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ABSTRACT 

In geophysical exploration, frequency domain full waveform inversion is a high-

resolution and high-precision velocity modelling method. Conventional full-waveform 

inversion matches the theoretical seismic records corresponding to the initial model to 

the actual acquired data, then adopts an optimisation strategy to solve the nonlinear 

problem, and then continuously updates the velocity model to obtain a high-precision 

velocity model that can correctly describe the velocity distribution of the subsurface 

medium. However, due to the inherent limitations of this technology and the problems 

in its application, it is still difficult to form a complete and mature technology system 

in industrial production. 

Firstly, achieving high-precision full waveform inversion necessitates the use of low-

frequency seismic data to address long-wavelength structural issues. High-quality low-

frequency data can provide information on large-scale subsurface structures, which is 

crucial for recovering low spatial frequencies or broadband backgrounds. Therefore, 

higher-quality low-frequency data can offer better insights into large-scale structures, 

providing a stronger foundation for the iterative inversion process of more complex, 

small-scale structures that follow. However, due to factors such as azimuthal coverage 

or acquisition system strategies, the observed data collected in practical production, 

especially the low-frequency components, often suffer from poor quality, which 

significantly impacts the overall inversion accuracy of full waveform inversion, even 

when multi-scale strategies are employed. In frequency-domain full waveform 

inversion, forward modelling is achieved by solving the wave equation, specifically the 

Helmholtz equation, and then iteratively matching the simulated seismic data with 

observed data. To address inaccuracies in the propagated and back-propagated 

wavefields during iteration caused by noise contamination and the effects of spatial 

aliasing due to low-density acquisition, this thesis first introduces the use of sparse 
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relaxation regularised regression algorithm to optimize the source-receiver data sets 

obtained in frequency-domain forward modelling, thereby improving the accuracy of 

full waveform inversion and achieving high-resolution inversion. 

Secondly, the complexity of the environmental conditions encountered during actual 

exploration, including both natural and anthropogenic factors, as well as the physical 

limitations of electronic devices and sensors, can lead to interference from random and 

coherent noise. This interference impacts the accuracy of full waveform inversion 

results, diminishing the effectiveness of the inversion. The least squares algorithm 

traditionally employed in full waveform inversion is based on the 2   norm 

regularization that minimizes the difference. However, the 2   norm is inherently 

sensitive to noise, especially vulnerable under low signal-to-noise ratios, making it 

susceptible to random noise interference. Moreover, to tackle the strongly nonlinear 

issues characteristic of FWI, traditional least squares methods may fall into local 

minima, hindering precise convergence of FWI. A common alternative for enhancing 

sparsity in solutions is the 1  norm, which, in contrast to the 2  norm, emphasizes 

the sparsity of the model rather than its smoothness, encouraging sparse solutions and 

thus offering better robustness and noise resistance. In light of the aforementioned 

challenges, this thesis explores the incorporation of a combined norm form within the 

minimization process of full waveform inversion, specifically the K-support 

regularization algorithm. The K-support norm introduced in this thesis incorporates a 

new regularization term in the form of a quadratic penalty, constraining the range of 

model parameter solutions and mitigating the nonlinearity of the inversion problem. 

Thirdly, in an ideal scenario, full waveform inversion determines the direction and 

magnitude of model updates through gradient computation, subsequently stacking each 

model update on top of the previous results as the basis for the next iteration, thus 
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completing an iterative cycle. After countless iterations and updates, the inversion 

results of full waveform inversion theoretically become progressively closer to the real 

outcomes, ultimately converging towards the true model infinitely. However, the reality 

is often more complex than the theory. Generally, due to limitations in the acquisition 

system and environmental factors, obtaining high-resolution inversion results with full 

waveform inversion becomes highly challenging, especially in intricate exploration 

settings. A notably challenging exploration scenario is the high-precision inversion of 

salt domes and salt marshes in the Gulf of Mexico, a region renowned for its extensive 

distribution of thick salt layers. However, the salt dome and salt canopy structures in 

the Gulf of Mexico are complex, with these salt layers exhibiting high-velocity 

characteristics that contrast with the surrounding rock velocities, creating significant 

velocity anomalies. To address the aforementioned issues, this thesis innovatively 

proposes a new concept, integrating randomized singular value decomposition with 

weighted truncated nuclear norm regularization and an inexact augmented lagrangian 

method to optimize full waveform inversion. 

To validate the effectiveness of the aforementioned methods, this thesis employed three 

synthetic models for testing the algorithm, including the central part of the 2004 BP, 

Marmousi II and the two-dimensional SEG/EAGE salt and overthrust models. Several 

numerical simulation experiments demonstrated that the enhanced full waveform 

inversion algorithm, based on the methods proposed in this thesis, exhibits remarkable 

stability and efficacy in addressing the aforementioned challenges in the industry. 
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1.1 Research Background 

Applied geophysical exploration has evolved from its early exploratory endeavours to 

its growing maturity today, traversing a rich trajectory of development (Virieux., et al., 

2014). Geophysical researchers primarily employ a myriad of methods, such as seismic, 

gravimetric, and magnetic surveys, to delve into subsurface structures (Plessix et al., 

2010). Among them, seismic exploration, in particular, is extensively employed in the 

search for petroleum and natural gas, providing a robust technological pillar for the 

global energy and industrial sectors (Aghamiry et al., 2021). With technological 

advancements, particularly in the fields of geophysics data acquisition and processing, 

the utilization of multi-channel geophysics methods has markedly improved the quality 

of data, and this advancement allows researchers to delve deeper into the understanding 

of underground structures (Gholami et al., 2022). Further, advancements in technology 

and equipment, especially the proliferation of computational techniques, catalyzed the 

progress of geophysical exploration methodologies (Zhou et al., 2023). High-

performance computer and numerical simulation techniques have made it feasible to 

present more intricate and authentic representations of the subsurface, which offers a 

more precise theoretical foundation and technological backing for the exploration of oil, 

natural gas, and mineral resources (Aghamiry et al., 2022). 

Within this context, Full Waveform Inversion (FWI) emerged, anchored in seismic 

wave propagation theories, and harnesses the complete waveform information of 

seismic waves as they travel through subsurface mediums to extrapolate underground 

parameters (Virieux and Operto, 2009). Initially constrained by computational 

capabilities, FWI was primarily relegated to modelling and inversion of small and 

simplistic subsurface models. However, as technological prowess burgeoned, especially 

with the advent of supercomputers, FWI has witnessed renewed interest from both 

academia and industry, especially given its demonstrated potential in interpreting 
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intricate subterranean structures (Warner and Guasch, 2016). Venturing into the 21st 

century, with the ubiquity and application of high-performance computing, FWI has 

found its niche in larger, more convoluted subsurface contexts. Through FWI, 

researchers can not only pinpoint parameters such as velocity and density of subsurface 

constructs with enhanced precision, but they can also offer more accurate insights into 

the location and scale of oil and gas reservoirs. However, since the conventional 

algorithm itself is outdated and the real exploration environment has become more and 

more harsh and complex, the conditions under which FWI can be applied in practice 

are still strict. Therefore, how to improve the performance of the algorithm itself, reduce 

the constraints and improve its robustness and resolution, to enable it to have a better 

performance in the field, is the main direction of the current study by the researchers. 

 

1.2 Current Challenges for FWI in Practical 

When FWI is applied in practice, three potential issues may arise. Firstly, due to the 

limitations of azimuth and acquisition systems, the quality of forward-modelled low-

frequency data is often compromised, consequently diminishing the overall 

performance of FWI (Wu and McMechan, 2021). Secondly, conventional least-squares 

algorithms tend to have inadequate noise suppression capabilities against random high 

background noise. They are also prone to getting trapped in local minima, resulting in 

slower and less accurate convergence rates (Ovcharenko et al., 2018). Lastly, when it 

comes to the identification and localization of geological boundaries with high-velocity 

contrasts like salt bodies in the Gulf of Mexico, the challenges are magnified, the 

presence of strong reflection interfaces and the shadowing effects of high-velocity 

bodies make the inversion of deep structures a challenging task, limiting the successful 

application of FWI (Alkhalifah et al., 2021). 
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1.2.1 Low-Frequency Data Reconstruction 

Over the past decade, seismic signal acquisition systems and processes have seen 

significant improvements. However, conventional methods still struggle to acquire low-

frequency seismic data under complex conditions in a noisy environment, primarily 

because seismic vibrators have difficulties transmitting adequate low-frequency energy 

to deeper regions (Liu and Fomel, 2011). Additionally, system and environmental noise, 

along with azimuthal constraints, further degrade the quality of the low-frequency 

components (Brossier et al., 2009). The absence of a sufficient low-frequency seismic 

dataset can lead to inaccurate large-scale features in FWI inversions, resulting in 

convergence to local minima instead of global ones. To circumvent this, traditional 

methods, such as low-frequency data interpolation or extrapolation, have been proposed. 

Wu et al. (2014) treated seismic recordings as modulated signals, using modulation 

operators to extract low-frequency envelopes and subsequently recover the low-

frequency information. Meanwhile, Wang and Herrmann (2016) framed low-frequency 

extrapolation as a convex optimization problem, employing total variation (TV) 

regularization to reconstruct the spatial continuity of various shot records. Additionally, 

Li and Demanet (2017) utilized bandwidth extrapolation techniques, extending the 

wavenumber extrapolation of images followed by the extended Born modelling to 

extrapolate the data's frequency bandwidth. However, achieving synchronized 

reconstruction of high and low-frequency signals and compensating for the spatial 

discontinuities introduced by low-density acquisition systems remains a challenging 

endeavour. To overcome this challenge, a novel regression algorithm is proposed to 

reconstruct seismic data, especially the low-frequency signals, by leveraging 

optimization algorithms in conjunction with compound regularization to interpolate and 

reconstruct the low-frequency signals. 
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1.2.2 Regularization 

Regularization algorithms are crucial steps in FWI. Initially, FWI, being a simulation 

algorithm, only employed the conventional least-squares method based on the 2  

norm as its misfit function. However, its downsides are evident. Firstly, because the 

inversion problem is highly nonlinear, an unconstrained form of misfit function can 

easily lead to convergence to local minima rather than the global minimum, resulting 

in inaccurate convergence or slow convergence rates. Additionally, the noise-sensitive 

nature of the 2  norm means that the conventional algorithm has poor noise resistance 

(Zhong and Zhang, 2013). Therefore, regularization algorithms were introduced to 

address these issues. 

Tikhonov regularization, a representative regularization algorithm, is widely applied 

for solving inverse problems, especially when they are ill-posed or underdetermined. In 

FWI, Tikhonov regularization is implemented by adding a regularization term, which 

is the 2   norm of the model parameters (like velocity or density). This is then 

modulated by a regularization parameter to adjust the penalty strength. Introducing this 

new regularization term can narrow the solution space range, helping FWI avoid falling 

into local minima. Meanwhile, the convex nature of the 2   norm further reduces 

instability during optimization and provides improved robustness while offering some 

noise resistance (Choi and Alkhalifah, 2012). However, for low signal-to-noise ratio 

complex conditions, the capabilities of Tikhonov regularization are limited. A more 

aggressive approach is to incorporate the TV, which is grounded on the 1  norm, into 

the misfit function (Schmidt, 2005). Compared to Tikhonov regularization, TV 

regularization, with its 1  norm-based terms can provide a stronger sparsity, leading 

to superior denoising capabilities. However, excessive regularization can sometimes 
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result in underfitting and resolution difficulties (Boyd and Vandenberghe, 2004). 

A better solution employs the Lagrangian method, which ensures denoising capability 

and provides faster convergence rates. The misfit function based on the Lagrangian 

method can not only tighten the solution space but also be efficiently computed when 

combined with the alternating direction method of multipliers (ADMM) by introducing 

convex terms. As a more robust solution, especially when the noise in the data follows 

a Gaussian distribution, this method offers a sturdier solution strategy. However, even 

though the Lagrangian method has significantly reduced time complexity, it still tends 

toward smoother model solutions. Particularly for geophysical inversion problems, the 

continuity and abrupt changes in some model structures are challenging to resolve 

(Aghazade et al., 2022). Therefore, a new regularization algorithm combining 1  and 

2   norms, accompanied by a misfit function solution algorithm with a lower time 

complexity, is eagerly awaited. 

 

1.2.3 Deep Salt Pillars Boundary Identification 

The inversion of complex underground structures, especially the high-precision 

inversion of geological boundaries with high velocity contrasts like the salt pillars and 

salt diapirs in the Gulf of Mexico, presents a formidable challenge. It's significant to 

note that the Gulf of Mexico basin has a wide distribution of salt formations with 

considerable thickness. According to predictions by O'Brien and Lerche, the 

temperature decreases by 10.5°C below a salt bed of 1000m thickness, and by 15.8°C 

beneath a salt bed of 1500m thickness. Consequently, the presence of these salt layers 

slows down the maturation process of the hydrocarbon source rocks beneath them 

(O'Brien and Lerche, 1987). Moreover, the high thermal conductivity of salt acts as a 
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heat dissipater, elevating the temperatures of strata above the salt, thereby accelerating 

the maturation process of hydrocarbon source rocks atop the salt layers. For the deeper 

primary hydrocarbon source rocks in the Gulf of Mexico, a later hydrocarbon peak 

period is beneficial for the preservation of oil and gas reservoirs (Billette and 

Brandsberg-Dahl, 2005). Hence, the high-precision inversion of salt interfaces and 

boundaries in this region is vital for determining reservoir locations and pressure 

deformation characteristics. 

However, the structure of salt pillars and diapirs in the Gulf of Mexico is intricate. These 

salt formations are characterized by high velocities, creating a pronounced velocity 

contrast with the surrounding rocks. This distinction complicates the propagation of 

seismic waves, frequently distorting their paths and causing multiple reflections and 

refractions, making FWI's inversion particularly challenging in deeper sections. The 

high-velocity nature of the upper salt interface results in a strong reflective layer. This 

reflective interface has a substantial impedance difference, characterized by high P-

wave impedance. Seismically, a strong reflective layer often appears as strong 

amplitude, highly continuous, and relatively low-frequency features, thereby masking 

reflections from structures beneath the salt (Rabalais et al., 2001). Moreover, the unique 

crystalline nature of the salt leads to strong refraction of acoustic waves, creating a 

"lens" effect. This "lens" effect is relatively pronounced, especially on the irregular 

shapes typically found at the edges or flanks of salt formations, making boundary 

reflections less clear than those at the salt top interface (Turner and Rabalais, 2019). All 

these challenges heighten the difficulty for FWI in determining the deep salt base 

structures. 
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1.3 Objectives of the Thesis 

1.3.1 Implementing Regression Regularization Algorithms for Forward Information 

Completion and Recovery 

The low-frequency wavefield plays a crucial role in FWI, as its quality can directly 

assist FWI in avoiding being trapped in local minima and provide superior large-scale 

information. However, in practical scenarios, the quality of low-frequency data 

obtained from exploration is often poor (Zhang, 2010). Therefore, there's a need to 

employ a more updated algorithm and theory to enhance the inversion accuracy from 

the algorithmic perspective, rather than relying on hardware upgrades. Thus, to address 

the issue of poor quality of high-frequency and low-frequency forward wavefields in 

FWI, especially when the low-frequency information is disturbed by noise interference 

and spatial discontinuities due to low-density acquisition, I propose optimizing the 

three-dimensional wavefield data obtained from frequency-domain forward modelling 

in FWI using sparse relaxed regularized regression algorithms. This enhanced 

algorithm introduces regularization terms and sparse constraints, which have 

interpolation effects, thus addressing the aforementioned issues of high-frequency 

aliasing effects and low-frequency discontinuities. In the numerical fitting section, I 

optimized the quality of low-quality three-dimensional seismic wavefields, simulating 

the issues with poor low-frequency data quality encountered by FWI in practical 

scenarios. By adopting the sparse relaxed regular regression algorithm, I introduced a 

novel approach for enhancing wavefield data and conducted a comparison between its 

inversion results and those from conventional algorithms. The comparison served to 

validate the feasibility of the sparse relaxed regularized regression (SR3) algorithm in 

addressing such issues, thereby solving the problem of suboptimal FWI inversion 

results caused by poor data quality. 
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1.3.2 Developing a New Regularization Algorithm for Seismic Exploration 

FWI as an inversion algorithm based on numerical simulation is such that the 

construction of the misfit function directly impacts the accuracy and convergence rate 

of the inversion and minimization process. Presently, conventional FWI algorithms still 

employ the misfit function of subpar performance. These traditional computational 

methods lead to a high degree of nonlinearity and multiple solutions. Especially under 

complex conditions, such as low signal-to-noise ratios, many standard algorithms tend 

to yield smooth model solutions. This excessive smoothening might result in a loss of 

model details, particularly for intricate underground structures (Zhong and Zhang, 

2013). Therefore, a new regularization algorithm is introduced in this thesis as a 

substitute for the conventional least squares method. Specifically, by combining the 

sparsity of the 1   norm and the convexity of the 2   norm, a novel regularization 

algorithm constructed in the form of the quadratic penalty method is proposed. The new 

algorithm preserves the convexity of the 2   norm while introducing certain sparse 

properties, endowing the algorithm with enhanced robustness and improved noise 

removal capabilities. Furthermore, to enhance the rate of convergence, the novel 

method is augmented with the ADMM, countering the sluggish convergence traits 

inherent in traditional approaches. In the experimental section, the effectiveness of the 

newly proposed algorithm is tested through multiple sets of synthetic data simulations, 

mirroring real complex scenarios. 

 

1.3.3 Utilizing Singular Value Decomposition for Multi-Scale Optimization in the 

Inversion Process 

Beyond drilling techniques, geophysical exploration, especially FWI, stands as the most 

effective, economical, and primary means of identifying salt layers. Notably, the Gulf 
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of Mexico contains vast deposits of saline gypsum rock layers, which have undergone 

four stages of evolutionary construction, forming salt bodies of diverse morphologies. 

The saline gypsum layers in this region not only serve as excellent source rocks for 

hydrocarbons but also act as effective reservoirs and cap rocks. Therefore, utilizing FWI 

to delineate and describe the salt bodies and reservoir layers of this region is of 

paramount importance (Chi et al., 2014). To address the shortcomings of conventional 

FWI, such as inferior imaging resolution, especially in deep zones, and difficulties in 

determining salt body boundaries, there is an urgent need to employ a more advanced 

algorithm to enhance FWI's capability to recognize high-velocity anomalies. By 

integrating a novel image processing technique, the inversion process of FWI is 

optimized in this thesis. New technology strengthens FWI's capability to describe the 

primary features of models and its inversion ability for high-velocity body boundaries, 

thus enhancing FWI's recognition and determination capacity for deep high-velocity 

anomalies, akin to those in the Gulf of Mexico region. 

 

1.4 Agenda 

This thesis aims to elucidate a high-precision multi-scale robust FWI optimization. It 

updates the FWI from multiple perspectives and processes to achieve higher 

computational efficiency and inversion resolution. Specifically, Chapter II will 

introduce a regression regularization algorithm to optimize both low and high-

frequency seismic data. This will be applied to a three-dimensional seismic data cube 

and subsequently incorporated into multi-scale FWI. The algorithm will then be verified 

in multiple homogeneous media and artificial syntheses. The preprocessing used in 

Chapter II acts on the forward phase of FWI, laying the groundwork for subsequent 

inversion processes. 
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In Chapter III, a novel sparse regularization algorithm will be introduced. Unlike 

conventional least-squares or Tikhonov regularization, this chapter uniquely employs a 

sparse regularization algorithm that integrates both the 1  and 2  norms to enhance 

the algorithm's robustness and noise resistance during the optimization process. This 

chapter will focus on the theoretical basis and algorithmic flow of the new sparse 

regularization method, applying it to many different types of synthetic data and various 

low signal-to-noise ratio conditions for testing. 

Lastly, Chapter IV will emphasize the initial application of an image processing 

algorithm in FWI to improve inversion resolution and conduct principal feature analysis. 

In this chapter, I will substantiate that by adopting the algorithms proposed in this thesis, 

it is feasible to effectively identify the high-precision contours and boundaries of deep 

salt domes in salt rock environments. 

 

1.5 Graphical Illustrations of the Highlights 

By enhancing the performance of the FWI algorithm itself and altering its logic, the 

optimized full FWI algorithm process will also be provided. The full flowchart of the 

improved FWI is shown in Figure 1.1. 
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Figure 1.1. Full flowchart of improved FWI proposed in this thesis. 

