patient’s background characteristics.

Overall Missing
Total number of patients 8,288 0
Age in years, median (Q1, Q3) 71.0 (51.0, 82.0) 0
Cancer, n (%) 2,254 (27.2) 0
Cardiovascular disease, n (%) 4,612 (55.6) 0
Chronic respiratory disease, n (%) 956 (11.5) 0
Liver disease, n (%) 1,113 (13.4) 0
Kidney disease, n (%) 578 (7.0) 0
Obesity, n (%) 36 (0.4) 0
Diabetes, n (%) 2,613 (31.5) 0
Women, n (%) 3,854 (46.5) 0
Smokers, n (%) 942 (11.4) 1657
BMI*, median (Q1, Q3) 22.3 (19.8, 25.0) 5,681
CRP* (mg/dL), median (Q1, Q3) 1.4 (0.2, 6.1) 1,106
D-dimer (nug/mL), median (Q1, Q3) 1.6 (0.6, 4.7) 3,632
y-GTP* (U/L), median (Q1, Q3) 26.0 (16.0, 53.0) 1,545
AST (GOT) * (U/L), median (Q1, Q3) 25.0 (19.0, 38.0) 886
ALT (GPT) * (U/L), median (Q1, Q3) 18.0 (12.0, 31.0) 895
ALP* (U/L), median (Q1, Q3) 226.0 (171.0, 304.0) 2,027
Albumin (g/dL), median (Q1, Q3) 3.7 3.2,4.) 1,425
Potassium (mEg/L), median (Q1, Q3) 4.1 (3.8, 44) 891
Calcium (mg/dL), median (Q1, Q3) 8.8 (8.4, 9.2) 2,639
Creatinine (mg/dL), median (Q1, Q3) 0.8 (0.6, 1.1) 873
Creatinine kinase (U/L), median (Q1, Q3) 86.0 (54.0, 158.0) 1,547
Chloride (mEg/L), median (Q1, Q3) 104.0 (100.0, 106.0) 939
Blood glucose (mg/dL), median (Q1, Q3) 118.0 (98.0, 150.0) 2,248
Sodium (mEg/L), median (Q1, Q3) 139.0 (137.0, 141.0) 900
Prothrombin activity (%), median (Q1, Q3) 92.0 (78.6, 103.6) 2,492
Prothrombin time (s), median (Q1, Q3) 122 (114, 13.2) 3,542
Hematocrit (%), median (Q1, Q3) 383 (33.7, 42.5) 798
Hemoglobin (g/dL), median (Q1, Q3) 12.7 (11.0, 14.3) 798
LDH* (U/L), median (Q1, Q3) 225.0 (182.0, 292.8) 1,762
BUN* (mg/dL), median (Q1, Q3) 15.9 (11.2, 22.7) 880
Uric Acid (mg/dL), median (Q1, Q3) 5.1 (4.0, 6.4) 3,654
eGFR* (mL/min/1.73 m?), median (Q1, Q3) 68.8 (51.0, 86.0) 930
Activated partial thromboplastin time (s), median (Q1, Q3) 30.4 (276, 34.2) 2,641
Lymphocytes (/uL), median (Q1, Q3) 1,027.8 (600.0, 1,620.0) 1,243
Monocytes (/uL), median (Q1, Q3) 402.5 (258.0, 584.1) 1,261
Neutrophils (/uL), median (Q1, Q3) 5,842.9 (3,747.1, 8,756.5) 2,310
Basophils (/uL), median (Q1, Q3) 20.0 (9.8, 40.0) 1,711
Eosinophils (/pL), median (Q1, Q3) 40.0 (10.0, 115.2) 1,397
White blood cell count (/uL), median (Q1, Q3) 7,100.0 (4,600.0, 9,900.0) 882
Total bilirubin (mg/dL), median (Q1, Q3) 0.7 (0.5, 1.0) 1,016
Total protein (g/dL), median (Q1, Q3) 6.8 (6.2, 7.2) 1,272
Platelet count (104/pL), median (Q1, Q3) 22.7 (17.2, 31.1) 795
Red blood cell count (10%/uL), median (Q1, Q3) 408.0 (332.0, 465.0) 795
Number of days from the date of naming by WHO, median (Q1, Q3) 324.0 (220.0, 376.0) 0
Beds number, n (%) 100-299 700 (8.4) 0
20-99 7 (0.1) 0
300-499 2,402 (29.0) 0
<20 1 (0.0 0
>500 5,178 (62.5) 0
Hospital regions, n (%) Chubu 944 (11.4) 0
Chugoku 36 (0.4) 0
Hokkaido 212 (2.6) 0
Kanto 549 (6.6) 0
Kinki 4,919 (59.4) 0
Kyushu, Okinawa 1,345 (16.2) 0
Shikoku 24 (0.3) 0
Tohoku 259 (3.1) 0