 

In Figure 1.1, the blue solid-lined box represents the conventional FWI workflow. It 

begins with observational data and forward modelling, proceeds by calculating the 

gradient through least squares, coordinates the step length to compute the gradient, and 

completes one iteration by updating the model. Within the internal loop, single-

frequency updates are performed through a finite number of iterations before returning 

to the external loop to switch frequencies. The process exits the loop when the final 

threshold is met. 

This thesis optimizes and improves the conventional FWI at multiple stages. Firstly, the 

sparse relaxed regularized regression algorithm is incorporated into the forward 

modelling process to enhance its effectiveness by denoising and optimizing low-

frequency data. Subsequently, a truncation parameter is set in preparation for the 
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subsequent random singular value decomposition. Next, the least squares objective 

function is optimized based on Lagrangian-type algorithms to achieve convex 

optimization for the inversion problem. Additionally, a novel K-support regularization 

algorithm is introduced to achieve denoising and enhance the convexity of the objective 

function, thereby avoiding local minima and cycle skipping.  

During the optimization process, a combined random singular value decomposition and 

weighted truncated nuclear norm regularization algorithm is used. The combined 

algorithm truncates the singular value matrix based on its condition number to reduce 

the rank of the singular value matrix, thereby achieving background separation and 

enhancing inversion resolution. Finally, after exiting the internal loop, the condition 

number is switched based on a multi-scale truncation parameter strategy to prevent the 

truncation parameter from exceeding the rank of the matrix. 

Through the above innovations, the proposed improved algorithms are tested on various 

synthetic datasets. The test results indicate that the proposed improvements can 

effectively enhance the denoising capability and inversion accuracy of FWI in multiple 

aspects, providing effective improvement strategies and theoretical foundations for the 

industrialization of FWI.  
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2.1 Introduction 

FWI is recognized for its ability to generate high-definition models of subsurface 

seismic velocities, making it indispensable in geophysical research, seismic analysis, 

and the characterization of oil and natural gas deposits. In the frequency-domain FWI, 

the forward simulation is achieved by calculating the solutions to the wavefield partial 

differential equation, namely the Helmholtz equation, followed by an iterative match of 

simulated seismic data with observed data to address the inversion problem and extract 

the velocity model (Virieux and Operto, 2009). A major advantage of using the 

Helmholtz equation is that it transforms a second-order partial differential equation into 

a linear equation, thus simplifying the solution process. The solution matrix of the 

Helmholtz equation outlines the wavefield relationship between sources and receivers 

at specific frequencies. Particularly in a three-dimensional view, it provides a multi-

scale depiction from low to high frequencies, serving as a useful tool for visualizing 

wavefield information at various frequencies (Warner and Guasch, 2016). Frequency 

domain forward algorithms, by calculating the solution to the Helmholtz equation, 

depict the propagation of seismic waves in the frequency domain. However, FWI faces 

numerous challenges in practical application, including azimuth, system constraints, 

and imaging artefacts, especially when forward or collected data is noisy, leading to 

diminished imaging accuracy (Zhang, 2010). In real-case, noise might contaminate this 

matrix, impairing the forward wavefield and the consequent imaging and inversion 

quality. Moreover, in situations where high-density spatial sampling is challenging, the 

impact of spatial aliasing must be considered. Spatial aliasing arises when the sampling 

process does not adhere to the Nyquist-Shannon sampling theorem, leading to potential 

misinterpretation of high-frequency wave components as low-frequency components, 

which degrades low-frequency information, affecting the accurate recovery of 

underground structures. Thus this phenomenon most manifestly results in high-
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frequency artefacts (Wu and McMechan, 2021). Traditional methods of increasing the 

sampling rate increase data volume and potentially raise computational expenses. 

Furthermore, FWI encounters numerous problems with low-density sampling, which 

implies sparse seismic data collection. It's widely acknowledged that low-frequency 

information is crucial for FWI, assisting in overcoming nonlinearity and facilitating the 

inversion process to converge to a global optimum rather than local optima (Chen, 

2012). Moreover, low-density sampling can cause limited offset distance problems, 

with insufficient receiver coverage, and a decline in the inversion resolution of 

subsurface models. These constraints make the FWI updating process heavily reliant 

on the initial model, diminishing the accuracy of inversion results and affecting FWI's 

interpretation and recognition of subsurface structures. 

Given the aforementioned challenges, this thesis primarily proposes the use of the SR3 

algorithm in FWI to optimize the source-receiver data sets obtained in frequency-

domain forward modelling, to enhance FWI's precision and achieve high-resolution 

inversion. The SR3 algorithm, serving as an optimization method, augments the basic 

regression problem into a new regression problem with additional constraints through 

an auxiliary matrix (Erichson et al., 2020). The main difference between SR3 and 

standard regression problems is its shrinkage of the loss function's functional space, 

which can compress the nonlinear wavefield loss space, thereby narrowing the range of 

singular values (Champion et al., 2020). As a result, iterations in regression based on 

the SR3 algorithm are faster than traditional regression methods and also promote 

sparse solutions. Specifically, to address spatial aliasing effects which may arise in 

high-frequency data, a more appropriate image processing technique involves matrix 

reconstruction and interpolation methods. As a regularization method, SR3 introduces 

regularization terms and sparse constraints, resulting in inherent interpolation effects. 

SR3 can mitigate the impact of aliasing effects, while sparsity constraints help to reduce 
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solution space complexity, thus enhancing the accuracy of matrix reconstruction and 

interpolation. Furthermore, handling low-frequency data and data completion and 

interpolation of down-sampled data are crucial for FWI. The SR3 algorithm employs 

multi-regularization methods, regularizing the sparse basis of simulated data through 

regression and iterative processes and restoring and completing data in the optimization 

problem's solution via swift iterations. Moreover, by selecting appropriate 

regularization parameters, this algorithm achieves a balance between sparse constraints 

and solution smoothness, providing more stable denoising and data completion effects. 

This chapter innovatively incorporates the SR3 algorithm into frequency-domain FWI. 

This incorporation allows FWI to supplement and reconstruct data for low-density 

spatial sampling, counteract spatial aliasing effects for high-frequency data, and 

enhance the resolution for noisy datasets. The stability and adaptability of the proposed 

methods are validated by comparing Tikhonov regularized FWI with SR3-based FWI 

using two homogeneous medium models and two complex models. 

 

2.2 Frequency-Domain Multiscale Forward Algorithm 

In the FWI technology, frequency-domain forward modelling has received widespread 

attention and research due to its outstanding accuracy, efficient computational speed, 

and insensitivity to overly idealized time sampling rates, as well as greater flexibility in 

practical applications. A key part of this algorithm typically involves solving the 

second-order acoustic Helmholtz equation (Jo et al., 1996). By applying LU 

decomposition to the impedance matrix, the computational efficiency of the wavefield 

for compound sources can be enhanced through forward and inverse substitutions: 

2
S S( ) F( )G( )g( ),∆ + = − − −W M U W X X Z Z  (2.1) 
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where M  represents squared slowness, and W  represents angular frequency, F( )W  

denotes source signature, U  denotes wavefield, SG( )−X X  and Sg( )−Z Z  denote 

source term at points SX  and SZ , which are in the two directions for two demesional 

modelling. In this thesis, all of the bold upright letters denote vectors, upright letters 

denote functions, and italic letters denote variables. 

The standard frequency-domain forward algorithm transforms the model domain into 

the data domain, promoting a closer alignment between initial and actual models. In the 

data domain, the least-squares method computes the difference between the observed 

and actual data to improve their agreement. So, the misfit difference obtained during 

the inversion process reflects the perturbation of the model, indicating the degree of 

updating from the current model to a more optimal one. By calculating its derivative 

value, the direction of model updating can be determined, guiding the next step of 

updating, and this entire process is collectively referred to as the optimization process. 

FWI involves numerous updating iterations, involving the exploration of more 

optimized models based on the current model and gradient direction (Alkhalifah et al., 

2021). The goal is for the inversion result to approach the true model more and more 

closely until the termination criteria are met: 

A
ca obsarg min ( ) ,

∈
= −

Μ M
M D M D  (2.2) 

where ca ( )D M  is the calculated data and obsD  is the observed data. 

 

2.3 Sparse Relaxed Regular Regression: SR3 

In practical scenarios, especially during the minimization process of FWI, the precision 

of the forward-modelled wavefield frequently influences the accuracy of the inversion. 
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In cases where the quality of the numerical wavefield we adopt is low, or the wavefield 

exhibits spatial discontinuities due to sparse sampling, data loss and noise can cause the 

inversion results to deviate from the true values. Even if more advanced inversion 

algorithms are used, the efficacy and accuracy of FWI can still be significantly impacted. 

Thus, high-quality forward-simulated wavefields are critical for FWI and play a pivotal 

role. In light of this, a preprocessing algorithm to optimize the wavefield is employed. 

The quality of the wavefield matrix and spatial continuity is enhanced by completing 

and denoising the wavefield data through auxiliary matrices and regression 

regularization algorithms. This lays a stronger foundation for subsequent inversions. 

The goal of seismic wavefield interpolation is to estimate and fill in the wavefield data 

in unknown areas based on known seismic wave data. This is typically a high-

dimensional and sparse data problem, as actual seismic observations are limited and 

heavily affected by noise. Therefore, an algorithm capable of handling sparse data and 

robust to noise is required. The SR3 algorithm decomposes the original problem into 

two subproblems: one for data fitting and the other for regularization. By introducing 

relaxed variables and relaxation parameters, the original seismic wavefield 

interpolation problem is relaxed into a new optimization problem, which is solved by 

alternately optimizing the relaxed variables and the wavefield. For example, seismic 

wavefield data are often sparse, meaning that there are few observation points. The SR3 

algorithm, through regularization, allows the interpolation results to maintain sparsity 

while effectively filling in the missing data. In regions where seismic wavefield data 

may not be observed, the SR3 algorithm can infer the wavefield in these areas using the 

available sparse data. Additionally, seismic data are often accompanied by noise, and 

direct interpolation may be severely affected by it. By incorporating regularization 

terms into the optimization process, the SR3 algorithm effectively filters out noise, 

resulting in smoother and more accurate interpolation outcomes. 
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Regularization regression, a classic algorithm commonly used in the industry and 

various other disciplines, plays a pivotal role in areas such as compressed sensing and 

data completion. As a form of sparse regression, this algorithm helps us select more 

influential features from a large dataset while discarding redundant ones. In this way, it 

reduces the complexity of high-dimensional data and computational space complexity 

(Erichson et al., 2020). Additionally, for datasets of poor quality, the algorithm can 

assist in predicting missing data, completing spatial discontinuities in the data through 

iterative processes, and achieving dataset completion. Given these strengths, the 

algorithm plays an extremely important role in multiple domains. Therefore, it is 

embedded into FWI as a preprocessing technique, aiming to three-dimensionally 

optimize the source-receiver data matrix obtained from frequency domain forward 

simulations (Zheng et al., 2018): 

2

F

1min R( ),
2

λ− +
U

AU D SU  (2.3) 

where m d×∈A    is the data-generating model for the real data D  , d∈U    is the 

recovery data, 𝜆𝜆 is the regularization parameter, R( )  is any regularization form and 

n d×∈S   is a linear map. 2
F  is the Euclidean norm, , ,m n d  are the dimensions of 

the row and column of a matrix space. 

I innovatively apply a non-smooth regularizer to FWI intending to enhance the quality 

of forward simulations cost-effectively affected by sparse sampling, while also 

achieving denoising of the signal. Compared to other algorithms, the proposed SR3 

offers several advantages. Firstly, with the introduction of the auxiliary matrix, this 

algorithm can effectively identify sparse signals, especially for large matrices with 

noise. This auxiliary matrix suppresses overfitting and aids in denoising. At the same 

time, by enhancing the convexity of the regression problem, it accelerates the 
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convergence speed of the recovery and optimization processes. 

Furthermore, the proposed algorithm possesses enhanced flexibility and robustness. By 

adjusting the form of the norm in the auxiliary matrix and the regularization term itself, 

I can flexibly apply the algorithm to various complex scenarios based on the degree of 

parameter complexity in different models. This allows us to set different conditions and 

levels of relaxation for the constraint functions, thereby achieving optimal results under 

conditions that satisfy fidelity. To this end, I need to construct an auxiliary variable to 

perform convex relaxation on equation 2.3 (Zheng et al., 2018): 

2

F p,

1min R( ) ,
2 2

kλ− + + −
U W

AU D W W SU  (2.4) 

where Rprox ( )k k
kλ=W U  is the auxiliary variable, which gradually approaches with 

U ; Rprox kλ  is the proximity operator (prox) for R. λ is the penalty parameter, and k is 

the relaxation parameter, where k controls the degree of relaxation. The 
P


 represents 

a different form of the regularization used in the optimization, which can be flexibly 

used as different regularization functions depending on the sparsity of the data matrix, 

such as 1  and 2  norms, even nuclear norms (Champion et al., 2020). In Figure 2.1, 

I give two different regularizations of unit-ball, where the 1  norm of Figure 2.1 (a) is 

emphasized with better denoising ability, while the 2  norm of Figure 2.1 (b) is convex. 
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Figure 2.1. Three-dimensional visualization of two common regularizers; (a) 1  

regularizer and (b) 2  regularizer (Li et al., 2024c). 

 

Equation 2.4 is a form of the value function, which allows us to precisely depict this 

relaxed framework. A value function offers a quantitative representation of a problem, 

capable of revealing the nature and characteristics of the problem. It aids in 

understanding its essence and provides direction for problem-solving (Gholami et al., 

2021). Specifically, this value function is obtained by minimizing equation 2.4 over x , 

a process equivalent to finding a x   that minimizes equation 2.4. This minimum 

corresponds to the value function I am discussing, which to some extent reflects the 

properties of the optimal solution to the problem. If I minimize equation 2.4 in U , the 

minimum value function ( )v W , which is the predecessor of misfit, can be obtained 

(Zheng et al., 2018): 

2

F p

1( ) min .
2 2

k
= − + −

U
v W AU D W SU  (2.5) 
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I assume that T T
k k= +H A A S S  is invertible, so that 1 T T( ) ( )k k−= +U W H A D S W  is 

unique. And: 

1

1
,

(I )
k

k
k

k

k k

−

−

 
=  

−  

AH S
F

SH S




 (2.6) 
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 (2.7) 

k k=g G D， (2.8) 

which provides a closed-form expression for: 

2

F

1( ) F .
2 k k= −v W W g  (2.9) 

Equation 2.4 then reduces to 

2

F

1min R( ).
2 k k λ− +

W
F W g W  (2.10) 

To elucidate the superiority of the SR3 algorithm more accurately, I demonstrate partial 

minimization improves the condition of the problem in Figure 2.2. In Figure 2.2 (a), the 

coloured ellipses depict the contours of 
2

F
−AU D  , while in Figure 2.2 (b), the 

contours of 
2

Fk k−F W g   are vividly portrayed as a circle (Zheng et al., 2018). In 

Figure 2.2 (a), I exhibit the contour lines of the quadratic part similar to the least 

absolute shrinkage and selection operator (LASSO) problem (coloured ellipses) and the 

approximate solution paths (red solid line) in horizontal projection. In Figure 2.2 (b), 

the contour lines of the quadratic part of the SR3 loss function (coloured circle) and the 

corresponding approximate paths (red solid line) of the SR3 solution in the relaxed 

coordinates W  are shown. Additionally, the grey diamonds indicate the contour lines 
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of the 1  norm of the LASSO problem in each coordinate group. 

From Figure 2.2, it is evident that for the widely applied class of LASSO-like problems, 

the properties of F  are generally superior to A , particularly in terms of the condition 

number, and F  is typically smaller than A . The ratio of the maximum to minimum 

singular values of F  is smaller, thereby compressing the contour lines into a shape 

closer to a sphere, which accelerates convergence and enhances performance. Moreover, 

executing proximal gradient descent solely in W  naturally resolves these types of 

problems. The formulas for F  and G  can also be applied to acceleration methods, 

such as the fast iterative shrinkage-thresholding algorithm (FISTA) algorithm. Overall, 

the SR3 algorithm reduces the singular values of F  relative to A  and has a weaker 

impact on small singular values. This effect "squeezes" the contour lines into a near-

spherical shape, thereby accelerating convergence and enhancing performance (Zheng 

et al., 2018). 
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Figure 2.2. Illustrative figures of the gradient iteration process using the LASSO 

problem as an example, (a) conventional proxy-gradient process, (b) SR3 "tightens" the 

elliptical contour of the loss function to an approximate circle, thereby accelerating the 

convergence speed and performance of regression computations. The grey diamond is 

the contour of the 1  norm; The solid red line is the direction of the iteration update. 

(Li et al., 2024c). 

 

Finally, the algorithm requires two parameters to be specified simultaneously; the 

parameter λ determines the strength of the regularization, while k determines the degree 
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of relaxation. I set the coefficient threshold to   . Equation 2.11 is an empirical 

formula regarding parameter selection that I derived based on my experience in 

practical computations. During cross-validation, I used an intermediate parameter to 

represent the ratio of two unknown parameters, λ and k. I first set a range for one of the 

parameters and then input it into the algorithm. The algorithm iteratively calculates and 

optimizes the error between the computed and real wavefield. I then select the value of 

the   that corresponds to the minimum error, which gives us the optimal ratio of λ 

to k. After fixing one of these parameters, then the value of the other parameter can be 

determined by the above steps. Then: 

2

.
2

λ =
k

 (2.11) 

With equation 2.11, I can change the two-parameter selection problem to a single-

parameter selection and significantly improve the algorithm. In addition, I suggest a 

cross-validation approach to achieve parameter tuning of the automatic strategy. 

 

2.4 Numerical Simulations on Synthetic Data 

In this section, to evaluate the efficacy of the algorithm introduced in this chapter, I 

assess the SR3 algorithm's performance with two homogeneous media and two 

synthetic data sets, respectively. In numerical experiments, I use the frequency-domain 

acoustic multi-scale FWI algorithm and introduce a Perfectly Matched Layer (PML) 

for absorbing boundary conditions (Pratt, 1999). In addition, to quantitatively clarify 

the intensity of the random noise employed in the numerical tests, I employ the 

subsequent signal-to-noise ratio equation (de Ridder and Dellinger, 2011): 
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2
10

2

SNR 20 Log ( ),= ∗
D
E

 (2.12) 

where the E   is the noise data. In addition, I adopt the model error measure to 

quantitatively compare and evaluate the inversion accuracy of various algorithms 

(Warner and Guasch, 2016): 

true inv true2 2
/−M M M ， (2.13) 

where the trueM  and invM  represent true and inversion velocity models, respectively. 

In addition, in this chapter, I will compare the analytical solution with the numerical 

solution, for which the distance function first needs to be defined: 

2 2r( , ) ( ) ( ) ,s S= − + −Z X Z Z X X  (2.14) 

where r( , )Z X   denotes the distance between ( , )Z X   and source ( , )s sZ X  . In 

addition, the angular frequency needs to be calculated: 

 2  ,fω π=  (2.15) 

where ω   is the angel frequency, f   denotes the frequency. subsequently, we 

compute the analytical wavefield from the 2D Green's function: 

2
1 0( , )   H ( r( , )),

4
i K=G Z X Z X  (2.16) 

where 1( , )G Z X  is the 2D green function, 2
0H  is the Hankel functions of the second 

kind, which is the linear combination of the Bessel functions (Bessel function of the 

first kind) and Neumann functions (Bessel function of the second kind). K  denotes 
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the conjugate complex of wave numbers. According to the distance function, the 

distance function of its symmetric source and the 2D Green's function of the symmetric 

source can be obtained consequently. Finally, the conjugate of the two Green's functions 

is calculated: 

1 2  ,= −G G G  (2.17) 

where 2G   is the 2D Green's function of the symmetric source, G   denotes the 

complex conjugate of two Green's functions. 

 

2.4.1 Single-Layer Homogeneous Model 

Firstly, I conducted a preliminary test of the SR3 method in the one-layer homogeneous 

medium. Figure 2.3 (a) provides the basic structure of the single-layer homogeneous 

medium, while Figure 2.3 (b) depicts the one-dimensional velocity model of this 

medium with a velocity of 2 km/s. Figures 2.3 (c-e) present the analytical solutions of 

the wavefield under frequencies of 10 Hz, 13 Hz, and 15 Hz for this model, respectively. 

The process for calculating the analytical solution in the code is as follows: First, 

determine the source location and define the distance function. Then, use the Helmholtz 

function and the distance to define Green's function. Next, calculate the value of the 

Green's function at a given point. Finally, compute the wave field by taking the complex 

conjugate of the difference between the Green's functions at different source locations. 
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Figure 2.3. (a) The basic structure of a single-layer homogeneous medium, (b) the 

velocity model of the single-layer homogeneous medium, which achieves a velocity of 

2 km/s, (c-e) the wavefield model for the analytical solution of the monolayer 

homogeneous medium at frequencies of 10 Hz, 13 Hz, and 15 Hz. The source position 

at (400, 80) of the model’s grid. The receivers at the (400, 1) of the model’s grid. The 

horizontal axis is the offset distance, and the vertical axis is the depth (Li et al., 2024c). 

 

Initially, I tested the results of the conventional algorithm, as explained in Figure 2.4, 

where (a) displays the numerical solution at 10 Hz, (b) represents the difference 

between the real parts of the analytical and simulation solutions, (c) depicts the ratio of 

the real parts of the analytical and numerical solutions, and (d) describes the angle part 

of the ratio between the analytical and numerical solutions. Corresponding to Figure 

2.4 (a-d), Figures 2.4 (e-h) present the various comparisons between the numerical 

solutions based on the SR3 algorithm and the analytical solution, with the order of 

comparison matching that of the conventional algorithm. To enhance visual recognition, 
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I utilized a discrete colour map. 

 

 

Figure 2.4. (a-d) the results and comparisons of the conventional FWI algorithm at 10 

Hz, where (a) shows the numerical solution for the monolayer homogeneous medium 

at 10 Hz, (b) the real part of the difference between the numerical solution (Figure 2.4a) 

and the analytical solution (Figure 2.3c), (c) the real part of the ratio of the analytical 

solution to the numerical solution, (d) the angle part of the ratio of the difference (Figure 

2.4b) to the analytic solution. (e-h) show the results after processing by the SR3 

algorithm, where (e) shows the numerical solution after SR3 processed for the 

monolayer homogeneous medium at 10 Hz, (f) the real part of the difference between 

the numerical solution (Figure 2.4e) and the analytical solution (Figure 2.3c), (g) the 

real part of the ratio of the analytical solution to the numerical solution, (h) the angle 

part of the ratio of the difference (Figure 2.4f) to the analytic solution. The discretised 

colour map is intended to improve recognition performance (Li et al., 2024c). 

 

Additionally, I compared results under other higher frequencies. Figure 2.5 (a-h) 
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displays the performance comparison between the conventional algorithm and the SR3 

algorithm at 13 Hz, adopting the same comparison method and order as in Figure 2.4. 

Similarly, Figure 2.6 (a-h) contrasts the conventional wavefield results with the SR3-

optimized wavefield results at 15 Hz, maintaining the same comparison method and 

order as in Figure 2.4. 

 

 

Figure 2.5. (a-d) the results and comparisons of the conventional algorithm at 13 Hz, 

with the same methods and order of comparisons as in Figures 2.4(a-d). (e-h) After 

processing by the SR3 algorithm at 13 Hz, the results have the exact ordering as in 

Figure 2.4(e-h). The discretised colour map is intended to improve recognition 

performance (Li et al., 2024c). 
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Figure 2.6. (a-d) The results and comparisons of the conventional algorithm at 15 Hz, 

with the same methods and order of comparisons as in Figures 2.4(a-d). (e-h) After 

processing by the SR3 algorithm at 15 Hz, the results have the exact ordering as in 

Figure 2.4(e-h). The discretised colour map is intended to improve recognition 

performance (Li et al., 2024c). 

 

2.4.2 The Central Part of the 2004 BP Model 

To better simulate complex exploration conditions, I tested the algorithm proposed in 

this chapter using synthetic data that is closer to actual conditions.  

The 2004 BP model, as a highly representative salt body model, is extensively utilised 

in FWI. The choice of the salt body model is motivated by the presence of a high-

velocity salt anomaly in its central part, which creates a significant velocity contrast 

with its surroundings. This contrast leads to considerable difficulties in accurately 

delineating the salt body contours and surrounding velocities under conditions of 

extremely low SNR. High noise levels exacerbate these challenges. Consequently, the 

salt body model is an ideal test bed in this experiment for assessing the precision and 
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effectiveness of both conventional and proposed algorithms in high-accuracy inversion 

under complex conditions. 

Figure 2.7 displays the 2004 BP model, representing the core section of the 2004 BP 

salt body model. This illustrates the geological characteristics of the eastern/central 

Gulf of Mexico and Angola's offshore regions. One of the complexities in inverting this 

model is illustrating the boundary of the salt dome intrusion, given the central section 

of this model consists of rapid salt formations. The presence of two water channels 

adjacent to the salt structure further complicates the velocity inversion, adding to the 

inversion challenges, which matches the research challenges described in the research 

challenge section. Figure 2.7 (b) shows the initial medium used, which increases 

linearly, and the velocity range is from 1.5 km/s to 5 km/s. I added 10 dB of random 

background noise to the dataset. 
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Figure 2.7. The central part of the 2004 BP benchmark; (a) real benchmark; (b) starting 

medium (Li et al., 2024c). 

 

Further, where Figure 2.8 (a) presents the source-receiver data sets data obtained at an 

inversion frequency of 3 Hz, (b) shows the added 10 dB random background noise, (c) 

represents the wavefield after linearly adding the noise data, (d) is the downsampled 
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wavefield of the 3 Hz, simulating spatial discontinuities caused by low-density 

sampling, and (e) shows the test wavefield after linearly stacking the noise-free source-

receiver data sets. 

 

 

Figure 2.8. Source-receiver domain data set at 3 Hz of the 2004 BP model, the real part 

of the (a) clean data matrix, (b) 10 dB random noise, (c) wavefield matrix with 10 dB 

noise, (d) missing-trace matrix, (e) subsampled wavefield matrix with 10 dB noise and 

missing trace (Li et al., 2024c). 

 

Subsequently, I computed the three-dimensional multi-scale wavefield cubes for the 

above conditions, as shown in Figure 2.9. Figure 2.9 (a) presents the pure wavefield 

information, viewed from (155,20), (b) is its side view from (105,1), (c) shows the low-

quality wavefield stack simulated with linearly added random noise and downsampling 
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from (155,20), (e) its side view from (105,1), (f) the multi-scale wavefield stack 

optimized by the SR3 algorithm proposed in this chapter, ranging from 0.5 Hz to 5 Hz, 

viewed from (155,20), and (g) its side view from (105,1). The results indicate that the 

conventional algorithm, severely disturbed by noise and downsampling, produces very 

poor wavefield quality with significant artefacts and aliasing. In view(a, b), the 'a' 

represents the horizontal rotation angle used to rotate the view around the z-axis, while 

'b' is the vertical rotation angle used for tilting the view in a direction perpendicular to 

the horizontal-vertical plane. In contrast, the SR3 algorithm enhances the interpolation 

and noise removal capabilities, compensates for the spatial discontinuity, and has 

certain noise resistance, making the wavefield information more coherent, and laying a 

foundation for subsequent inversion. Particularly noteworthy in Figures 2.9c and 2.9d 

are the low-quality seismic wavefield data contaminated with noise. In these two 

images, the continuity of the wavefield information is significantly disrupted, mainly 

due to the sparsification, which has a severe impact on the lateral continuity of the 

wavefield data. These low-quality issues undoubtedly present considerable challenges 

for the seismic data inversion process. In contrast, Figures 2.9e and 2.9f display the 

wavefield data optimised using the SR3 algorithm. These images demonstrate the 

remarkable effectiveness of the proposed algorithm in interpolating and denoising low-

frequency wavefield data, particularly in compensating for the gaps and discontinuities 

caused by data sparsification. The results show significant enhancement in the lateral 

continuity of the data, as particularly evident in Figure 2.9f. In this chapter, subsequent 

inversion processes will be based on the untreated wavefield data and the wavefield 

data optimised with the SR3 algorithm. The optimised wavefield data will provide more 

abundant and precise information for the subsequent processing steps, laying a solid 

foundation for high-precision imaging inversion. 
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Figure 2.9. Three-dimensional low-frequency source-receiver data sets from 0.5 Hz to 

5 Hz of the 2004 BP model, (a) clean data matrix, (b) side view of (a); (c) subsampled 

wavefield matrix with missing-trace and 10 dB noise, (d) side view of (c); (e) wavefield 

matrix after SR3 optimisation for (c), (f) side view of (e) (Li et al., 2024c). 

 

In applying FWI, low and ultra-low frequency data play a crucial role, although there 

is no clear standard, the industry consensus is that for frequency domain FWI, signals 

below 3 Hz are considered low-frequency signals (Sun and Demanet, 2020). The 

significance lies in that FWI relies on accurate and comprehensive frequency content 

to reconstruct the subsurface velocity structure. High-quality, low-frequency data 

enhances the precision of the inversion process and is crucial in addressing the 

challenges of low-frequency paucity and over-dependence on the initial model in FWI. 
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Figure 2.10 illustrates low-frequency seismic wavefield data impacted by noise and 

sampling issues, where the characteristics of data sparsification and fragmentation 

significantly reduce its overall quality. The decline in wavefield quality affects the data's 

reliability and negatively impacts the subsequent inversion process and interpretation. 

In this context, the proposed algorithm effectively enhances the quality of low-

frequency wavefield data by efficiently interpolating and reconstructing missing or 

damaged information. Improving the SR3 strengthens the continuity and integrity of 

the data and compensates for lost information caused by data sparsification and noise 

introduction. Therefore, the application of the SR3 algorithm has the potential to 

enhance the quality of inversion results in FWI, leading to more accurate velocity 

models and providing a more reliable foundation for the detailed imaging and 

interpretation of complex geological structures. 

For a better comparison of the test results, especially the low-frequency effects, I 

provided side views in Figure 2.10. Figures 2.10 (a) and (d) show the wavefield 

information at extremely low frequencies of 1 Hz and 2 Hz, respectively, (b) and (e) 

show the low-quality wavefield stacks with linearly added direct arrivals and random 

noise, while (c) and (f) show the optimized results for the low-quality wavefields. After 

preprocessing, the wavefield continuity is improved, especially in the area marked with 

a box in the figure, artifacts have been significantly suppressed, making it closer to the 

real clean wavefield information. The experiments prove that the algorithm proposed 

in this chapter has excellent optimization effects for both high and low-frequency data, 

capable of resisting certain noise and compensating for a certain range of wavefield 

omissions. 
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Figure 2.10. Three-dimensional side view low-frequency source-receiver data sets; 1 

Hz (a) clean wavefield, (b) subsampled wavefield with missing trace, (c) SR3 processed 

reconstructing wavefield; 2 Hz (d) clean wavefield, (e) subsampled wavefield with 

missing-trace, (f) SR3 processed reconstructing wavefield (Li et al., 2024c). 

 

Next, I present the results of multi-scale frequency domain FWI for the two algorithms, 

as shown in Figure 2.11, specifically, (a1-a8) depict the inversion outcomes using the 

traditional Tikhonov regularization FWI; in contrast, (b1-b8) showcase the inversion 

results from the enhanced algorithm presented in this chapter; (c1-c8) illustrate the 

discrepancies between the traditional algorithm and the actual benchmark; meanwhile, 

(d1-d8) highlight the variances between the outcomes of the enhanced algorithm and 

the genuine velocity model. Both methods utilize the identical multi-scale inversion 

frequency and have incorporated 10 dB of random noise along with the down-sampling 

simulation. From the results, it is evident that compared to the conventional algorithm, 

the improved algorithm offers better contour descriptions and noise reduction 

capabilities. Specifically, due to the impact of noise and down-sampling, the 

conventional algorithm's inversion results in the deep part of the model and the water 
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channels on both sides appear blurred, especially the inversion results of the bottom salt 

dome part are not distinct. This occurrence might be attributed to the subpar quality of 

the low-frequency data, leading to the larger-scale components of the model being 

inadequately inverted. However, the inversion outcomes from the enhanced algorithm 

are markedly better. Specifically, the configurations of the water channels on either side 

are well-defined, and the salt dome's continuity is commendable. 
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Figure 2.11. 2004 BP model inversion results, (a1-a8) Tikhonov regularisation FWI 

inversion results in 1.20 Hz, 2.99 Hz, 3.58 Hz, 5.16 Hz, 7.43 Hz, 10.70 Hz, 12.84 Hz, 

and 15.41 Hz, respectively, (b1-b8) FWI based on SR3 algorithm optimisation inversion 

results in 1.20 Hz, 2.99 Hz, 3.58 Hz, 5.16 Hz, 7.43 Hz, 10.70 Hz, 12.84 Hz, and 15.41 

Hz, respectively, (c1-c8) differences between the Tikhonov FWI and the actual velocity 

model, (d1-d8) differences between the SR3-based FWI and the actual velocity model 

(Li et al., 2024c). 

 

To better quantitatively compare the two inversion results, I further contrasted their 
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misfit errors and model errors, as illustrated in Figure 2.12. Where (a) represents misfit 

error, and (b) represents model error. It can be observed that the convergence rate of the 

modified algorithm is significantly better, and its model error is also smaller. This 

indicates that the inversion result of the modified method is closer to the real model. 

 

 

Figure 2.12. Comparison of SR3 algorithm-based FWI with conventional Tikhonov 

regularisation-based FWI for quantification, (a) misfit error, (b) model error. The 

horizontal axis is the number of iterations, and the vertical axis is the error value (Li et 

al., 2024c). 

 

Lastly, the one-dimensional velocity analysis results of the inversion results of the two 

algorithms are compared, as shown in Figure 2.13, which illustrates a longitudinal 
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velocity comparison across different X coordinates. The red solid line denotes the 

outcome from the enhanced algorithm, the blue solid line indicates the results from the 

traditional algorithm, the black solid line stands for the actual velocity, and the grey 

dashed line signifies the starting velocity. 

 

 

Figure 2.13. 2004 BP model, one-dimensional velocity models at different X-positions, 

(a) X = 0.56 km; (b) X = 7.60 km; (c) X = 8.08 km; (d) X = 9.00 km; (e) X = 11.08 km; 

(f) X = 17.88 km, the vertical comparison of the actual velocity model (solid black line), 

initial velocity model (grey dotted line), the Tikhonov regularisation FWI velocity 

model (solid blue line), and the SR3-based FWI velocity model (solid red line) (Li et 

al., 2024c). 
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Similarly, Figure 2.14 is the lateral velocity model comparison. Compared to the 

longitudinal comparison, the lateral comparison is more challenging. From the velocity 

comparison results in both directions, it can be seen that the velocity of the improved 

algorithm fits the true velocity better, especially in the deep area, the improved 

algorithm provides better velocity compensation. In contrast, influenced by noise and 

down-sampling, the conventional algorithm displays noticeable non-fitting. 

Specifically, in the deep areas and salt dome parts, the velocity fitting results differ 

significantly from the real results, and in some areas, there are even noticeable velocity 

artefacts.  
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Figure 2.14. 2004 BP model, one-dimensional velocity models at different Y-positions, 

(a) Y = 1.49 km; (b) Y = 2.01 km; (c) Y = 4.21 km; (d) Y = 4.43 km; (e) Y = 4.62 km; (f) 

Y = 4.99 km, the horizontal comparison of the actual velocity model (solid black line), 

initial velocity model (grey dotted line), the Tikhonov regularisation FWI velocity 

model (solid blue line), and the SR3-based FWI velocity model (solid red line) (Li et 

al., 2024c). 

 

To evaluate the performance of my proposed algorithm under low signal-to-noise ratio 

conditions, I conducted a set of comparative tests with 5 dB of random noise present. 

Figure 2.15 presents these test results. Figure 2.15a shows the clean wavefield 
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information at 2 Hz; Figure 2.15b displays the information with 5 dB of random noise; 

Figure 2.15c illustrates the wavefield after adding 5 dB of random noise; Figure 2.15d 

depicts the simulated missing trace matrix, and Figure 2.15e shows the subsampled 

wavefield matrix with 5 dB noise and missing traces. The 5 dB noise significantly 

disrupts the wavefield, making high-resolution inversion particularly challenging under 

these conditions. 

 

 

Figure 2.15. Source-receiver domain data set at 2 Hz of the 2004 BP model, the real 

part of the (a) clean data matrix, (b) 5 dB random noise, (c) wavefield matrix with 5 dB 

noise, (d) missing-trace matrix, (e) subsampled wavefield matrix with 5 dB noise and 

missing trace (Li et al., 2024c). 

 

Subsequently, I demonstrate the test results as shown in Figure 2.16. Figures 2.16a1-a4 
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illustrate the inversion results using conventional algorithms at frequencies of 2.99 Hz, 

3.58 Hz, 5.16 Hz, and 7.43 Hz, respectively, while Figures 2.16b1-b4 display the 

inversion results using my proposed algorithm at the same frequencies. These outcomes 

indicate that noise and missing traces have a significant impact on the inversion results, 

especially the artefacts caused by the very low SNR (5 dB of random noise) (although 

there is no clear standard, the industry consensus is that less than 10 dB is a low SNR). 

Moreover, in the results of conventional algorithms, the structure of the bottom salt 

bodies appears very blurred. In contrast, the results obtained by this thesis-proposed 

algorithm are markedly superior to those of conventional algorithms, particularly in the 

deeper regions of the model where two salt pillars are located, with higher resolution 

and more precise structure. These results highlight the efficacy of this algorithm in 

wavefield interpolation reconstruction and noise reduction, effectively compensating 

for inversion anomalies due to missing information.  
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Figure 2.16. 2004 BP model inversion results, (a1-a4) Conventional FWI inversion 

results in 2.99 Hz, 3.58 Hz, 5.16 Hz, and 7.43 Hz, respectively, (b1-b4) FWI based on 

SR3 algorithm optimisation inversion results in 2.99 Hz, 3.58 Hz, 5.16 Hz, and 7.43 

Hz, respectively (Li et al., 2024c). 

 

Finally, I conducted a one-dimensional velocity analysis and comparison of the 

inversion results, as shown in Figure 2.17. The comparison shows that the red solid line 
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representing this proposed algorithm closely matches the black line indicating the actual 

velocity, especially in the deep layers where significant velocity differences are 

observed. The proposed algorithm addresses the noticeable velocity discrepancies 

present in traditional methods, indicating that the improved algorithm more accurately 

describes key details of the model. 
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Figure 2.17. 2004 BP model, one-dimensional velocity models at different X-positions 

and Y-positions, (a) X = 6.96 km; (b) X = 7.56 km; (c) X = 10.32 km; (d) X = 17.40 km; 

and (e) Y = 1.80 km; (f) Y = 3.44 km; (g) Y = 4.44 km; (h) Y = 4.84 km; the comparison 

of the actual velocity model (solid black line), initial velocity model (grey dotted line), 

the conventional FWI velocity model (solid blue line), and the SR3-based FWI velocity 

model (solid red line) (Li et al., 2024c). 
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2.4.3 Two-Dimensional SEG/EAGE Overthrust Model 

I also applied the algorithm introduced in this chapter to the two-dimensional overthrust 

model. This model features several unique geological strata, predominantly marked by 

overthrust formations. Given its complex structural attributes, the model presents 

particular challenges for seismic exploration methods, FWI in particular. The primary 

rationale for selecting this model lies in its distinct representativeness as a geological 

model. The complexity of the inversion process for the Overthrust model is primarily 

concentrated on accurately inverting the velocity of high-velocity layers obscured by 

multiple overlying strata. The inversion difficulty for the Overthrust model involves 

precisely delineating the velocities of various strata within the covering layers and 

characterising the features of the high-velocity basement layer. 

Figure 2.18 presents the benchmark of the two-dimensional overthrust, with (a) 

depicting the actual benchmark and (b) representing the starting model. 
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Figure 2.18. Two-dimensional SEG/EAGE overthrust model, (a) actual velocity model. 

(b) initial velocity model (Li et al., 2024c). 

 

In a manner akin to the 2004 BP Model, I initially showcase the undistorted wavefield 

of this model at a 3 Hz inversion frequency according to the multi-scale inversion 

strategy, as exhibited in Figure 2.19 (a). Meanwhile, Figure 2.19 (b) portrays the 

random noise at 10 dB, while (c) is the noisy wavefield obtained by linearly 

superimposing the random noise onto the clean wavefield, (d) depicts the uniform 

downsampling simulation, which means that the data corresponding to the set of traces 

to be zero or very small, and (e) is the result after linearly overlaying both random noise 

and downsampling simulation onto the clean wavefield. 
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Figure 2.19. Source-receiver domain data set at 3 Hz of the SEG/EAGE overthrust 

model, the real part of the (a) clean data matrix, (b) 10 dB random noise, (c) wavefield 

matrix with 10 dB noise, (d) missing-trace matrix, (e) subsampled wavefield matrix 

with 10 dB noise and missing trace (Li et al., 2024c). 