Abbreviations: BMI, body mass index; CRP, C-reactive protein; y-GTP, y-glutamyl transpeptidase; AST (GOT), aspartate aminotransferase (glutamate oxaloacetate
transaminase); ALT (GPT), alanine aminotransferase (glutamic pyruvic transaminase); ALP, alkaline phosphatase; LDH, lactate dehydrogenase; BUN, blood urea

nitrogen; eGFR, estimated glomerular filtration rate.

Table 2. AUC values of models with laboratory test data: estimated value (95% confidence interval).

XGBOOST Random forest
Logistic XGBOOST (Random Random and XGBOOST and Random forest Neural
regression (Grid search) search) forest down-sampling SMOTE and SMOTE network
Training data 0.87 0.93 0.97 0.99 1.00 1.00 1.00 0.86
(0.85-0.90) (0.91-0.95) (0.95-0.98) (0.99-1.00) (1.00-1.00) (1.00-1.00) (1.00-1.00) (0.83-0.89)
Test data 0.88 0.88 0.88 0.87 0.88 0.82 0.85 0.87
(0.83-0.93) (0.83-0.93) (0.83-0.93) (0.82-0.92) (0.83-0.93) (0.77-0.88) (0.79-0.90) (0.82-0.92)

Abbreviations: AUC, area under the curve; SMOTE, synthetic minority over-sampling technique.
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Figure 1. ROC curves of the mortality prediction models with laboratory test data in the case of (a) logistic regression, (b) XGBOOST alone with grid search, (c)
XGBOOST alone with random search, (d) random forest alone, (e) down-sampling and random forest, (f) SMOTE and XGBOOST, (g) SMOTE and random forest, and

(h) neural network.

Abbreviations. SMOTE, synthetic minority oversampling technique; ROC, receiver operating characteristic curve.

combinations were 0.75 and 0.98; 0.75 and 0.97; 0.47 and
0.93; and 0.41 and 0.91, respectively. The remaining results
are shown in Supplementary Table S2.

Discussion

This study aimed to compare the performance of various
prediction models (logistic regression, XGBOOST, random for-
est, and neural network) with and without laboratory test
values, such as the mortality prediction of COVID-19. The
performance of the models with laboratory test results was
better than that of the models without laboratory test
results, regardless of the model type. In addition, some
laboratory test results reported in previous studies as risk fac-
tors for mortality in patients with COVID-19, including blood
urea nitrogen (BUN), albumin, and lactate dehydrogenase
(LDH), showed high absolute values of SHAP values in this
study.

The AUCs of the models with laboratory test results as
explanatory variables were higher than those of models with-
out laboratory test results as explanatory variables in all
cases: XGBOOST, random forest, neural network, a combin-
ation of down-sampling and random forest, a combination of
SMOTE and random forest, and a combination of SMOTE and

XGBOOST. Furthermore, although an excessive number of
variables can cause overfitting to the training data, hyper-
parameters were tuned using the cross-validation method to
prevent overfitting, and models with laboratory test data
achieved higher performance than models without labora-
tory test results, even in the test data. Obtaining information
regarding laboratory test results can change the impression
about the diagnosis or prognosis of patients in clinical prac-
tice. The results of this study supported this intuition. Unlike
other background information, such as age, sex, smoking,
body mass index, and comorbidities, laboratory test results
can markedly change within a short period of time. Thus, it
is possible that laboratory test results can more sensitively
capture changes in the patients’ medical conditions, and this
sensitivity leads to a high prediction performance.