 

Based on the aforementioned models, noise, and downsampling simulations, this 

experiment compares the results of the conventional algorithm with those preprocessed 

by the SR3 algorithm for FWI. The test results are shown in Figure 2.20, which displays 

a three-dimensional multi-scale wavefield stack. Figure 2.20 (a) displays the clean 

wavefield from frequencies 0.5 Hz to 5 Hz, (b) its side view with an angle of (105,5). 

Figure 2.20 (c) showcases the noisy, downsampled, low-quality wavefield after 

following the two aforementioned processing steps, and (d) its side view, again at an 

angle of (105,5). (e) is the wavefield after SR3 processing, and (f) its side view at 
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(105,5). As can be seen, the SR3 approach recommended in this chapter has 

demonstrated its effective and excellent optimization capabilities on various synthetic 

datasets, especially with robust noise removal and interpolation abilities. The enhanced 

continuity of the wavefield stack, better noise suppression, and clearer wavefield details 

are evident. 

 

 

Figure 2.20. Three-dimensional low-frequency source-receiver data sets from 0.5 Hz to 

5 Hz of the SEG/EAGE overthrust model, (a) clean data matrix, (b) side view of (a); (c) 

subsampled wavefield matrix with missing-trace and 10 dB noise, (d) side view of (c); 

(e) wavefield matrix after SR3 optimisation for (c), (f) side view of (e) (Li et al., 2024c). 

 

Subsequently, the final FWI inversion results of the two algorithms are presented in 
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Figure 2.21. Figures 2.21 (a1-a8) are conventional FWI results, (b1-b8) depict the 

results based on the SR3 algorithm proposed in this chapter, both methods use a multi-

scale strategy. Additionally, Figures 2.21 (c1-c8) depict the error of the outputs obtained 

by the conventional method and the real benchmark, whereas Figures 2.21 (d1-d8) 

depict the disparity between the FWI inversion outcomes utilizing the SR3 method 

introduced in this chapter and the actual velocity model. The comparative results reveal 

that the improved FWI method has distinct advantages in handling complex structures, 

not only providing clearer descriptions of shallow parts of the model but also distinctly 

depicting velocity variations between different rock layers. It enhances the delineation 

of contour boundaries, avoiding the deep blur often seen in conventional methods. 

  



57 

 

 

 

Figure 2.21. The SEG/EAGE overthrust model inversion results. (a1-a8) Tikhonov 

regularisation FWI inversion results in 2.15 Hz, 3.09 Hz, 5.35 Hz, 7.70 Hz, 9.24 Hz, 

11.09 Hz, 13.31 Hz, and 15.97 Hz, respectively; (b1-b8) FWI based on SR3 algorithm 

inversion results in 2.15 Hz, 3.09 Hz, 5.35 Hz, 7.70 Hz, 9.24 Hz, 11.09 Hz, 13.31 Hz, 

and 15.97 Hz, respectively; (c1-c8) differences between the Tikhonov FWI and the true 

velocity model; (d1-d8) differences between the SR3 FWI and the true velocity model 

(Li et al., 2024c). 

 

To further quantitatively compare the two algorithms, Figures 2.22 (a) and (b) 

respectively present the misfit error and model error comparisons of the two methods. 

The blue solid line symbolizes the conventional method, whereas the red one indicates 
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the improved algorithm. The improved method's misfit error iterates faster, and its 

model error is smaller compared to the conventional approach, confirming that the 

enhanced algorithm provides more accurate inversion results. 

 

 

Figure 2.22. Comparison of SR3 algorithm-based FWI with conventional Tikhonov 

regularisation-based FWI for quantification, (a) normalised misfit error, (b) model error. 

The horizontal axis is the number of iterations, and the vertical axis is the error value 

(Li et al., 2024c). 
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Lastly, several groups of lateral and longitudinal one-dimensional velocity comparisons 

are provided. Figure 2.23 represents the longitudinal velocity comparison, displaying 

the differences between results obtained at multiple X positions by the two methods and 

the true velocity. 

 

 

Figure 2.23. The SEG/EAGE overthrust model, 1-D velocity models at different X-

positions, (a) X = 3.13 km; (b) X = 4.17 km; (c) X = 7.77 km; (d) X = 10.97 km; (e) X = 

17.67 km; (f) X = 18.33 km. The vertical comparison of the actual velocity model (solid 

black line), initial velocity model (grey dotted line), the Tikhonov regularisation FWI 

velocity model (solid blue line), and the SR3-based FWI velocity model (solid red line) 

(Li et al., 2024c). 
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Figure 2.24, on the other hand, shows the lateral velocity comparison, indicating the 

differences in results at various Y positions between two distinct algorithms with the 

real benchmark. The comparison highlights that the conventional method, especially in 

the deep parts of the model, often gives poorer results, sometimes with significant 

inversion errors that fail to achieve the correct velocity range. However, the more 

challenging lateral velocity measurement, constrained by seismic wave propagation 

properties and data collection limitations, becomes evident. Seismic waves radiate 

spherically from the source, implying a smaller horizontal coverage. Additionally, due 

to economic and system constraints in actual seismic exploration, receivers cannot be 

placed at every point on the surface, leading to potentially uneven data sampling that 

affects the accuracy of lateral velocity measurements. Nevertheless, the test results in 

Figure 2.24 further underline the significant gap between the inversion capabilities of 

the two algorithms. The improved algorithm demonstrates excellent continuity and 

noise resistance, especially near the bottom of the model, even under challenging 

scenarios, including noise and data loss, the improved method still proves its efficacy 

and robustness. 
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Figure 2.24. The SEG/EAGE overthrust model, 1-D velocity models at different Y-

positions, (a) Y = 0.40 km; (b) Y = 0.81 km; (c) Y = 1.66 km; (d) Y = 3.07 km; (e) Y = 

3.44 km; (f) Y = 3.68 km. The horizontal comparison of the actual velocity model (solid 

black line), initial velocity model (grey dotted line), the Tikhonov regularisation FWI 

velocity model (solid blue line), and the SR3-based FWI velocity model (solid red line) 

(Li et al., 2024c). 

 

2.5 Chapter Discussions 

As a simulation algorithm, the quality of the numerical solution of the forward 

wavefield in FWI has a profound impact on subsequent inversion processes. In other 

words, a good inversion necessarily relies on an excellent forward modelling result. 
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Hence, if one wishes to enhance the overall inversion quality of FWI, it's imperative to 

explore methods for enhancing the quality of the forward wavefield. In actual 

production, various factors such as natural environments, human factors, and 

exploration strategies affect and interfere with forward modelling results. Noise 

interference and azimuthal limitations are the primary influencing factors of the forward 

results. Therefore, enhancing the forward modelling quality from the economical 

perspective of merely improving the algorithm is of paramount importance for the 

further application of FWI. 

In this chapter, I propose an improved preprocessing algorithm that numerically 

optimizes the multi-scale wavefield stacking, which accelerates the convergence rate of 

the regression algorithm with the aid of auxiliary matrices and the concept of 

compressing the singular value space. Compared to traditional algorithms, the SR3 

algorithm presented in this chapter is a higher-level sparse regression algorithm, 

manifesting in three main areas. Firstly, regarding the denoising issue of FWI, the SR3 

algorithm has already completed it in preprocessing. This eliminates the need for 

redundancy in the minimization process and avoids the computational burden of 

introducing model increments twice. Secondly, the SR3 algorithm intrinsically deals 

with a multi-constraint optimization problem, allowing the use of composite 

regularizers. This feature grants the algorithm outstanding flexibility and robustness. 

Lastly, compared to other regression algorithms, the SR3 algorithm tightens the singular 

value space, greatly accelerating computational efficiency without adding 

computational pressure to the overall FWI. 

In addition, although there is no clear standard, the industry consensus is that less than 

10 dB is a low SNR. Multiscale inversion is used to address the challenges posed by 

the non-flat frequency response of the acquisition system, by gradually incorporating 

different frequency components to improve inversion stability and accuracy. 
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Given the above advantages and the significance of forward modelling, I initially 

declare the feasibility and necessity of employing this algorithm in the second chapter 

of this thesis. In the subsequent chapters, I will continue to discuss improvements in the 

optimization stages of the FWI. 

 

2.6 Chapter Conclusions 

In this chapter, I have emphasized an innovative improved algorithm that achieves high-

resolution velocity modeling by preprocessing the forward wavefield of FWI. As an 

optimization algorithm that completes, interpolates, and denoises the wavefield 

information, SR3 can achieve a more comprehensive wideband wavefield optimization 

by utilizing sparse relaxed regular regression. This overcomes challenges brought about 

by noise, down-sampling, spatial aliasing effects, etc., realizing the objective of 

wideband multi-scale frequency domain FWI. I used two homogeneous media and two 

synthetic datasets for algorithm testing. In the numerical fitting test section, I focused 

on the improved algorithm's ability to interpolate and denoise the low-frequency 

wavefield and optimize anti-aliasing for the high-frequency wavefield. Thereby this 

algorithm achieves the purpose of wideband optimization. Subsequently, the optimized 

wavefield was integrated back into the FWI process and tested on two synthetic datasets. 

The test results demonstrate that the algorithm proposed in this chapter displays 

compelling effectiveness and high performance, including significant noise resistance 

capability and optimization ability for details. In actual field surveys, the quality of the 

seismic data we can obtain is inevitably less than ideal, similar to the simulations in this 

chapter. Therefore, under these extremely challenging conditions, using FWI to image 

low-quality seismic data becomes exceedingly difficult. However, the preprocessing 

algorithm proposed in this chapter has proven the feasibility of low-frequency data 

reconstruction, high-frequency anti-aliasing, and wideband multi-scale FWI, this 
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provides a promising and more rational algorithm and approach for the further industrial 

application of FWI. 
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CHAPTER III: FULL WAVEFORM INVERSION BASED ON K-

SUPPORT NORM 
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3.1 Introduction 

FWI involves aligning the seismic wavefield. During optimization, the traditional 

algorithm computes the least-squares discrepancy between the observed and the 

modelled wavefield. It then determines the updated gradient direction through the 

minimization procedure, setting the stage for the subsequent iteration (Sirgue and Pratt, 

2004). Since the optimal fit between the model and the seismic data is achieved at the 

convergence point of the objective function, quickly finding the global minimum in ill-

condition functions is crucial for achieving high-precision FWI. 

In geophysics, the least squares method is a classical solution for fitting two types of 

wavefields. However, when the recorded data contains non-Gaussian white noise or 

outliers, it can lead to difficulties in the FWI minimization or optimization process. This 

can result in slow convergence or getting stuck in local minima, which is related to the 

character of the least squares method itself. The least squares algorithm is based on the 

2   norm, calculating the Euclidean distance between the two. However, this also 

means that errors caused by outliers in the model are squared and amplified in the 2  

norm, which can be seen as one kind of weight decay. While this prevents overfitting, 

it also makes the 2  norm more sensitive to noise and outliers (Lailly et al., 1983; 

Tarantola 1984). Therefore, under poor observation conditions, the 2   norm 

algorithm used by FWI is not sufficient to remove the adverse influence of anomalies 

and noise in the optimization process. Hence, an improved algorithm urgently needs to 

adopt a new regularization method to strengthen the constraints of the misfit function 

and emphasize its noise resistance. Moreover, the nonlinearity of FWI often causes the 

minimization routine to be trapped in local optima instead of seeking the global 

optimum, and results in hindering the convergence rate and precision of the inversion 
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process (Virieux and Operto, 2009). 

To address the above difficulty, a common sparse norm form of the 1  norm can be 

used. Compared with the 2  norm, it emphasizes the sparsity of the model rather than 

smoothness and encourages sparse solutions. Therefore it possesses better robustness 

and noise resistance. A regularization form based on the 1  norm is TV regularization. 

This algorithm enforces similarity between adjacent parameters in model space, thus 

achieving a sparse representation of the model, reducing model complexity while 

emphasizing the effective information in model parameters (Koh et al., 2007). FWI 

based on TV regularization utilizes this feature to strengthen the constraints of the misfit 

function in the optimization phase. This retains effective velocity features, ignores small 

anomalous perturbations, and thereby achieves better denoising effects. However, the 

most notable issue with this algorithm is that the 1  norm is not strictly convex, which 

can lead to computational difficulties. 

Based on the aforementioned issues, in this chapter, I attempt to employ a form 

combining norms in the minimization process of FWI, specifically, the K-support 

regularization algorithm. This algorithm was first proposed in the field of mathematics 

and features a tighter relaxation form while ensuring the characteristics of 2  norm. 

This represents that the algorithm maintains the convex characteristics of basic 2  

norm while also ensuring a degree of sparsity and robustness (Bai and Liang, 2020). 

While providing stricter constraint forms, this algorithm ensures convexity to facilitate 

the search process in finding the global optimum, thereby aiding the modified FWI in 

denoising and suppressing outliers. 

Additionally, as mentioned above, due to the nonlinearity of the wave equation itself, 
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the calculation process of the least-squares form exhibits strong non-linear 

characteristics, making it easy to fall into local minima. To address this, the K-support 

norm introduced in this chapter incorporates a new regularization term in the form of a 

quadratic penalty to solve the aforementioned problems. The newly added 

regularization term restricts the range of the solutions to the model parameters, 

mitigating the nonlinearity of the inversion problem. 

This chapter will first introduce the K-support norm for noise resisting, additionally, the 

ADMM is utilized to accelerate the minimization procedure. In the iterative process, he 

ADMM algorithm can be used to realize the robust iterative process of K-support under 

the framework of alternate directions. During the numerical fitting process, the 

effectiveness of the improved algorithm introduced in this chapter is demonstrated by 

contrasting it with conventional FWI, and various synthetic examples are employed for 

testing to showcase the efficacy of the presented algorithm. 

 

3.2 K-Support norm 

The wave equation of FWI is as: 

2

2,
min ,    s.t.  ( ) ,− =
M X

AX D C X SM  (3.1) 

where the ×∈A 

   is linear observation operator, and the 1×∈X 

  represents the 

model wavefield, meanwhile, 1×∈D 

  stands for the observed data. ( ) ×∈C M 

   

designates discretized partial differential equation, 1×∈M 

   represents model 

parameters, the 1×∈S 

   corresponds to the source term, and 2
   embodies the 

Euclidean norm (van Leeuwen and Herrmann, 2013), the detailed derivation can be 

found in Appendix A. 



70 

 

The research in this chapter is dedicated to a new regularization algorithm, instead of 

the conventional least-squares method, to help FWI achieve high accuracy in inversion 

under complex conditions of high background noise. Therefore, it is necessary to 

combine the two different norms to make the constraint function sparse. I start with the 

following equation to tighten the relaxation while ensuring convexity: 

{ } { }1 12
,conv(G ) , 1⊆ ≤ ≤ ≤P P P P P    (3.2) 

where 1>  is an adjustable parameter, 1
P  is the 1  norm for the vector P , and 

conv(G )   is applied as a constraint for the misfit function G  . I consider add 

{ }0 2
conv(G ) conv , 1 ,= ≤ ≤P P P   as a convex hull of equation 3.2 thus making 

it a tighter convex constraint. The kernel parameter { }1, ,∈    guides the nature 

of the new constraints to adopt a more adaptable format (Belilovsky et al., 2015). 

This approach emphasizes the integration of a convex outer approximation in equation 

3.2. By merging the two norms, it establishes a convex hull. Consequently, this can be 

viewed as a kind of convex constraint that surpasses the conventional sparse constraint. 

Within FWI, the goal of the optimization process is to identify the model that provides 

simulated data most closely to the observed data. Regularization acts as a mediator, 

striking a balance between the complexity of the model and its ability to fit. In complex 

situations, especially when dealing with noise or when a large number of velocity 

parameters are required for accurate model description, the model complexity becomes 

high. If only stricter constraint forms are adopted, it would lead to overfitting. However, 

relaxing the constraints can result in underfitting. Additionally, the presence of noise 

and artefacts can lead to poor data continuity, increasing the number of local minima, 

which elevates the risk of falling into some local minima when searching for the global 

minimum. Therefore, I propose to employ a flexible regularization method to help us 
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balance the relationship between constraint ability and smoothing ability, and enhance 

the capability to find the global minimum. 

The algorithm introduced in this chapter seeks to strike a balance between model 

intricacy and inversion precision while providing a certain level of adaptability: 

1 1sp 2 2 2

1

1( ( ) ( ) ) ,
1i i

i i

− −
↓ ↓

= = −

= +
+∑ ∑M M M

  


 

 (3.3) 

where the 
i

↓M  denotes the i-th largest element within the model parameter vector 

M , the sp



 signifies the K-support norm.   regulates the sparsity of the array, 

while   standing for the data's dimension. If { }0,1, , 1∈ −   is considered an 

integer parameter, then I derive: 

1

1 .
1 i

i

↓ ↓ ↓

− − −
= −

> ≥
+ ∑M M M

   
 



 (3.4) 

The K-support norm comprises two parts. One primary part is the 2  norm, and the 

other is the 1   norm. The parameter    acts as a tunable factor to mediate the 

balance between the 1  and 2  norms. As a result, this newly introduced norm can 

effectively balance the generalization capacity and the sparsity capability of the 

algorithm (Lu et al., 2017). 

The effectiveness of regularization algorithms in denoising lies in their ability to 

introduce a penalty term in the objective function to limit the complexity of the model, 

thereby preventing the model from overfitting to noise and producing smoother and 

more robust solutions. The 1   norm promotes sparsity, causing some insignificant 

parameters to approach zero, thereby removing noise while retaining the main features 
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of the signal. The 2   norm constrains the sum of the squares of the parameters, 

preventing them from becoming too large and providing a smoothing effect. Combining 

the 1  and 2  norms leverages the strengths of both: promoting sparsity while also 

providing smoothing. This combination excels in denoising by effectively balancing 

signal retention and noise suppression, improving the model's generalization capability 

and robustness. In practical applications, this combined approach often achieves better 

denoising performance than methods using a single norm regularization. 

A wavefield reconstruction inversion algorithm is a rapidly developing algorithm, based 

on which quadratic penalty algorithms and augmented Lagrangian-type algorithms 

have been developed. These algorithms, through distributed iteration, alleviate 

nonlinearity and enhance the stability of inversion. Although such algorithms have 

changed the traditional optimization thought and narrowed the solution space under 

additional constraints, there has not been a discussion regarding the choice of norm 

forms (Aghamiry et al., 2021). Notably, in models with substantial background noise, 

the quadratic penalty cannot effectively optimize outliers and noise. Based on the 

quadratic penalty method: 

,
min R( )   s.t.   ,    ( ) ,= =
X M

M MAX D C X S  (3.5) 

spR( ) ,β=M M


 (3.6) 

where β   is the regularization parameter. The values of β   and    can be 

determined through cross-validation, in line with the principles of regularization-based 

techniques (Hastie et al., 2001). The new algorithm proposed in this chapter takes 

advantage of the stability of the 2  norm and uses the characteristics of the 1  norm 

to minimize the influence of anomalies on the model, thereby ensuring the algorithm's 
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stability and improving robustness (Lai et al., 2014). 

Another issue is that the non-differentiable nature brought by the 1  norm leads to a 

slow rate of normal solutions. Therefore, to speed up the calculation, this chapter will 

also adopt an ADMM algorithm, using distributed computing to reduce computational 

complexity, ensuring a certain level of sparsity while balancing computational 

efficiency. 

 

3.3 Alternating Direction Method of Multiplier: ADMM 

The ADMM introduced in this section operates on a distributed computing framework. 

During the optimization procedure, this algorithm can be used to optimize equation 3.6 

and serve as an iterative form to solve the newly constructed problem (Aghamiry et al., 

2019; Aghazade et al., 2022): 

2 21

2 2
arg min( ( ) ),k k k kλ+ = − − + − −

X
X AX D D C M X S S  (3.7) 

21

2
arg min(R( ) ( ) ),k kλ+ = + − −

M
M M C M X S S  (3.8) 

1 1 1( ) ,k k k k+ + += + −S S S C M X  (3.9) 

1 1k k k+ += + −D D D AX ， (3.10) 

where λ  is the penalty parameter. ( ) ×∈C M 

   is discretized partial differential 

equation (PDE) in constrain function, 1×∈S 

  is the source term, the 1×∈X 

  is 

the model wavefield, 1×∈D 

  is observed data, 1×∈M 

  are model parameters. 

Furthermore, with a finite number of iterations and updates, the mismatch function's 
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error will gradually be corrected in a distributed form, thereby aiding the convergence 

of the wavefield and model parameters to the global minimum within an acceptable 

accuracy range (Gambella and Simonetto, 2020). 

 

3.4 Numerical Simulations on Synthetic Data 

In this section, the efficacy of the newly proposed algorithm is evaluated using three 

distinct synthetic datasets: Marmousi II, 2004 BP, and the two-dimensional SEG/EAGE 

Overthrust models. For forward modelling, a frequency-domain multi-scale strategy is 

employed. The PML algorithm is chosen for the boundary conditions (Pratt, 1999). To 

offer a quantitative comparison of the inversion outcomes, this chapter utilizes the RMS 

as the benchmark. This error provides a metric for the disparity between the adjusted 

model and the true model; a diminished Root Mean Square error suggests a more 

precise fit: 

X ZN N
2true inv

1X Z true

1RMSe ( ) ,
N N i

i

×

=

−
=

× ∑ M M
M

 (3.11) 

where the XN   and ZN   indicate the sample size of the matrices for the true and 

simulated velocity models, respectively (Warner & Guasch, 2016). 

The refined algorithm showcased in this chapter harnesses a blend of the 1  and 2  

norms. As illustrated in Figure 3.1, the 2  norm expands in a quadratic fashion, which 

accentuates the detrimental impacts of noise. However, the 1  norm grows linearly at 

a relatively slower rate, making it less sensitive to noise, thereby suppressing noise. 

Another form of combining 1  norm and 2  norm is Huber regularization (Brossier 
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et al., 2010). This algorithm uses a threshold to regulate the scope of the two different 

norms, exhibiting 1   norm when below the threshold and 2   norm when above, 

which, although also a combined algorithm, can be decomposed and viewed as a simple 

combination of two functions. Therefore, especially when exceeding the threshold, it 

does not induce sparsity. In contrast, the proposed method presents a hybrid algorithm 

that still displays tighter constraints when exceeding the Huber norm threshold. 
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Figure 3.1. The linear growth of norms like p (for values 0.1 and 0.5), 1 , 2 , the 

Huber norm, and the K-support norm is depicted. The horizontal axis represents the 

weight and the vertical axis shows the norm's value (Li et al., 2024a). 

 

Furthermore, Figure 3.2 provides top-view and contour diagrams of several norms. The 

1  norm exhibits sparsity due to its non-differentiable vertices, while the 2  norm's 

contour and top-view are circular, displaying the smooth characteristic of vertices, 

indicating it might choose more tiny eigenvalues or eigenvectors. In contrast, Huber 

regularization shows non-differentiable vertices and smooth edges. Compared to them, 

the K-support norm demonstrates more distinctive features, as depicted in Figures 3.2 

(d) and (h), representing the most basic form of this algorithm. As a hybrid algorithm, 

adjusting the k value allows the regularization term to exhibit either 2  norm or 1  

norm characteristics solely. Hence, compared to other forms of norms, the new norm is 

more rational, robust, and flexible.  
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Figure 3.2. (a-d) Bird's eye view of the value surfaces for each norm. (e-h) contour 

graphs for each norm (Li et al., 2024a). 

 

Additionally, the difference between this algorithm and the Huber algorithm should be 

emphasized. The Huber algorithm is smooth at vertices and almost linear near the 
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theoretical vertices. In contrast, the K-support algorithm is different; its shape is 

between the diamond shape of 1  norm and the circular shape of 2  norm. The shape 

is mainly adjusted by the k parameter, which can be inflated to a circular shape or 

compressed to a diamond shape, so it is not a simple combination but adjusts the degree 

of constraint tightening through parameters. Therefore, especially in practical 

applications, when it is necessary to improve the model's generalization ability, a larger 

K-support norm value can be used as the regularization term. In contrast, if the aim is 

to elevate the model's interpretability or pare down its intricacy, a leaner K-support 

norm value might be more appropriate. 

 

3.4.1 Marmousi II Model 

Firstly, the K-support norm algorithm proposed in this chapter is tested on the 

Marmousi II model. The horizontal scale of this model is 17 km, and the vertical scale 

is 3.5 km. The inversion frequency range is composed of 1 Hz to 8 Hz. The model is 

surrounded by equally wide PML boundaries. Additionally, the initial model adopted is 

a one-dimensional linearly increasing velocity model, with a velocity range from 1 km/s 

to 4.25 km/s. 

Figure 3.3 (a) represents the benchmark, and (b) is the starting model 
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Figure 3.3. Marmousi II benchmark; (a) real benchmark; (b) starting model (Li et al., 

2024a). 

 

Figure 3.4 (a) and (b) respectively show the inversion results based on Tikhonov 

regularization and K-support norm after adding 4.5 dB random noise, and Figure 3.4 (c) 

and (d) depict the velocity differences between them and the true velocity model. 

Traditional FWI algorithms are often sensitive to noise and artefact, exemplified by the 

pronounced artefact at the 4 km distance in Figure 3.4 (a). Moreover, the deep stratified 

structures from 10 km to 14 km exhibit significant degradation. The proposed algorithm, 
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however, shows no distinct artefacts at the analogous position near 4 km. Relative to 

the conventional approach, it maintains a continuous velocity profile, avoiding the 

disruptions typically induced by noise. The inversion results for this specific layer are 

also notably more coherent, attesting to the capability of the proposed algorithm to 

mitigate the effects of artefacts. 

 

 

Figure 3.4. Marmousi II benchmark; (a) conventional FWI result; (b) modified 

method’s output; (c) difference of the conventional result and the real benchmark; (d) 

difference of the modified method’s output and the real benchmark (Li et al., 2024a). 

 

Furthermore, the quantitative comparison of the inversion results is shown in Figure 

3.5, where (a) compares the convergence speed of the misfit function of both, and (b) 

compares the RMSe convergence speed of both. Since ADMM distributed computing 

is adopted in this chapter, it is evident that the convergence speed of the optimization 

algorithm is significantly faster.  
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Figure 3.5. Error graphical representations; (a) misfit plot; (b) root mean square plot (Li 

et al., 2024a). 

 

Additionally, to more significantly compare the inversion results of the two, Figure 3.6 

presents six sets of one-dimensional vertical velocity comparison results. Among them, 

the red solid line represents the inversion results based on the K-support norm, the blue 

solid line is based on Tikhonov regularization, the black solid line is the true velocity, 

and the grey dashed line is the initial velocity. The velocity results represented by the 

red solid line based on the K-support norm fit better with the true velocity, indicating 
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that the inversion results of the improved algorithm are also closer to the true velocity 

model. 

 

 

Figure 3.6. Marmousi II benchmark. one-dimensional velocity comparison at six X-

coordinates separately in 8.72, 9.60, 10.92, 12.56, 13.40 and 15.28 km from (a) to (f) 

(Li et al., 2024a). 

 

Another more challenging comparison is the one-dimensional horizontal velocity 

comparison, as shown in Figure 3.7. Due to the propagation characteristics of waves 

and the greater difficulty of inversion in-depth, the horizontal velocity comparison is 

more challenging. It can be observed that the fitting effect of the blue solid line based 
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on conventional FWI, especially in the deep part of the model, is relatively poor. In 

contrast, the improved algorithm is closer to the true velocity in the deep area, indicating 

that the algorithm proposed in this chapter, even in complex environments and under 

high background noise, still demonstrates superior performance and behaviour. For 

complex layered structures like Marmousi, accurately describing the velocities of 

different layers is crucial. In Figures 3.6 and 3.7, the green arrows highlight areas with 

significant velocity differences at various test directions and locations. In these areas, 

the inversion velocities obtained by the proposed algorithm (red solid line) are closer 

to the actual velocities (black solid line) compared to the results of the conventional 

algorithm (blue solid line), which show a more significant discrepancy. The areas 

indicated by green arrows indicate poorer performance of the conventional algorithm 

in describing the velocities of different layers, especially in deeper regions with a 

noticeable absence of accurate speed representation. For example, in Figure 3.6 (e), 

within a range of 3 km, the velocity obtained by the conventional algorithm is less than 

4 km/s, which significantly differs from the actual velocity. In contrast, with its superior 

noise reduction capability, the proposed algorithm yields velocities closer to the actual 

speeds. For instance, at the exact location, the velocity result from the proposed 

algorithm is very close to the actual velocity. 
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Figure 3.7. Marmousi II benchmark. one-dimensional velocity models at four Y-

coordinates positions separately in 2.24, 2.40, 2.72, and 3.00 km from (a) to (d) (Li et 

al., 2024a). 
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3.4.2 The Central Part of the 2004 BP Model 

Further, to test the performance of the K-support norm, this section selects another very 

important model, the 2004 BP model, as a benchmark. The model consists of three parts, 

with the middle part being used in this chapter. The central portion of this model depicts 

the underground geological structures of the eastern Gulf of Mexico and offshore 

Angola. Notably, at the heart of this model is a substantial high-velocity salt formation, 

outlining this salt body becomes a challenge for inversion. Another challenge lies in 

accurately inverting, especially for the two salt pillars existing beneath the strong 

reflective surface, the details of the deep part of this model under complex conditions 

such as high background noise. 

Figure 3.8 (a) showcases the actual benchmark for the central section of the 2004 BP 

model, while (b) reveals the initial velocity model, which still employs a one-

dimensional velocity model with a linear increase, spanning velocities from 1.5 km/s to 

5 km/s. 
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Figure 3.8. The central part of the 2004 BP benchmark; (a) true benchmark; (b) starting 

model (Li et al., 2024a). 

 

Moving on, Figure 3.9 (a) illustrates noise-free data, (b) shows the 4.5 dB random noise, 

and (c) the wavefield post the linear overlay of random noise on the original data. 

Subsequent experiments in this chapter utilize the high ambient noise scenario 

displayed in Figure 3.9 (c). The outcomes of the inversion tests are displayed in Figure 

3.10, where (a) is the outcome using Tikhonov regularization, while (b) uses the K-

support norm FWI. A review of these outcomes reveals that the conventional 
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algorithm’s inversion results are less satisfactory under low signal-to-noise conditions, 

particularly in the model’s deeper sections where salt pillars become indistinct and 

there's a lack of velocity. Conversely, the refined algorithm offers notably enhanced 

inversion results.  

 

 

Figure 3.9. Mono-frequency data sets with (a) noise-free; (b) with noise data (c) 4.5 dB 

random noise data (Li et al., 2024a). 
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Figure 3.10 (c) and (d) highlight the variances between the two algorithm outcomes and 

the true benchmark. Figure 3.10 delineates the error distribution for inversion results 

using two algorithms on the 2004 BP velocity model. The left column displays the 

errors from a conventional algorithm, whereas the right column shows those from a 

proposed algorithm. The magnitude of discrepancies is indicated by colour intensity, 

with blue reflecting velocities that are underestimated and red representing velocities 

that are overestimated compared to the actual model. Darker hues of blue or red indicate 

significant variances between the inversion results and the true model. From the onset 

at lower frequencies, the proposed algorithm exhibits a swifter rate of convergence and 

a higher proficiency in denoising, particularly in the depiction of continuous velocities 

around the salt dome, evidenced by smaller dark regions within the salt bodies. With an 

increment in iterative processes, the susceptibility of the conventional algorithm to 

noise becomes more evident, as seen at 1.79 Hz and 5.35 Hz, where artefacts are 

markedly more distinct. Conversely, the proposed algorithm displays a more robust 

capacity for noise attenuation at these same frequencies. 
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Figure 3.10. The central part of the 2004 BP benchmark; (a) conventional method’s 

results; (b) modified method’s results; (c) difference between conventional results and 

the benchmark; (d) difference between the modified method’s results and the 

benchmark (Li et al., 2024a). 

 

Expanding on this, through the multi-scale inversion approach, Figure 3.11 juxtaposes 

the inversion outcomes of both algorithms across various frequency bands. Here (a-f) 

represent results from the Tikhonov regularization, (g-l) are derived from the K-support 

norm, (m-r) depict the differences between the Tikhonov FWI results and the true 

benchmark, and (s-x) outline the differences between K-support norm FWI outcomes 

and the authentic velocity model. These findings point out that the refined algorithm 

boasts a notably quicker convergence rate, evident from the swifter rendering of the salt 

body framework in the low-frequency domain (below 3 Hz). In this experiment's 

extremely low signal-to-noise ratio, accurately delineating salt body contours and 

surrounding velocity becomes difficult amidst high noise levels. Utilizing a multiscale 
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FWI approach, the low-frequency results indicate that the inversion employing a 

quadratic penalty in conjunction with the K-support norm surpasses conventional 

algorithms in convergence speed. The improvement stems from leveraging distributed 

computing and imposing stricter constraints, facilitating the convergence of the 

objective function to the global minimum and enhancing the low-frequency fidelity of 

the proposed algorithm. Results at 5.35 Hz demonstrate that the proposed algorithm 

yields a more precise representation of the salt body base and avoids the significant 

velocity anomalies apparent in the results obtained by the conventional algorithm. 

Additionally, it roughly outlines the shapes of adjacent channels. Consequently, FWI 

informed by the K-support norm can somewhat insulate against outlier interference, 

facilitating quicker attainment of correct inversion solutions, with particular efficacy in 

modelling salt bodies and channels. 
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Figure 3.11. The central part of the 2004 BP benchmark; (a-f) conventional method’s 

outputs in 1.04, 1.79, 2.15, 2.58, 3.72, and 5.35 Hz, respectively; (g-l) K-support norm 

results in the same frequency range; (m-r) differences of the conventional results and 

the benchmark; (s-x) differences of the modified method’s outputs and the benchmark 

(Li et al., 2024a). 

 

Moreover, Figure 3.12 (a) sets side by side the misfit functions of both algorithms, 

highlighting that the K-support FWI (depicted by the red line) converges more rapidly 

than its conventional counterpart (shown by the blue line); (b) contrasts the RMS error 
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between the two, with the enhanced algorithm still showcasing superior efficacy. 

 

 

Figure 3.12. Error plot; (a) misfit; (b) RMS (Li et al., 2024a). 

 

Additionally, this section still adopts a one-dimensional velocity comparison to perform 

a more accurate quantitative comparison of the inversion results of the two algorithms. 

Figure 3.13 shows the vertical velocity comparison at six different locations for the two 

algorithms, where the green arrows mark the places with significant performance 
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differences between the two algorithms. It can be seen that, under complex conditions 

with low signal-to-noise ratios, the vertical velocity shows that the improved algorithm 

has better fitting results. 

 

 

Figure 3.13. One-dimensional velocity at varying X-coordinates; for X = 7.4, 7.8, 8.2, 

9.8, 10.4, and 11.3 km separately in (a-f) (Li et al., 2024a). 

 

Moreover, Figure 3.14 compares the horizontal velocities of the two algorithms, 

compared to the vertical comparison, the horizontal comparison better demonstrates the 

superior performance of the improved algorithm, especially in the deep areas where the 

red solid line is closer to the black solid line, while the blue solid line exhibits significant 
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velocity errors. Using both evaluation techniques, it's evident that the K-support norm 

outperforms in terms of noise reduction and precision of inversion outcomes at six 

distinct horizontal and vertical placements. Particularly in areas with high velocities, its 

peaks align more closely with the actual velocity, and notably, no marked velocity 

discrepancies are observed in zones with low velocities. 

The characteristics of the BP model are somewhat distinct from those of the Marmousi 

model. In conditions with low signal-to-noise ratio noise, accurately inverting the 

continuity of the surrounding velocities and precisely delineating the contours of the 

salt dome is of utmost importance. As illustrated by the green arrows in Figure 3.13, 

due to the pronounced interference of noise on the continuous medium, the 

conventional algorithm yields inversion results for the suboptimal surrounding 

velocities, maintaining a consistent deviation from the actual velocities. In contrast, the 

proposed algorithm, with its enhanced denoising efficacy, accurately inverts velocities 

in less variable continuous media, exemplified in Figure 3.14 (e) where, within a depth 

range of 2 km to 4 km, its inversion results (red solid line) closely approximate the 

actual velocities (black solid line), unlike the conventional algorithm (blue solid line) 

which consistently displays velocity discrepancies. Moreover, the arrows in Figure 3.14 

underscore the comparative accuracy of both algorithms, especially in depicting the 

contours of columnar salt structures. The inversion results of the proposed algorithm 

(red solid line) show markedly better fitting to the velocity profiles at the contours of 

the salt bodies, areas characterized by significant velocity changes. In contrast, the 

conventional algorithm often exhibits pronounced velocity underestimations or 

overestimations. 
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Figure 3.14. One-dimensional velocity at varying Y-coordinates; for Y = 2.83, 3.35, 3.91, 

4.47, 4.61, and 5.03 km separately in (a-f) (Li et al., 2024a). 

 

3.4.3 SEG/EAGE Overthrust Model 

This section extends its tests to the algorithm introduced in this chapter, applying it to 

the two-dimensional SEG/EAGE Overthrust model. Recognized as a standard 

benchmark in FWI evaluations, the SEG/EAGE Overthrust model embodies geological 

formations characterized by thrust faulting. Figure 3.15 (a) provides a visualization of 

the actual velocity model, while Figure 3.15 (b) displays the starting velocity model for 

this section, which is a more generalized or smoothed version.  
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Figure 3.15. Two-dimensional overthrust benchmark; (a) benchmark; (b) starting 

medium (Li et al., 2024a). 

 

To mimic intricate scenarios, Figure 3.16 presents the noise-impacted data for this 

experiment; (a) highlights the pure data, (b) the data tainted with 4.5 dB of random 

noise, and (d) the data where random noise is linearly overlaid onto the pure data. 
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Figure 3.16. Noise-impacted data according to the amplitude for this experiment; (a) 

pristine data; (b) random noise; (c) noisy data. (Li et al., 2024a). 

 

Based on the aforementioned conditions, Figure 3.17 provides a comparison of 

inversion results between Tikhonov regularization-based FWI and K-support norm-

based FWI. From (a-e), I see the inversion results of multi-scale FWI based on 

Tikhonov regularization at five different inversion frequencies. Meanwhile, (f-j) depicts 

the inversion results of multi-scale FWI based on the K-support norm at these 

frequencies. Furthermore, Figure 3.17 (k-o) spotlights the discrepancies between the 

multi-scale FWI inversion results using Tikhonov regularization and the true 

benchmark. In contrast, (p-t) underscores the deviations between the results of the K-

support norm-based multi-scale FWI and the genuine velocity model. From the results, 

it's evident that the inversion outcomes using the improved algorithm, especially in the 

layered structure sections, are much clearer. In contrast, results based on the 

conventional algorithm are quite blurred, failing to effectively distinguish between 

different geological layers. The inversion complexity for the overthrust model is centred 

on the precise inversion of velocities for the high-velocity layers masked by several 

overlaying strata, the accurate delineation of velocities for each stratigraphic level of 
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the overburden, and the characterization of the high-velocity base layer. The proposed 

algorithm, particularly at low frequencies, exhibits significant differences from the 

conventional outcomes due to the implementation of tighter constraints. The algorithm's 

convergence rate is notably accelerated, and its inversion results at high frequencies are 

strikingly accurate and precise, evidencing a substantial performance improvement 

over traditional methods. Additionally, faster convergence and enhanced noise 

attenuation of the proposed algorithm translate into a more detailed and accurate 

representation of the base around the depth of 4 km. The conventional algorithm, in 

contrast, encounters conspicuous artefacts and indistinct stratigraphic inversion at the 

base and left side, mainly due to noise-induced velocity losses and local minima. By 

integrating a novel regularization technique and optimized inversion steps, the proposed 

algorithm has bolstered overall convergence velocity and artefact resistance, 

showcasing its superior capabilities in the context of commonly used synthetic datasets. 

 

 

Figure 3.17. Two-dimensional overthrust benchmark; (a-e) conventional method’s 

outputs in 3.22, 5.71, 7.59, 9.19, and 11.12 Hz, respectively; (f-j) modified method’s 

outputs in the same frequency range; (k-o) differences of conventional FWI results and 

the benchmark; (p-t) differences of the modified method’s results and the benchmark 

(Li et al., 2024a). 
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Figure 3.17 (k-t) illustrates the discrepancy distribution between the inversion results 

derived from two algorithms and the actual velocity model of the SEG/EAGE 

Overthrust model. Figure 3.17 (k-o) delineates the error outcomes from the 

conventional algorithm, while Figure 3.17 (p-t) conveys those from the proposed 

algorithm. The intensity of the colour indicates the magnitude of the errors: blue and 

red indicate lower and higher inversion velocities than the true velocities, respectively. 

The proposed algorithm demonstrates superior noise suppression and anomaly 

attenuation capabilities, particularly in the deeper and lateral regions of the model, as 

indicated by the fewer intense colourations in the right column compared to the left. 