Albumin, age, LDH, and BUN levels, in addition to cardio-
vascular disease, were included among the variables with the
top five absolute SHAP values in the logistic regression ana-
lysis. Although in different orders, BUN, albumin, and LDH
were among the variables with the top five absolute SHAP
values in all cases of logistic regression, XGBOOST, random
forest, and neural network. In XGBOOST with grid search,
XGBOOST with random search, and random forest, age was
among the top five variables in all cases, and the remaining
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Figure 2. Calibration curves of the mortality prediction models with laboratory test data in the case of (a) logistic regression, (b) XGBOOST alone with grid search,
(c) XGBOOST alone with random search, (d) random forest alone, (e) down-sampling and random forest, (f) SMOTE and XGBOOST, (g) SMOTE and random forest,

and (h) neural network.
Abbreviation. SMOTE, synthetic minority oversampling technique.

ones were blood glucose level, aspartate aminotransferase
(AST), and D-dimer. The remaining two of the top five varia-
bles in the neural network were prothrombin time and C-
reactive protein (CRP). High BUN, low albumin, high LDH,
high blood glucose, high AST, high D-dimer, and high CRP
levels have been reported as risk factors for mortality in
patients with COVID-19, and the directions of change in val-
ues (higher or lower than the normal range) were consistent
with those previously reported'’'®, The median patient age
was 71years, and the mortality rate in the training data was
4.7%. This mortality rate was higher than that of all patients
in Japan reported in a survey by the Japanese Ministry of
Health, Labor, and Welfare (approximately 0.2% as of
September 10, 2022)%3. Restriction to inpatients only and the
high proportion of older patients may be responsible for the
high mortality rate observed in this study.

Because death was a rare outcome in the training data
(4.7%, 312/6,630), we combined down-sampling and random
forest, SMOTE and random forest, and SMOTE and XGBOOST,
which are generally suitable for rare outcomes®*?*. However,
the performances of these methods were not materially dif-
ferent from those of XGBOOST alone or random forest alone,
and the calibration curves of these combined strategies
deviated from a line representing accurate probability

predictions. This feature of the calibration curve may be
because under-sampling can change the prior distribution of
the outcome and distort the probability estimates®®*’. In
general, bagging algorithms, such as random forest, have
been reported to work better than boosting when combined
with re-samplings, such as down-sampling or SMOTE??; how-
ever, no substantial difference was found in this study.

Some international collaboration studies have been con-
ducted in settings similar to this study®*>'. These studies
reported that the patients’ clinical features differed between
the first and the second wave of the pandemic. This differ-
ence can cause the change in the important factors for pre-
dicting the prognosis of COVID-19 patients. However, a study
for developing prediction models for death of COVID-19
patients using only data in 2020 showed that age, albumin
level, AST level, creatine level, CRP level, and white blood
cell count were important predictors of mortality. These fac-
tors overlapped with those in our study although we
included later data. This similarity can imply that factors
important for predicting COVID-19 mortality have not
changed over time. Some study focused on the trend of
laboratory test values and the symptoms. Laboratory test
results only at the admission are used in this study, and the
RWD database does not have information about symptoms.
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Figure 3. SHAP values of the mortality prediction models with laboratory test data in the case of (a) logistic regression, (b) XGBOOST with grid search, (c)

XGBOOST with random search, (d) random forest, and (e) neural networks.

Abbreviations. SHAP, Shapley additive explanation; LDH, lactate dehydrogenase; BUN, blood urea nitrogen; AST (GOT), aspartate aminotransferase (glutamate oxaloacetate transaminase);
CRP, C-reactive protein; BMI, body mass index; eGFR, estimated glomerular filtration rate; ALP, alkaline phosphatase.

Table 3. AUC values of models without laboratory test data: estimated value (95% confidence interval).

Logistic XGBOOST Random Random forest XGBOOST and Random forest Neural
regression (Random search) forest and down- SMOTE and SMOTE network
sampling
Training data 0.74 0.78 0.84 0.95 1.00 0.97 0.73
(0.71-0.77) (0.75-0.81) (0.81-0.87) (0.93-0.97) (1.00-1.00) (0.97-0.98) (0.70-0.77)
Test data 0.75 0.74 0.74 0.75 0.72 0.72 0.74
(0.68-0.81) (0.68-0.81) (0.67-0.80) (0.69-0.81) (0.65-0.78) (0.66-0.79) (0.67-0.80)

Abbreviations: AUC, area under the curve; SMOTE, synthetic minority over-sampling technique.

However, whether these factors improve the performance of
models is one of the topics to be examined next.

This study has several limitations. First, a selection bias
may exist because not all medical institutions in Japan par-
ticipate in the RWD database. Thus, external validity should
be tested using data collected in different settings. Second,
it was difficult to collect additional items that were not
included in the database, such as vital signs, radiological
imaging results, and patients’ social backgrounds, because
this study used existing data. However, high performance
can be achieved using only the available data.