Notably, in regions beyond a depth of 4 km, inversion results obtained by the proposed 

algorithm do not exhibit profoundly dark areas, contrary to the conventional algorithm, 

which shows significant deep-coloured discrepancies on both sides of the model. Figure 

3.17 substantiates the assertion that the proposed algorithm offers a markedly improved 

denoising efficacy, especially at greater depths within the model structure. 

Furthermore, a quantitative comparison is presented in Figure 3.18, featuring six sets 

of vertical one-dimensional velocity comparisons. The conventional algorithm's 

inversion results are indicated by the blue solid line, in contrast, the red solid line 

denotes the outcomes from the enhanced algorithm, the black solid line signifies the 

actual velocity and the grey dashed line represents the preliminary velocity. 

  



100 

 

 

 

Figure 3.18. One-dimensional velocity at varying Y-coordinates; for Y = 0.4, 0.6, 1.2, 

1.8, 2.8, and 3.2 km separately in (a-f) (Li et al., 2024a). 

 

Figure 3.19 provides six sets of horizontal velocity comparisons. In both one-

dimensional velocity comparisons, the fit of the improved algorithm to the true results 

is notably closer, especially for the differentiation of rock layers and imaging in deeper 

regions. The Overthrust model emulates the structural complexity of thrust faulting and 

overthrust sequences under significant tectonic stresses. As with the Marmousi 

archetype, precise delineation of velocity profiles across varied stratigraphic horizons 

is essential. In Figures 3.18 and 3.19, locations indicated by green arrows demonstrate 

the comparative performance of two distinct algorithms in rendering stratigraphic 
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velocity profiles and their ability to articulate continuous velocity structures. The green 

arrows elucidate that although the inversion velocities from the proposed algorithm do 

not entirely align with the actual velocities within this model, they significantly 

outperform the traditional algorithm, most notably in the seamless reconstruction of 

velocities within the 0 km to 4 km depth interval, as depicted in Figures 3.18 (e) and 

(f). Additionally, the green arrows in Figure 3.19 highlight that despite some residual 

velocity underestimation by the proposed algorithm across different stratigraphic layers, 

it nonetheless marks a discernible advancement over conventional velocity estimations. 

 

 

Figure 3.19. One-dimensional velocity at varying X-coordinates; for X = 1.83, 3.77, 

4.67, 7.40, 13.43, and 15.70 km separately in (a-f) (Li et al., 2024a). 

 

Moreover, this section introduces another type of coherent noise to distinguish from 
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random noise, testing the K-support norm in the presence of coherent noise. As shown 

in Figure 3.20, (a) represents clean data, (b) a type of coherent noise, and (c) the data 

containing the coherent noise.  

 

 

Figure 3.20. Noise-impacted data according to the amplitude for this experiment; (a) 

pristine wavefield; (b) coherent noise; (c) with noise wavefield (Li et al., 2024a). 

 

Finally, Figure 3.21 presents the inversion results of both algorithms under the influence 

of coherent noise: (a-d) are based on the conventional algorithm and (e-h) K-support 

norm FWI results. Even with the interference of coherent noise, the improved algorithm 

still yields superior inversion results, proving its effectiveness not only under random 

noise conditions but also under coherent noise scenarios. 
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Figure 3.21. Two-dimensional overthrust benchmark; (a-d) conventional method’s 

outputs in 3.22, 6.28, 7.59, and 11.12 Hz, respectively; (e-h) modified method’s outputs 

in the same frequency range (Li et al., 2024a). 

 

3.5 Chapter Discussions 

The FWI algorithm, as a numerical fitting method, heavily relies on the mathematical 

optimization process. This optimization can be divided into two parts: 1. Constructing 

an appropriate misfit function, and 2. Minimizing this constructed misfit function. From 

these perspectives, building an objective function with more constraints and quickly 

minimizing this function are the focal points for enhancing FWI performance. 

Regularization algorithms add a constraint term to the objective function. By 

constraining the solution space in a certain way, the likelihood of solutions falling into 

local minima caused by outliers is reduced. Moreover, due to the introduction of a new 
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constraint term, the range of the solution space is narrowed, leading to increased 

convergence speed. In practice, the seismic information we collect is often non-prior. 

Therefore, compared to simply using a single norm form, the algorithm proposed in this 

chapter has better adaptability. Furthermore, it allows subsequent parameter 

adjustments to further optimize inversion resolution, eliminating the need for repetitive 

calculations due to norm selection, thus significantly enhancing computational 

efficiency (van Leeuwen & Herrmann, 2016). 

Compared to conventional algorithms such as Tikhonov regularization and TV 

regularization, the improved algorithm is a hybrid regularization method. Tikhonov 

regularization, a ridge regression regularization method, effectively mitigates 

overfitting but is sensitive to noise. On the other hand, TV regularization is a sparsity-

based method that excels in denoising but suffers from convergence difficulties and 

high computational complexity. The proposed improved algorithm combines sparse 

regression and ridge regression, adjusting parameters to balance the regularization term 

between the two approaches. This ensures a certain degree of overfitting control while 

maintaining robust denoising capabilities. Moreover, by adjusting the parameters, the 

algorithm can achieve different regularization paths, making it highly robust and 

flexible to various geological conditions and model characteristics. 

Another pivotal issue is the algorithm's adjustable parameters. Parameter choices 

should not be static but adjusted according to different models. The most 

straightforward solution is heuristic parameter tuning, conducting multiple inversions, 

and then balancing between inversion accuracy and computation time to choose the 

appropriate parameters (Boyd et al., 2011). Another approach is to make the parameters 

adaptive. Adaptive algorithms link operators with variables in polynomials, obtaining 

a parameter that can self-correct through the model. While the second approach 

theoretically aligns with future development trends, there isn't ample research to 
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validate its efficacy. Therefore, for FWI, especially in the optimization segment, a 

critical direction for the future is to discovery a more suitable parameter selection, 

which is vital for both traditional FWI and artificial intelligence-based FWI. 

 

3.6 Chapter Conclusions 

This chapter introduces the K-support norm algorithm, to address common issues faced 

by the FWI algorithm under complex conditions. A significant advantage of this 

algorithm is its ability to suppress the impact of outliers on inversion resolution, 

especially when seismic data contains noise.  

The proposed algorithm in this chapter is built upon the quadratic penalty method. By 

integrating two distinct norm forms and employing penalty parameters to adjust the 

constraint forms, a tighter convex relaxation is realized, thereby enhancing the 

algorithm's robustness and noise resistance. Moreover, the ADMM algorithm 

decomposes the iterative process into distributed steps, increasing the algorithm's 

convergence speed by reducing computational complexity. 

In the numerical experiments, this section utilizes three different synthetic datasets, a 

random noise, and a coherent noise, to conduct a comprehensive test of the algorithm 

proposed in this chapter. The findings indicate that the FWI, when executed using the 

enhanced algorithm, showcases superior rates of convergence and heightened noise 

mitigation, most notably in scenarios characterized by extremely low signal-to-noise 

ratios, it offers commendable inversion results for deeper areas across various models. 

The algorithm also effectively suppresses outliers, confirming that the proposed method 

can efficiently achieve robust high-resolution imaging in deeper regions under intricate 

scenarios.  
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CHAPTER IV: FULL WAVEFORM INVERSION BASED ON 

RANDOMIZED SINGULAR VALUE DECOMPOSITION 
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4.1 Introduction 

In an ideal situation, FWI computes the gradient to determine the update direction and 

magnitude of the model. Then each model update is superimposed onto the previous 

result to serve as the basis for the next iteration, thus completing an iterative cycle. After 

a number of iterations with updating the velocity model, theoretically, the inversion 

result of FWI will gradually approach the real velocity model with increasing iterations, 

eventually coming infinitely close to the real model. However, practical scenarios are 

often more complex than theoretical ones. Commonly, due to limitations of the 

acquisition system and influences from environmental factors, it becomes challenging 

for FWI to obtain high-resolution inversion results, especially in intricate exploration 

environments (Zhou et al., 2015). 

A highly challenging exploration scenario is the high-precision inversion of salt domes 

and salt diapirs in the Gulf of Mexico. This region is renowned for its widespread 

distribution of salt rocks with significant thickness. However, the structures of salt 

domes and diapirs in the Gulf of Mexico are intricate, these salt formations have high-

velocity characteristics, which, in contrast with surrounding rock velocities, create 

pronounced velocity differences. This phenomenon leads to a very complicated seismic 

wave propagation process, where wave paths are frequently distorted, resulting in 

multiple reflections and refractions, making the deep inversion of FWI exceptionally 

challenging (Métivier et al., 2013). Moreover, the high-velocity upper interface of the 

salt rock forms a strong reflective layer. This reflection interface, with a significant 

impedance difference, has high P-wave impedance characteristics, manifesting as 

strong amplitude, high continuity, and relatively low frequency in seismic data, thereby 

masking the reflections of structures beneath the salt. Additionally, high levels of noise 

can obscure valuable seismic information, hindering the capture of detailed subsurface 

data, and even slowing the convergence of FWI due to overfitting, leading to erroneous 
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inversion results (Chi et al., 2014). All these challenges amplify the difficulty of FWI 

in determining deep salt bottom structures. 

In response to the aforementioned issues, numerous algorithms have been proposed to 

address noise problems and poor resolution. Common noise-mitigating solutions 

include forward interpolation and misfit function reconstruction. However, many 

enhanced algorithms are not perfectly suited to handle models like the high-velocity 

salt formations of the Gulf of Mexico with high discontinuities or those with vast 

velocity contrasts. For instance, Tikhonov regularization can result in smoother 

solutions, blurring the outlines of salt bodies in inversion results, and hindering the 

effective identification of salt diapirs and domes (Qu et al., 2019). Another approach 

involves using image processing techniques to accentuate primary features while 

ignoring secondary ones. Sparse dictionaries and sparse coding algorithms are 

advanced optimization techniques in this regard. Sparse dictionary methods construct a 

training set via singular value decomposition (SVD) and then learn from this dataset, 

forming a highly adaptive dictionary (Li and Harris, 2018). Additionally, sparse coding 

can represent signals as sparse linear combinations, aiding in noise separation from 

signals. However, traditional sparse dictionary construction and sparse coding solutions 

are computationally intensive, posing challenges for large-scale seismic exploration, 

and additionally, if training data are inadequate, the effectiveness of the dictionary can 

diminish (Guo et al., 2020). 

Building upon these real-world issues and existing algorithm foundations, this chapter 

innovatively proposes a novel concept, the new algorithm combines random singular 

value decomposition (rSVD) with weighted truncated nuclear norm regularization 

(WTNNR) and the inexact augmented Lagrange method (iALM) to optimize FWI (Liu 

and Peter, 2020). Firstly, unlike the conventional SVD, the advantage of rSVD lies in 

its faster processing speed and superior truncation capabilities. It assists FWI in 



110 

 

truncating redundant eigenvalues effectively during velocity increment compression, 

with the compression scale determined by a truncation coefficient. This coefficient is 

embedded in FWI's internal loop, enabling stratified optimization during the inner loop 

process, effectively stripping noise and emphasizing eigenvalues. Furthermore, the 

WTNNR algorithm, a method to shrink matrices, effectively complements rSVD, 

processing the rectangular diagonal matrices decomposed by rSVD, achieving a more 

precise eigenvalue truncation (Deng et al., 2020). Finally, iALM, an optimization 

method for the minimization process, is based on the augmented Lagrange method but 

employs an adaptive parameter setting for faster convergence. 

 

4.2 Randomized Singular Value Decomposition: rSVD 

The minimization process of frequency domain FWI can be expressed as follows: 

21min [ ] ,
2 F

−
X

A F χ,S  (4.1) 

where A  is the input actual observed seismic data, χ  is the model parameters, and 

S  is the source matrix, where the fitted seismic wave field function F can be obtained 

by forward modelling in the frequency domain. Subsequently, the FWI's optimization 

procedure encompasses both the objective function and the gradient method. Once the 

objective function is determined, the next step involves solving the inverse of the 

Hessian matrix and applying it to the gradient. This, when coupled with a suitable step 

size, yields the model increment. 



†χ = H g,  (4.2) 

,α= +


χ χ χ  (4.3) 
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where †H   is the approximation of the Hessian matrix, g is the gradient, α is the 

iteration step size, and χ


 is the model update. The above equations are the classic 

quasi-Newton-type algorithm and the classical solution to the FWI inverse problem (Li 

et al., 2012b). Yet, given that every internal cycle of the FWI demands the calculation 

of the gradient and reduction of the discrepancy between the observed and the modelled 

data, the computational load is quite substantial. More importantly, especially in the 

low-frequency initial phase of multiscale inversion, if the quality of the updates in the 

optimization process is poor, it will significantly affect the subsequent iteration speed 

and the quality of the fitting model. This causes the fitting results to deviate from the 

true model and severely affects the overall inversion resolution of FWI (Pan et al., 

2016). 

To address the above issues, this chapter will adopt a technique combining matrix 

dimensionality reduction and image processing. In the FWI optimization process, by 

using truncation operations, I can reduce the dimensionality of the matrix, which not 

only helps speed up the optimization process but also isolates small eigenvalues 

representing outliers and noise, retaining only large eigenvalues representing the large-

scale structures in the model, thus this approach not only effectively denoises but also 

reduces nonlinearity. Specifically, a truncation parameter k is needed to compress the 

original velocity increment, followed by truncation and matrix restoration steps to 

obtain a matrix approximate in size to the original matrix but with a different number 

of eigenvalues. In the approximate matrix, some eigenvalues are zero, meaning the rank 

of this matrix is much less than the original matrix. The proportion of valid eigenvalues 

in the approximate matrix is determined by the truncation parameter. 

Specifically, first, I need to compute the product of the velocity increment and the 

Gaussian random matrix, compressing the size of the original matrix to a new size 

controlled vertically by the truncation parameter: 
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' ,=


χ χΩ  (4.4) 

where   is reshaped velocity increments, pr denotes the dataset for the 

improved algorithm to differentiate it from the conventional algorithm.  is 

the Gaussian random matrix. Subsequently, a special type of QR decomposition is 

required to decompose the process matrix 'χ   under the condition of saving 

computational time. Since the right matrix R obtained after the decomposition is 

redundant, an economic QR decomposition is used in rSVD to minimize the size of the 

R dimension from pr
m nN ×∈R   to pr

×∈ m kNR  , which in turn further accelerates the 

updating speed at each step: 

'eqr( ),=Q χ  (4.5) 

where ( )eqr   is the economic QR decomposition, where  . Regular QR 

decomposition decomposes a  matrix (where ) into  upper triangular 

matrix R. In contrast, the economic QR decomposition decomposes the same matrix 

into an   upper triangular matrix R (Song et al. 2017). Next, I calculate the 

transpose of  to get , and multiply  with the velocity increments  

to get a preliminary compression matrix: 

*
c ,=



χ Q χ  (4.6) 

where  is the transpose of matrix , and  is the compression matrix I initially 

obtained. It is of size  compared to the original matrix of size , and 

pq denotes the dataset after the rSVD step. The scale of the approximation matrix is 

contracted by the compression action of a Gaussian random matrix of small size. 

'
pr

m kN ×∈χ

pr
n kN ×∈Ω

pr
m kN ×∈Q

m n× m n≥ m n×

n n×

Q *
pr

k mN ×∈Q *Q


χ

*Q Q cχ

c pq
×∈ k nNχ pr

m nN ×∈χ

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Similarly, the compression property of a Gaussian random matrix of a prescribed size 

allows obtaining a small-scale compressed approximation matrix regardless of the 

original size of the matrix. The number of columns of this approximation matrix is the 

truncation parameter k (Halko et al., 2011). 

Subsequently, the complete SVD process should be acted the cχ  to obtain the singular 

values matrix: 

*
c ,=



kψΣ V χ  (4.7) 

where 


ψ  is the left singular vector, kΣ  contains the first k-th singular values in the 

diagonal elements, *V  is the right singular vector.  

The above process describes the complete compression process of rSVD, which obtains 

the first k-th singular values of an approximate matrix from an original matrix through 

the action of the Gaussian random matrix, facilitating subsequent optimization 

processes. Through the above steps, I can quickly obtain the approximate singular value 

matrix of the velocity increment and its first k singular values. To intuitively compare 

the computational efficiency of rSVD with that of full SVD, Figure 4.1 (a) provides a 

comparison of their computation times. In the depicted graph, the blue solid line 

signifies the computation duration for the full SVD, whereas the red solid line indicates 

the computation time for the rSVD. As can be seen from the figure, due to the truncation 

parameter k, rSVD has extremely high computational efficiency in the early stages. This 

is because the value of the truncation parameter is small at the initial stage, meaning 

the low-rank of the approximate singular value matrix. Consequently, it makes the 

initial computational efficiency of rSVD significantly advantageous compared to full 

SVD. The red solid line in Figure 4.1 (b) shows that when the truncation parameter k is 

20, which means the column entries of the Gaussian random matrix are 20, the rank of 
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the approximate matrix processed by rSVD is significantly smaller than the rank of full 

SVD, which indicates that in the approximate singular value matrix processed by rSVD, 

most of the singular values are forced to zero. 

 

 

Figure 4.1. (a) The computation time for the full SVD (blue) and the rSVD (red); (b) 

the full SVD estimated singular value curve (blue) and approximate singular value 

curve based on rSVD (red) (Li et al., 2024b). 
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Subsequently, I need to recover the left singular vector 


ψ  and combine this vector 

with the singular value matrix 


kΣ   which will be optimized by weighted truncated 

nuclear norm regularization (WTNNR) to reconstruct the output matrix pr
×∈



m kNχ  , 

which has the same size as the input: 

* ,=
 

kχ ψ Σ V  (4.8) 

where 


ψ  is the recovered left singular vector, and 


kΣ  is the singular value matrix. 

The last issue to address is the selection of the truncation parameter k. Unlike the 

selection of other parameters which might require empirical judgment or heuristic 

methods, this parameter is initially set to a very small value before the forward 

modelling of FWI begins. Before the inversion process within a single-frequency inner 

loop, a step size of increment of the parameter is set. This allows for a gradual increase 

in the truncation parameter according to the step size during the optimization of the 

single frequency. At this point, an upper limit needs to be set for the truncation 

parameter, which is the larger number between the row count and column count of the 

singular value matrix. This ensures that the selection of the truncation parameter does 

not exceed the matrix scale, and in turn, ensures that the column count of the Gaussian 

random matrix does not surpass the row or column count of the singular value matrix. 

After completing the iteration of a single frequency, FWI returns to the forward 

modelling phase. At this time, the value of the truncation parameter is reset to zero, 

ensuring that it can continue to increase in the next single frequency without exceeding 

its upper limit due to changes in the inversion frequency. The maximum limit here refers 

to the largest value between the row and column counts of the matrix. Figure 4.2 
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provides a schematic diagram of the truncation parameter update process.  

 

 

Figure 4.2. Schematic representation of the increase in the truncation parameter with 

the number of internal iterations, where k is the truncation parameter and 𝝇𝝇 is the step 

size (Li et al., 2024b). 

 

Furthermore, for the overall process described, Figure 4.3 provides a visual 

demonstration using the 2004 BP model mentioned in earlier chapters as an example, 
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of which size is 124 124× , it offers an intuitive reference for a single iteration process 

of rSVD, where the truncation parameter is set to 50. 

 

 

Figure 4.3. Visualization flowchart for rSVD, where k = 50 is the truncation parameter 

and the model size is 124 × 124 (Li et al., 2024b). 

 

4.3 Weighted Truncated Nuclear Norm Regularization: WTNNR 

The singular value matrix can be obtained after rSVD processing, and then a matrix 

shrinkage algorithm will be used in this section to further optimize this singular value 

matrix. It can effectively reduce the load of FWI by further truncation operation and 

optimize the iterative updating term to strengthen the main feature elements (Horst et 
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al., 2000): 

WT

arg min ,
δ

δ =


χ
χ χ  (4.9) 

where WT
   is the weighted truncated nuclear norm, and δ χ   is the optimized 

increment item. The WTNNR problem can be understood as the following: 

,WT *

max Trace( ( ) ),
= =

= −
   

k k

T
k k k

ψψ I VV I
χ χ ψ χ Σ V  (4.10) 

where pk
×∈ k k

k Nψ   and pq
×∈ k n

k NV  satisfying ×=T
k k k kψ ψ I   and ×=T

k k k kV V I  , to prevent 

the truncation parameter from exceeding the upper bound, it is therefore necessary to 

satisfy min( , )≤k m n   and Trace( )   represent the trace (Chang et al., 2000). With the 

WTNNR algorithm proposed in this section, the singular-value matrix that has been 

processed by rSVD can be further shrunk to isolate more nonzero singular-value 

elements. As a result, the proportion of small singular values can be decreased 

significantly: 

( ) max( ,0),
2

= −
 

k
k k

W
W Σ Σ  (4.11) 

where kW  is the truncation matrix, ( )


kW Σ  is the new singular value matrix after the 

weighting process. If 
2

≥


k
k

W
Σ , ( )



kW Σ  is taken to be zero. 

Subsequently, to better illustrate the principle of the WTNNR algorithm, a schematic 

figure is provided in Figure 4.4. In the displayed chart, the blue solid line illustrates the 

ordering of the diagonal elements of the singular value matrix from the full SVD. The 

red solid line shows the ordering of the diagonal elements of the singular value matrix 

post-optimization exclusively by rSVD. The black solid line portrays the ordering of 

the diagonal elements of the singular value matrix from the weight shrinkage matrix 
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crafted by the WTNNR algorithm. Meanwhile, the purple solid line indicates the 

ordering of the diagonal elements of the singular value matrix following optimization 

via the WTNNR algorithm. From the figure, it can be seen that the singular value 

arrangement constructed by WTNNR is in the opposite direction from others, playing 

a shrinkage role, and truncating some of the smaller singular values. 

 

 

Figure 4.4. The blue solid line is the full SVD estimated singular value curve, the 

approximate singular value curve of rSVD is represented by the red line, the black solid 

line is the weight curve based on WTNNR, and the purple solid line depicts the 

approximate singular value curve optimized by rSVD-WTNNR (Li et al., 2024b). 

 

Additionally, Figure 4.5 presents a more intuitive illustration, which depicts two 

different scales of matrix optimization processes, (a-c) are of size 9 × 9, while (d-f) are 

of size 19 × 19. Figure 4.5 (a) is the singular value matrix after rSVD processing, (b) is 

the WTNNR matrix, and (c) is the matrix after WTNNR shrinkage. As inferred from 
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the figure, the WTNNR algorithm can effectively shrink the singular value matrix, 

further reducing the proportion of non-zero elements and small singular values, thereby 

achieving the purpose of singular value shrinkage. 

 

 

Figure 4.5. (a-c) 9 × 9 test data, (a) singular value matrix after rSVD decomposition; (b) 

weighted singular value matrix constructed based on WTNNR with singular values 

growing in the opposite direction of (a); and (c) optimized singular value matrix; (d-f) 

19 × 19 test matrices; (d) Singular value matrix after rSVD decomposition; (e) weighted 

singular value matrix constructed based on WTNNR with singular values growing in 

the opposite direction to (d); (f) optimized singular value matrix (Li et al., 2024b). 

 

The reason for this approach is that the singular value matrix represents the 

characteristics of the model, large singular values typically represent the large-scale 
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features of the model, whereas smaller features are more susceptible to artefacts and 

noise. Therefore, as the noise increases, more singular values need to be isolated, and 

as the noise decreases, fewer singular values need to be isolated. Thus, the amount of 

shrinkage allocated to the i-th singular value is inversely proportional to its amplitude: 

/ ( ε),β γ= +i iW σ  (4.12) 

where β  is a nonnegative constant, iσ  is the locally estimated variance at the i-th 

position, γ  is the number of similar patches, and 52ε 2−=  to avoid the divisor being 

zero: 

2 2max( ,0),γ
∧

= −i i kσ σ σ  (4.13) 

where iσ  is the i-th singular value of the matrix. Similarly, in the case of 2 2γ ≥k iσ σ , 
∧

iσ  

is taken to be zero.  

Additionally, using the 2004 BP model as a benchmark, the WTNNR algorithm was 

tested again, as shown in Figure 4.6. In it, (a) represents the input increment, (b) is the 

singular value matrix after truncation by rSVD, where I can see a noticeable reduction 

in rank. (c) is the WTNNR matrix, and (d) is the output increment after WTNNR 

optimization, it is evident that only a few large singular values have been retained. 

  



122 

 

 

 

Figure 4.6. 124 × 124 singular value matrix of the reconstructed velocity increment, (a) 

input matrix; (b) singular value matrix after rSVD-based optimization; (c) inverse 

weight matrix constructed based on WTNNR; and (d) singular value matrix of the 

velocity increment after rSVD-WTNNR optimization (Li et al., 2024b). 

 

Furthermore, to preliminarily test the effectiveness of this algorithm, Figure 4.7 

presents the test results for the 2004 BP benchmark, (a-c) are the low-frequency 
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inversion results without incorporating WTNNR under different truncation parameters, 

whereas (d-f) are the low-frequency inversion results with WTNNR under the same 

truncation parameters. The results indicate that although rSVD has a preliminary 

truncation effect, the WTNNR algorithm achieves superior separation of the main 

eigenvalues, which is manifested as the large-scale salt column features in the central 

part of the model being reinforced. This enhancement provides a better foundation for 

the subsequent high-frequency inversion. 

 

 

Figure 4.7. (a-c) Test results of velocity increment based on rSVD optimization without 

WTNNR with truncation parameters k=1, k=5, and k=10; (d-f) test results of velocity 

increment based on rSVD optimization with WTNNR. WTNNR can effectively 

enhance the features of the salt columns and slow down the disturbance of the channels 

on both sides (Li et al., 2024b). 
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4.4 Inexact Augmented Lagrangian Method: iALM 

To make it feasible for ALM to be implemented, an accelerated method, which can 

enhance the efficiency of this inversion method, is introduced. In fact, in the problems 

based on augmented Lagrangian, the estimated parameter λ   is used in the sub-

iteration process. It will lead to problems such as excessive dependence on the model 

and poor robustness of the augmented Lagrangian method (ALM). Ideally, an iterative 

sequence kλ  should be used instead of the estimation value to meet the termination 

condition required by the algorithm in the last iteration of the minimization process. 

The proper setting of this multiplier vector leads to a different inversion result. Instead 

of a single estimation value, according to the inexact augmented Lagrangian method 

(iALM) algorithm, the new iterative method can reduce the iterative rate of the 

objective function (Kang et al., 2015), and I show this conclusion in Appendix B and 

Appendix C. The updating process of wave-field information and model information is 

similar to ALM. 

Finally, in the minimization process of FWI, a better way is to use the augmented 

Lagrangian algorithm based on as a form of constraints (van Leeuwen and Herrmann, 

2013): 

[ ]
, ,λ λ

min max L min max - ( ) ( ) ( )2 2T
j2 2

( , )= + - + - ,
∧

u X u X
χ τ AX D λ C u X S τ C u X S  (4.14) 

where 2

2
    is the Euclidean norm, a 1N ×∈X   is the model wavefield, a 1M ×∈D   is the 

recorded seismic data, a 1N ×∈S   is the source term, and the linear observation operator 

a aM N×∈A   sampling X  at the receiver positions, a 1N ×∈u   is the model parameters, 

which contains preliminary information about underground parameters. The 

a a( ) N N×∈C u   is the discretized PDE, which is synergic with the u  (Gholami et al., 

2022). Based on the Nesterov acceleration algorithm, adaptive parameter selection can 
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be employed (Sahin et al., 2019): 

( ( ) ),j j -τ
∧

= −λ λ C u X S  (4.15) 

2
1 (1 1 4( ) ) / 2,+ = + +j jt t  (4.16) 

1 1
1

1
( ) ( ),

1

∧ ∧

+ −
+

−
= + − + −

+
j j

j j j j j j
j j

t t
t t

λ λ λ λ λ λ  (4.17) 

where 1 0

∧

=λ λ , and 1 1=t . The iALM algorithm is an accelerated algorithm based on 

the augmented Lagrangian, which is an inexactly solved version of the original problem 

that does not require an exact solution for each iteration of the process, and thus it 

greatly reduces the computational efficiency of the: 

1 1

1
( ).

1

∧

+ −

−
= + −

+
j

j j j j
j

t
t

λ λ λ λ  (4.18) 

Lastly, in Algorithm 1, the flowchart of the algorithm for the rSVD-WTNNR-based 

FWI proposed in this chapter is given. 
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Algorithm 1. FWI is based on the rSVD-WTNNR and iALM (Li et al., 2024b). 
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In Figure 4.8, the algorithmic flowchart of the improved FWI is given. 

 

 

Figure 4.8. Flowchart of accelerated augmented Lagrangian full-waveform inversion 

based on truncated randomized singular value decomposition in the frequency domain 

(Li et al., 2024b). 

 

The iALM is a new iterative method for solving the linear constraint convex function 

minimization problem. This iterative method is an inexact version of the ALM. Since 

every single sub-problem needs to be solved accurately in each external iteration, the 

computational cost of the other variants version of ALM does not make the convergence 

rate faster. More importantly, the subproblems of accelerated augmentation Lagrangian 

do not have closed-form solutions. Therefore, the algorithm adopted allows inexact 

solutions to the subproblems. When solving the problem of linearly constrained convex 

programming, the iterative complexity of classical augmented Lagrange is (1/ )O k , 

the content about the computational complexity of the ALM is in Appendix B. And the 

iterative complexity of the accelerated algorithm is 2(1/ )O k  (Kang et al., 2015), and 

the content about the computational complexity of the iALM is in Appendix C. 

Therefore, it is theoretically proved that my proposed iALM has a faster convergence 
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rate than ALM, which is worth implementing for the inversion process. This point 

makes the iALM accelerate the convergence rate and decrease the computational cost. 

 

4.5 Numerical Simulations on Synthetic Data 

In the forthcoming section, I aim to evaluate the efficacy of the rSVD-WTNNR-based 

FWI using synthetic data. For this, I've chosen three intricate scenarios with diverse 

SNR ratios to juxtapose the inversion outcomes of this algorithm against those from the 

traditional Tikhonov regularization FWI. For the forward modelling aspect, I persist in 

employing the multi-scale frequency domain method, combined with the Perfectly 

Matched Layer (PML) boundary condition, and utilize model error for quantitative 

comparison (Bunks et al., 1995): 

true inv true2 2
/ .−M M M  (4.19) 

where the trueM  and invM  represent the actual model and inversion result, respectively 

(Komatitsch and Tromp, 2003). 

To assess the performance of the algorithm under complex conditions, this chapter tests 

the inversion capability under three different signal-to-noise ratio conditions: 

2
10

2

SNR 20 Log ( ),= ∗
D
η

 (4.20) 

where the η  is the noise data, the D  is the signal data. 
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4.5.1 The Central Part of the 2004 BP Model 

In the current chapter, I maintain the use of the central segment of the 2004 BP model. 

This model embodies a high-velocity salt irregularity and adjacent channels. The 

primary inversion difficulty of this model is in sketching the boundaries of the central 

high-velocity salt formation, with particular emphasis on accurately inverting the two 

lower salt pillars, which are concealed by potent reflective boundaries (Billette and 

Brandsberg-Dahl, 2005). 

Figure 4.9 (a) shows the benchmark, while (b) presents the starting model derived by 

smoothing the benchmark. 
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Figure 4.9. 2004 BP benchmark; (a) true benchmark; (b) starting model. The unit of the 

colour bar is km/s (Li et al., 2024b). 

 

Figure 4.10 (a) displays the source and receiver wavefield obtained from forward 
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modelling at 3 Hz. To test the performance under different SNR conditions, (b-d) show 

random noise data under three different scenarios: 8 dB, 12 dB, and 16 dB, these noise 

data are linearly superimposed on the true velocity wavefield to produce (e-g). 

 

 

Figure 4.10. The real part of the observations and simulated data in the source-receiver 

domain at 3 Hz of the 2004 BP model; (a) pure data matrix; (b) 8 dB random noise; (c) 

12 dB random noise; (d) 16 dB random noise; (e-g) noisy data (Li et al., 2024b). 

 

Subsequently, Figure 4.11 compares the model increments obtained in a single iteration 

using conventional methods and the proposed algorithm in this chapter, where (a1-a5) 

represent model increments from the conventional method under various truncation 

parameters, while (b1-b5) represent increments obtained using the rSVD-WTNNR 

algorithm. Notably, the updated algorithm enhances the main features of the 2004 BP 

model and weakens the effect of the channels on both sides. 
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Figure 4.11. Conventional velocity increment model; (a1-a5) close to the 4.5 Hz 

frequency, the truncation parameter k, which increases with the rising count of internal 

iterations, is equal to 10, 20, 30, 40, and 50, respectively; modified velocity increment 

model; (b1-b5) close to the 4.5 Hz frequency, the truncation parameter k is equal to 10, 

20, 30, 40, and 50, respectively (Li et al., 2024b). 
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Based on the above, Figure 4.12 displays the final inversion results of both algorithms 

under 8 dB random noise, (a1-a5) represent results based on Tikhonov regularization; 

(b1-b5) depict differences between the conventional method's inversion and the true 

benchmark, in contrast, (c1-c5) and (d1-d5) represent results and differences from the 

improved algorithm, respectively. It's clear that the proposed method significantly 

outperforms the conventional one, especially in noise removal, salt pillar reconstruction 

at the model bottom, and resolution. 
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Figure 4.12. 2004 BP model with 8 dB random background noise; (a1-a5) conventional 

method results with frequencies of 2.15, 3.9, 5.35, 7.70, and 9.24 Hz, respectively; (b1-

b5) velocity differences of the conventional method and the benchmark; (c1-c5) 

inversion results based on modified method with frequencies of 2.15, 3.9, 5.35, 7.70, 

and 9.24, respectively; (d1-d5) velocity differences between the inversion results based 

on modified method and the real benchmark (Li et al., 2024b). 

 

Figure 4.13 displays the one-dimensional velocity comparison of the two methods, with 

red, blue, black, and grey dashed lines representing the improved algorithm's velocity 

profile, the conventional method's profile, the true benchmark's profile, and the initial 

model's profile, respectively. Quantitative comparisons further emphasize the 

superiority of the improved algorithm. 
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Figure 4.13. One-dimensional velocity at varying X-coordinates; for X = 2.84, 5.75, 

11.08, 13.92, 15.00, and 17.80 km separately in (a-f); one-dimensional velocity at 

varying Y-coordinates; for Y = 2.36, 2.76, 3.36, 3.68, 4.08, and 4.56 km separately in 

(g-l) (Li et al., 2024b). 

 

Similar comparisons are provided for 12 dB and 16 dB random noise in Figures 4.14-

4.16. In high SNR scenarios, although the conventional method performs exceptionally 

well, the improved method further refines the results.  
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Figure 4.14. 2004 BP model with 12 dB random background noise; (a1-a5) 

conventional method results with frequencies of 2.15, 3.9, 5.35, 7.70, and 9.24 Hz, 

respectively; (b1-b5) velocity differences of the conventional method and the 

benchmark; (c1-c5) inversion results based on modified method with frequencies of 

2.15, 3.9, 5.35, 7.70, and 9.24, respectively; (d1-d5) velocity differences between the 

inversion results based on modified FWI and the real benchmark (Li et al., 2024b). 
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Figure 4.15. One-dimensional velocity at varying X-coordinates; for X = 4.48, 6.00, 

11.08, 13.88, 14.68, and 17.76 km separately in (a-f); one-dimensional velocity at 

varying Y-coordinates; for Y = 2.80, 3.36, 3.80, 4.76, 4.84, and 5.28 km separately in 

(g-l) (Li et al., 2024b). 

  



138 

 

 

 

Figure 4.16. 2004 BP model with 16 dB random background noise; (a1-a5) 

conventional method results with frequencies of 2.15, 3.9, 5.35, 7.70, and 9.24 Hz, 

respectively; (b1-b5) velocity differences of the conventional method and the real 

benchmark; (c1-c5) inversion results based on modified method with frequencies of 

2.15, 3.9, 5.35, 7.70, and 9.24, respectively; (d1-d5) velocity differences between the 

inversion results based on modified method and the real benchmark (Li et al., 2024b). 

 

Figure 4.17 displays six groups of horizontal and vertical velocity comparisons, 

confirming that under various noise conditions, the improved algorithm results are 

closer to the real benchmark.  
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Figure 4.17. One-dimensional velocity at varying X-coordinates; for X = 6.44, 9.24, 

10.44, 12.12, 16.20, and 18.00 km separately in (a-f); one-dimensional velocity at 

varying Y-coordinates; for Y = 2.68, 2.88, 3.84, 4.08, 4.80, and 5.44 km separately in 

(g-l) (Li et al., 2024b). 

 

Finally, Figure 4.18 compares the convergence speeds of the mismatch function and 

model error under three conditions, highlighting the enhanced algorithm's faster 

convergence, especially under low SNR conditions. 
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Figure 4.18. Error plots, (a-b) misfit and model error in 8 dB random background noise 

case; (c-d) misfit and model error in 12 dB random noise case; (e-f) misfit and model 

error in 16 dB random noise case; the solid red line is the modified method, and the 

blue line is the conventional method (Li et al., 2024b). 

 

To better verify the efficacy of the improved algorithm in alleviating the cycle skipping 

issue, an additional series of tests were conducted using a suboptimal initial model for 

full waveform inversion. Figure 4.19 depicts the initial velocity model characterized by 

a one-dimensional linear increase in velocity, clearly inferior to the smooth initial model. 

  



141 

 

 

 

Figure 4.19. 2004 BP model, one-dimensional linearly increasing velocity initial model 

(Li et al., 2024b). 

 

The actual model is consistent with that presented in Figure 4.9 (a). Selecting a 

suboptimal initial model poses a test for the robustness of the improved algorithm and 

its ability to mitigate cycle skipping. Figure 4.20 depicts the real part of the 2.69 Hz 

data for the 2004 BP model. 
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Figure 4.20. The real part of the 2.69 Hz data sets for the 2004 BP model. (a) noise-free 

data; (b) random noise of 12 dB; (c) noisy data. Figure 4.20 (a) depicts the real part of 

the 2.69 Hz data for the 2004 BP model without noise. Figure 4.20 (b) shows data with 

12 dB noise, and Figure 4.20 (c) presents the real part of the 2.69 Hz data with the 

addition of 12 dB noise (Li et al., 2024b). 

 

Figure 4.21 showcases the inversion results based on the suboptimal initial model, with 

Figures 4.21a1-4.21a5 respectively illustrating the inversion outcomes at frequencies 

of 2.69 Hz, 3.87 Hz, 5.57 Hz, 6.69 Hz, and 9.63 Hz, employing Tikhonov regularization. 
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Figures 4.21b1-4.21b5 depict the results obtained using the improved algorithm. 

 

 

Figure 4.21. 2004 BP model with 12 dB random background noise, (a1-a5) inversion 

results based on Tikhonov regularised FWI with frequencies of 2.69 Hz, 3.87 Hz, 5.57 

Hz, 6.69 Hz, and 9.63 Hz, respectively; (b1-b5) inversion results based on modified 

FWI with frequencies of 2.69 Hz, 3.87 Hz, 5.57 Hz, 6.69 Hz, and 9.63 Hz, respectively. 

The initial model is shown in Figure 4.19b (Li et al., 2024b). 
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Figure 4.22. 2004 BP model with 12 dB random background noise, (a-d) the vertical 

comparison of one-dimensional velocity models at different x-positions, (a) x = 3.20 

km, (b) x = 6.32 km, (c) x = 7.44 km, (d) x = 7.96 km; (e-h) the horizontal comparison 

of one-dimensional velocity models at different z-positions, (e) y = 2.76 km, (f) y = 

4.08 km, (g) y = 4.60 km, (h) y = 4.88 km; where the actual velocity model is the solid 

black line, initial velocity model is a grey dotted line, the Tikhonov FWI is solid blue 

line, and the modified FWI is solid red line. The velocity comparisons above are based 

on Figure 4.21 (Li et al., 2024b). 
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The findings reveal that the traditional algorithm's performance in the deeper regions 

leaves much to be desired, highlighting its vulnerability to poor initial models and noise 

interference. Conversely, the improved algorithm, despite the suboptimal initial model, 

is capable of inverting the model's deep salt structures with greater clarity, attesting to 

its efficacy and superiority. Figure 4.22 compares the one-dimensional velocity 

inversion outcomes of both algorithms under the poor initial model scenario. The 

comparison indicates that the velocity profile generated by the improved algorithm 

more closely approximates the true velocity, with green arrows highlighting areas with 

notable velocity discrepancies. 