Conclusions

The prediction models of COVID-19 mortality show better
performance when laboratory test results are included in the
model than when they are not. Moreover, high BUN, low
albumin, high LDH, high blood glucose, high AST, high
D-dimer, high prothrombin time, and high CRP levels were
identified as risk factors that can significantly contribute to
mortality in patients with COVID-19. It might be possible to
estimate the prognosis of patients hospitalized for COVID-19
with higher performance if laboratory test results, such as
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Table 4. Cut-off values of laboratory test values.

Females aged <50 years
(n=1,081)

Males aged <50 years
(n=2877)

Number of deaths = 4

Number of deaths = 8

Cut-off Sensitivity Specificity Cut-off Sensitivity Specificity
BUN (mg/dL) 17.2 0.75 0.95 19.2 0.50 0.91
albumin (g/dL) 34 0.75 0.65 39 0.88 0.75
LDH (U/L) 223.0 1.00 0.76 232.0 0.88 0.68
blood glucose (mg/dL) 96.0 0.50 047 153.0 0.75 0.90
AST (GOT) (U/L) 31.0 1.00 0.84 34.0 0.88 0.70
D-dimer (ug/mL) 1.2 0.75 0.54 1.6 0.88 0.80
prothrombin time (s) 14.1 0.75 0.95 13.0 0.88 0.84
CRP (mg/dL) 9.11 1.00 0.94 0.83 0.38 0.57
Females aged >50years Males aged >50years
(n=2,773) (n=3,557)
Number of deaths = 150 Number of deaths = 228
Cut-off Sensitivity Specificity Cut-off Sensitivity Specificity
BUN (mg/dL) 21.4 0.68 0.72 220 0.66 0.67
albumin (g/dL) 3.15 0.60 0.75 33 0.67 0.67
LDH (U/L) 260.0 0.64 0.65 259.0 0.68 0.63
blood glucose (mg/dL) 141.0 0.52 0.67 134.0 0.50 0.61
AST(GOT) (U/L) 320 0.61 0.68 39.0 0.54 0.73
D-dimer (pg/mL) 2.8 0.74 0.58 2.8 0.68 0.65
prothrombin time (s) 124 0.63 0.64 13.0 0.64 0.66
CRP (mg/dL) 3.77 0.61 0.67 4.86 0.64 0.66

Cut-off: For albumin, the value in the cell is the maximum value in the abnormal range, and for others, it is the minimum value in the abnormal range. For
example, for females aged <50years, BUN >17.2 mg/dL and albumin <3.4g/dL are abnormal ranges.
Abbreviations: CRP, C-reactive protein; AST (GOT), aspartate aminotransferase (glutamate oxaloacetate transaminase); LDH, lactate dehydrogenase; BUN, blood

urea nitrogen.

BUN, albumin, LDH, blood glucose, AST, D-dimer, prothrom-
bin time, and CRP, are considered in clinical practice.
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. Identify the study as developing and/or validating a multivariable prediction model, the
Title 1 - . 2
target population, and the outcome to be predicted.
Provide a summary of objectives, study design, setting, participants, sample size,
Abstract 2 . o ) ) 2
predictors, outcome, statistical analysis, results, and conclusions.
Introduction
Explain the medical context (including whether diagnostic or prognostic) and
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Background and e
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eTable 1. Code list (ICD10)

Name Code

COVID-19 U071 or U072

Cancer C00—C97
Cardiovascular disease 100-99

Chronic respiratory J40—47

disease

Liver disease K70-77, C22, B15-19
Kidney disease N17-19

Obesity E65-68

Diabetes mellitus E10-14

COVID-19, coronavirus disease; ICD10 International Classification of Diseases 10th Revision

eTable 2. Sensitivity and specificity corresponding to number of items among BUN,




albumin, LDH, blood glucose, AST, D-dimer, prothrombin time, and CRP exceeding the

cut-off value.

Females aged <50 years Males aged <50 years Females aged >50 years Males aged >50 years

Number Sensitivity = Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity ~Specificity

of items
1 1.00 0.16 1.00 0.25 1.00 0.13 1.00 0.13
2 1.00 0.44 1.00 0.49 0.96 0.31 0.97 0.30
3 1.00 0.70 1.00 0.69 0.89 0.51 0.93 0.49
4 1.00 0.88 0.88 0.83 0.77 0.69 0.80 0.67
5 0.75 0.96 0.88 0.92 0.65 0.83 0.61 0.81
6 0.75 0.98 0.75 0.97 0.47 0.93 0.41 0.91
7 0.75 1.00 0.50 0.99 0.23 0.97 0.21 0.97
8 0.25 1.00 0.00 1.00 0.06 1.00 0.08 0.99

Abbreviations

CRP: C-reactive protein, AST (GOT): aspartate aminotransferase (glutamate oxaloacetate

transaminase), LDH: lactate dehydrogenase, BUN: blood urea nitrogen



Range of searched hyperparameters and tuning method (Python code)
Logistic Regression

Model: Model = sklearn.linear_model.LogisticRegression (max_iter=10000, random_state=42)
Hyperparameter Ranges: {"C": [10 ** i for i in range(-5, 6)]}
Method for Cross Validation: GridSearchCV(model, Hyperparameter Ranges, cv=KFold(10,

random_state = 42, shuffle=True), scoring="neg_log_loss")

XGBOOST (GridSearch)
Model: Model = xgboost. XGBClassifier (random_state=42)
Hyperparameter Ranges:
{ 'objective':['binary:logistic'],
'max_depth'": [4, 8, 16],
'alpha’: [0.1, 1, 10, 100],
'learning_rate': [0.1],
'n_estimators': [200],
'eval_metric'": ['logloss'],
'random_state': [42],
'use_label encoder':[False] }
Method for Cross Validation: GridSearchCV(Model, Hyperparameter Ranges, cv=KFold(10,

random_state = 42, shuffle=True), scoring="neg_log loss")

XGBOOST (XGBOOST + SMOTE) (Random Search)
Model: Model = xgboost. XGBClassifier(random_state=42)

Hyperparameter Ranges:



{ 'objective':['binary:logistic'],
'max_depth': [i for i in range (1,21)],
'alpha': [0.01*2%*i for i in range (1, 501)],
'learning_rate": [0.1],
'n_estimators':[200],
'eval_metric": ['logloss'],
'random_state' : [42],
'use_label encoder':[False] }
Method for Cross Validation:
RandomizedSearchCV(Model, Hyperparameter Ranges, cv=KFold(10, random state = 42,

shuffle=True), n_iter = 30, scoring="neg_log_loss", random_state=42)

Random Forest (Random Forest + SMOTE, Random Forest + Down Sampling)
Model: Model = sklearn.ensemble. RandomForestClassifier(random_state=42)
Hyperparameter Ranges:
{ 'criterion' : ['gini', 'entropy'],

'n_estimators': [10, 50, 100, 200],

'max_depth' :[3,5,7,9, 11] }

Method for Cross Validation:
RandomizedSearchCV(Model, Hyperparameter Ranges, cv=KFold(10, random_state = 42,

shuffle=True), n_iter = 30, scoring="neg_log_loss", random_state=42)



Neural network
Model:
def build model (n_hidden=1, n_neurons=10, learning rate=le-3, input_shape=XX,
activation="relu", optimizer_type="adam"):
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(n_neurons, activation=activation, input_dim=input_shape))
for layer in range(n_hidden):
model.add(tf.keras.layers.Dense(n_neurons, activation=activation))

model.add(tf.keras.layers.Dense(1, activation='sigmoid'))

if optimizer_type=="adam":
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
else:

optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate)

model.compile(optimizer=optimizer,
loss='binary_crossentropy’,

metrics=[tf.keras.metrics. AUC()])

return model

Model = tensorflow.keras.wrappers.scikit_learn.KerasClassifier(build_model)



Hyperparameter Ranges:

{ "n_hidden" : list(range(1, 6)),
"n_neurons" : [10, 20, 50, 100],
"learning_rate" : [10**(-i) for i in range(1, 6)],
"activation" : ["relu", "sigmoid"],

"optimizer type" : ["adam"],

"input_shape" : [X_train.shape[1]] }

Method for Cross Validation:
RandomizedSearchCV(Model, Hyperparameter Ranges, cv=KFold(10, random state = 42,

shuffle=True), n_iter = 10, scoring="neg_log_loss", random_state=42)



Supplementary Figure 1. ROC curve for each laboratory test item
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(b) Males aged <50 years
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(c) Females aged > 50 years
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(d) Males aged > 50 years
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CRP: C-reactive protein, AST (GOT): aspartate aminotransferase (glutamate oxaloacetate
transaminase), LDH: lactate dehydrogenase, BUN: blood urea nitrogen ROC: receiver operating

characteristic curve
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