Lastly, results for noise-free data were demonstrated. As depicted in Figure 4.23, 

Figures 4.23a1-4.23a5 show the inversion results of the traditional algorithm without 

noise, while Figures 4.23b1-4.23b5 reflect those of the improved algorithm in a noise-

free environment. Figure 4.23 illustrates the method's approach to handling noise-free 

data. Theoretically, in noise-free or low-noise scenarios, either a larger initial truncation 

value or a smaller truncation step should be set, each condition being adequate. While 

the improved algorithm might truncate some beneficial information, the overall 

resolution of the inversion results remains high in conditions of low or no noise. 
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Figure 4.23. 2004 BP model without noise interference, (a1-a5) inversion results based 

on regularised FWI with frequencies of 2.69 Hz, 3.87 Hz, 5.57 Hz, 6.69 Hz, and 9.63 

Hz, respectively; (b1-b5) inversion results based on modified FWI with frequencies of 

2.69 Hz, 3.87 Hz, 5.57 Hz, 6.69 Hz, and 9.63 Hz, respectively. The initial model is 

shown in Figure 4.19 (Li et al., 2024b). 

 

Across the three sets of experiments, the improved algorithm consistently outperforms 

under various complex conditions, suppressing noise more effectively, delivering 



147 

 

clearer inversions of the salt pillars at the model bottom, mitigating the obscuring 

effects of strong reflection interfaces, and vividly outlining the detailed structural 

contours of the model bottom (Li et al., 2024b). 

 

4.6 Chapter Discussions 

While FWI is already a mature inversion technique, there are still many details that 

need refinement, especially when pursuing high-resolution and high-accuracy 

inversions. The inspiration for this chapter comes from an image processing technique, 

casting the denoising problem as an image processing challenge. Specifically, to 

validate the feasibility of the algorithm, Figure 4.24 presents a simple image processing 

test, I can interpret (a) as a certain model increment, through SVD, its singular value 

matrix (b) is derived, and then by introducing random noise (c) to the original matrix, 

(d) can be generated. It is evident that in comparison to the original singular value 

matrix, there are many superfluous singular values within the green box in (d), these 

smaller singular values are the noise and artefacts that need to be eliminated. By 

reconstructing (d), I can obtain the model in (e). Compared to the original (a), it is clear 

that noise data has seriously damaged the model structure, however, by following the 

methodology illustrated in (f), if I truncate all the singular values inside the red box and 

then reconstruct, I can achieve the result shown in (g). (g) reconstructed structure after 

truncation is notably improved compared to (e) and is closer to the initial model (a). In 

conclusion, this experiment validates the feasibility of the approach proposed in this 

chapter, and by decomposing the original matrix and truncating the smaller singular 

values in the singular value matrix, denoising and resolution enhancement can be 

achieved, which offers a new perspective for FWI optimization, providing a novel 

algorithm and tool for seismic exploration under complex conditions with data noise 
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suppression and uncertainties, holding potential significant value. 

 

 

Figure 4.24. (a) The initial test velocity increment; (b) the singular value matrix for this 

velocity increment; (c) 10 dB of random noise; (d) the test velocity increment after 

adding the noise disturbance; (e) the velocity increment after reconstructing; (f) new 

matrix after simply truncating the singular value matrix (d); (g) the new velocity 

increment with a reconstructing of the singular value matrix (f); and (h) the difference 

between velocity increments (e) and (g) (Li et al., 2024b). 

 

Additionally, there is a need for further elucidation on the rSVD algorithm, this 

algorithm stands as a potent tool for matrix decomposition. For a more intuitive 

theoretical interpretation, Figure 4.25 and Figure 4.26 offer a geometric explanation. 

As observed in Figure 4.25, the conventional SVD decomposes a target matrix into two 

orthogonal matrices and a diagonal matrix, these orthogonal matrices represent two 

rotations in different directions, with the rotation angles denoted by the matrix values, 

but the diagonal matrix signifies the stretching or compression level of the singular 
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value matrix. From Figure 4.26, it is evident that if I select only the first few larger 

singular values and exclude the smaller ones, I retain crucial information from the first 

few dimensions, while the singular values in other dimensions get compressed to zero. 

In essence, if the original matrix is n-dimensional, rSVD can reduce it to k dimensions, 

where k is the truncation parameter. Moreover, for large-scale matrices typical of 

seismic data, the computational efficiency of the traditional SVD is quite low, and the 

computational cost is substantial. Hence, the rSVD algorithm can effectively reduce 

memory consumption, expedite computation, and boost the overall computational 

efficiency of FWI. 

 

 

Figure 4.25. Geometric interpretation of SVD; (a) target matrix; (b) left orthogonal 

matrix representing rotation; (c) singular value matrix representing longitudinal and 

horizontal stretching; (d) right orthogonal matrix representing rotation (Li et al., 2024b). 
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Figure 4.26. Geometric interpretation of the truncation operation of the SVD; (a) the 

target matrix; (b) the left orthogonal matrix represents the rotation; (c) the singular value 

matrix represents the longitudinal and horizontal stretching and truncation of its 

smallest singular value results in a longitudinal stretch of zero; (d) the right orthogonal 

matrix represents the rotation (Li et al., 2024b). 

 

4.7 Chapter Conclusions 

In this chapter, considering the unique geological conditions of the Gulf of Mexico, I 

propose an rSVD-WTNNR algorithm to enhance the inversion accuracy of FWI and its 

noise suppression capabilities. Building on the basic FWI workflow, this chapter 

innovatively incorporates the matrix decomposition algorithm, rSVD, into the 

optimization process. Following this, I employ WTNNR to further refine the 
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decomposed singular value matrix. Following that, the iALM algorithm is employed to 

hasten the overarching optimization procedure, enhancing the algorithm's rate of 

convergence even more. In the section dedicated to numerical experiments, I juxtapose 

the FWI inversion outcomes derived from Tikhonov regularization against those 

sourced from the rSVD-WTNNR algorithm, and from figures, it is evident that the 

improved algorithm introduced in this chapter offers more precise inversion accuracy 

under various complex signal-to-noise ratios. Specifically, it achieves accurate 

inversion of deep structures below the strong reflective surface of high-velocity salt 

bodies, accomplishing the research objective of recognizing the contour of deep high-

speed salt structures in the region. 
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CHAPTER V:DISCUSSIONS 
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FWI, as a numerical fitting algorithm, has been developed for nearly 40 years. Although 

it has been applied on a small scale conditionally in seismic exploration and data 

interpretation, there is still some distance from its large-scale promotion in the industry 

(Li et al., 2024d). Here are several key issues and challenges, as well as my personal 

views and prospects for FWI. 

Firstly, the forward modelling algorithm requires a large amount of computational 

memory. Whether it is single-parameter forward modelling, multi-parameter forward 

modelling, frequency domain, time domain, or even the Laplace domain, grid-based 

algorithms are almost universally used, which ensures a huge demand for computer 

memory. However, if I abandon grid-based algorithms, currently, there is no better 

forward modelling algorithm to replace them. Hence, the higher the precision of the 

forward modelling, the finer the grid required, and consequently, the greater the 

computer memory needed. One factor restraining FWI's development is not its 

algorithm per se but the performance of the computers themselves. Therefore, in this 

thesis, I propose the use of an SR3 algorithm to optimize the wavefield. This algorithm 

introduces a regularization term to control model complexity, thereby enhancing model 

stability. During the interpolation process, auxiliary matrices are utilized to estimate 

unknown data points, thus filling in missing values and making predictions. The SR3 

algorithm can help generate smoother and more coherent data prediction results. 
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If we completely abandon traditional algorithms and turn to artificial intelligence, there 

are two approaches: 1. Utilize artificial intelligence algorithms. By drawing on a vast 

amount of training experience and inter-well data, one can build an initial model that 

conforms to big data patterns, but this approach still relies on forward computation. 2. 

Abandon forward computation entirely. artificial intelligence-based FWI, especially 

that grounded in deep learning and convolutional neural networks (CNN), does not rely 

on forward computation, instead, it trains a CNN to directly map seismic data to 

subsurface velocity models or other physical models. The advantage is evident; once 

trained, deep learning models can make predictions in milliseconds to seconds, making 

them much faster than traditional FWI. However, these models often require vast 

amounts of labelled data, and obtaining high-quality labelled data in geophysics is 

challenging. Even with ample high-quality data, training with large datasets still 

demands significant computational memory, bringing us back to computer performance. 

Secondly, there is the issue of the misfit function in the minimization process. To 

enhance the denoising capability of FWI, this thesis used a K-support regularization 

algorithm. This algorithm combines the sparsity characteristics of TV regularization 

with the smoothness of Tikhonov regularization, presenting different regularization 

paths through an adjustable regularization parameter, thereby achieving improved 

denoising performance. 
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Furthermore, as previously mentioned, the crux of inverse problems lies in constructing 

and solving the misfit function. Traditional methods from least squares to quadratic 

penalty to augmented Lagrangian show that, regardless of constrained or unconstrained 

algorithms, the nature of inverse problems remains strongly nonlinear and ill-

conditioned. The improvements made are essentially about further compressing the 

solution space; the smaller the solution space, the faster the solution speed and the less 

likely it is to fall into local minima. Another issue is the selection of parameters for the 

misfit function, an aspect that both conventional algorithms and deep learning-based 

construction need to address. At present, there is not a gorgeous and rigorous method 

to calculate the parameters for the misfit function; most rely on empirical values and 

heuristic thinking.  

During the optimization, this thesis used an rSVD algorithm aimed at achieving 

background separation and low-rank denoising capabilities. By decomposing model 

increments, the algorithm obtains a singular value matrix and then truncates the full-

rank matrix into a low-rank matrix to achieve spatial dimensionality reduction and 

denoising. Additionally, a multiscale inversion strategy is utilized to update the 

condition number, creating multiscale models. This approach continuously optimizes 

the model increments within each iteration, thereby achieving the goal of high-

resolution inversion. 
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Finally, in the optimization process, the gradient methods often adopted in FWI include 

the conjugate gradient (CG) and the L-BFGS method. The more popular L-BFGS 

algorithm calculates the second derivative of the objective function to obtain the 

Hessian matrix. However, directly calculating and storing the Hessian matrix can be 

very memory-intensive, which forces FWI to adopt optimization methods based on 

approximate Hessian matrices. Conventional optimization algorithms have two main 

shortcomings: 1. They easily fall into local minima, and 2. They have slow convergence 

rates. Regarding this, I believe that in the future, a gorgeous and potential alternative 

could be the Riemannian gradient (RG) method. Firstly, when model parameters 

naturally exist on a manifold, one could consider defining a Riemannian manifold. A 

Riemannian manifold is locally like Euclidean space, but globally it might have 

different curvatures and topological structures, and its gradient is the tangent vector on 

the manifold. Once an appropriate metric and connection are determined, one can obtain 

the Riemannian Hessian matrix. This Riemannian Hessian matrix is a second-order 

differential operator, describing how a real function defined on the manifold changes. 

Alternatively, one can project the Euclidean gradient directly onto the tangent space of 

the manifold to obtain the Riemannian gradient, which can be viewed as finding the 

part of the Euclidean gradient closest to a given point and ensuring it is located in the 

tangent space of that point. Compared to conventional algorithms, or even L-BFGS, 

Riemannian-type algorithms can directly optimize the manifold without dealing with 
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complicated constraints. Moreover, theoretically, Riemannian algorithms may possess 

better convergence properties. However, the Riemannian method has a practical issue: 

it can be overly complex. 

In summary, although FWI was initially proposed as a Born approximation algorithm, 

with the introduction of newer algorithms and the development of better computer 

performance, it has gradually deviated from its inherent concept and has adopted more 

advanced algorithms and new ideas. This provides researchers with an opportunity, 

from an algorithmic perspective, to leverage FWI's underlying structure, proposing 

better optimization algorithms for inverse problems and testing the effectiveness and 

feasibility of new algorithms in these contexts. Inverse problems are common and 

crucial in engineering, so extensive research into them is profoundly significant. 
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CHAPTER VI: CONCLUSIONS 
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This thesis presents multiple solutions to common challenges faced by the FWI 

algorithm and difficulties encountered in practice. I developed a preprocessing multi-

scale resolution sparse optimization robust FWI, and the proposed algorithm was 

applied and tested in three different benchmarks.  

Specifically, first, in response to the FWI forward problem being affected by low-

density acquisition and the background noise of low-frequency components, Chapter Ⅱ 

introduces a sparse regression regularization algorithm, SR3. By constructing auxiliary 

terms, it interpolates and reconstructs the seismic source-receiver data sets obtained in 

the frequency domain, enhancing the resolution of the wideband forward wavefield. 

This method achieves low-frequency interpolation denoising and high-frequency anti-

aliasing effects, effectively addressing the wavefield spatial discontinuity caused by 

low-density acquisition and potential spatial aliasing effects. In the numerical 

experiments, this algorithm was tested on both single-layer and double-layer uniform 

media and applied to more complex synthetic data, proving the effectiveness of the 

proposed method. 

Subsequently, in Chapter Ⅲ, the misfit function, which is critical in inverse problems 

like FWI, was optimized. Conventional least-squares have strong non-linearity, easily 

falling into local minima and being sensitive to noise. Therefore, this chapter adopts a 

new regularization method that combines norms, specifically the K-support norm. By 

efficiently combining the 1   and 2   norms and utilizing the quadratic penalty 

method and ADMM algorithm enhances function convexity while emphasizing noise 

suppression. In the fitting experiment, this chapter uses random and coherent noise to 

test the robustness of the algorithm in various complex situations. Applications in three 

different synthetic datasets modelling different underground structures and real 

scenarios demonstrated the excellent property of the K-support norm. 
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Finally, focusing on the research hotspot of this thesis - the high-precision deep imaging 

of the abundant high-speed salt bodies and salt pillars structures in the Gulf of Mexico 

area, Chapter Ⅳ proposes a new rSVD-WTNNR algorithm to optimize the FWI 

inversion process. By integrating matrix and image processing techniques, the 

algorithm performs multi-resolution deep optimization on the velocity increment during 

the iterative process. By extracting singular values, it emphasizes the main features in 

the deep parts, avoiding the shielding effects of strong salt body reflections on deeper 

layers and the imprecise boundary recognition caused by strong velocity contrasts. In 

the experiments, I implemented the proposed approach on the 2004 BP model, which 

mirrors the eastern Gulf of Mexico and offshore Angola. The outcomes distinctly 

highlighted the efficiency and preeminence of the modified algorithm. 

In summary, this thesis provides a comprehensive, multi-faceted enhancement and 

optimization of traditional FWI. Testing across multiple benchmarks has demonstrated 

that the preprocessing multi-scale resolution sparse optimization robust FWI proposed 

in this thesis is a promising approach, fulfilling the research goals and objectives 

outlined in this study. 
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APPENDICES 

 

Appendix A. Wavefield-Reconstruction Inversion: WRI 

Van Leeuwen and Herrmann proposed a wave equation FWI algorithm based on the 

penalty function in 2015 (van Leeuwen & Herrmann, 2015): 

The regularization term of PDE constrained form can be expressed as follows: 

2

2,
min ,    subject to.  ( ) ,− =
M X

AX D C X SM  (A.1) 

where 
2

2
     is the 2   norm, and the 1×∈M 

   is the model parameter; 


  is the 

regularization function, contains preliminary information about model parameters, 

1×∈X 

  represents the wavefield, 1×∈D 

  is the recorded seismic data, 1×∈S 

  

is the source term, and the linear observation operator ×∈A 

   sampling X  at the 

receiver positions.  

From the mathematical point of view, the most appropriate way to solve this type of 

constrained optimization problem is in the form of a Lagrangian function: 

[ ]2

2, ,
min max F( , , ) min max ( ) ,T= − + −
M X M XV V

M X V AX D V C M X S  (A.2) 

where [ ]1 2; ;=V V V  . The V  represents the Lagrange multiplier. The advantage of 

using the Lagrange function is that after iterative optimization, new fitting data, forward 

results, and an adjoint matrix will be obtained simultaneously, which avoids the need 

for an explicit solution in the optimization process of conventional FWI, which means 

that the wavefield reconstruction inversion algorithm obtains a solution consistent with 
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augmented wave equation term. 

Since the model parameter C   based on the PDE operator may converge to an 

approximate minimum value when the start model is not ideal, therefore, van Leeuwen 

and Herrmann redefine the primitive constrained problem into a quadratic penalty 

problem in 2013: 

2 2

2 2, ,
min F( , ) min ( ) .λ= − + −
M X M X

M X AX D C M X S  (A.3) 

With the form of a quadratic penalty term, the original full space-constrained form can 

be turned into a double penalty term form, reducing the complexity of the algorithm 

while improving the ability of FWI to converge to the more exact minimum value when 

the initial model is poor.  
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Appendix B. Iteration-Complexity of the Classical Augmented Lagrangian 

Method: ALM 

The iterative complexity of ALM is (1/ )O k , and the proof as follows (He et al., 2015; 

Kang et al., 2015; Yurtsever et al., 2019): 

Lemma 1.1 For the convex function minimization problem under the constraints of 

linear equations, it can be expressed as: 

{ }min f( ) , ,= ∈x Ax b x X  (B.1) 

where f( ) : nℜ →ℜx  is a convex function, A , b  and X  are convex closed sets in 

nℜ  . According to equation B.1, 1 1( , )k kλ+ +x   could be generated. For each feasible 

solution ( , )λx , I could get: 

1

21 1 1 1 1L( , ) L( , ) ( ) ( ).
k

k k k k k T k
kτ

λ λ λ λ λ λ τ λ λ−

+ + + − +− ≥ − + − −x x  (B.2) 

Proof. The convexity of f  can be used: 

1 1 1 T 1 T 1

1 T T 1 T 1

L( , ) L( , ) f( ) f( ) ( ) ( ) ( )
                                   ( ) f( ) ( ) ( ) ( ),

k k k k k

k k k

λ λ λ λ

λ λ

+ + + + +

+ + +

− = − + − − −

≥ − ∇ + − − −

x x x x Ax b Ax b
x x x Ax b Ax b

 (B.3) 

where ( , )λx  is the feasible solution as know, I can get: 

1 T 1 T T T 1( ) f( ) ( ) ( ).k k kλ λ+ + +− ∇ ≥ − = −x x x x x A A x x  (B.4) 

Substitute inequality B.4 into inequality B.3, I obtain: 
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1

1 1 T 1 T 1 T 1

1 T 1

21 T 1 1

L( , ) L( , ) ( ) ( ) ( ) ( )
                                   ( ) ( )

                                    = ( ) ( ).
k

k k k k k

k k

k k k k k
kτ

λ λ λ λ λ

λ λ

λ λ λ λ τ λ λ−

+ + + + +

+ +

+ − +

− ≥ − + − − −

= − −

− + − −

x x A x x Ax b Ax b
Ax b  (B.5) 

The lemma 1.1 is proved. 

Lemma 1.2. For a given kλ , 1kλ +  can be generated, and I can get: 

1 1 1

2 2 21 * * 1

* * 1 1 * * * *                        2(L( , ) L( , )), ( , ) .
k k k

k k k k

k k

τ τ τ
λ λ λ λ λ λ

λ λ λ

− − −

+ +

+ +

− ≤ − − −

− − ∀ ∈ ×x x x X Λ
 (B.6) 

Proof. * *( , )λx , which in inequality B.6 is dual feasible, when I set * *( , ) ( , )λ λ=x x  

in B.2, I can obtain: 

1

2* T 1 1 1 * * 1 1( ) ( ) (L( , ) L( , )).
k

k k k k k k k
k τ

λ λ τ λ λ λ λ λ λ−

− + + + +− − ≥ − + −x x  (B.7) 

According to inequality B.7, I obtain: 

1 1

1 1

1

2 21 * * 1

2 21 * 1 * T 1 1 1

21 * 1 * * 1 1

( ) ( )

                    2( ) ( )

                    2(L( , ) L( , ).

k k

k k

k

k k k k

k k k k k k
k

k k k k k

τ τ

τ τ

τ

λ λ λ λ λ λ

λ λ λ λ τ λ λ λ λ

λ λ λ λ λ λ

− −

− −

−

+ +

+ + − + +

+ + + +

− = − − −

= − − − − + −

≤ − − − − −x x

 (B.8) 

The lemma 1.2 is proved. 

Theorem 1.3. Substitute 1 1( , )k kλ+ +x  into ALM, I can obtain: 

1

1 1 1

21 1 1

2 2 21 * * 1

L( , ) L( , ) ,

,

k

k k k

k k k k k k

k k k k

τ

τ τ τ

λ λ λ λ

λ λ λ λ λ λ

−

− − −

+ + +

+ +

 ≥ + −

 − ≤ − − −


x x
 (B.9) 

if kτ τ≡ , I obtain: 
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2 2 21 1( ) .k k k k

τ τ τ

+ +− ≤ − − −Ax b Ax b A x x  (B.10) 

Proof. From inequalities B.6 and B.9, because 1 1 * *L( , ) L( , )k kλ λ+ + ≤x x , I obtain: 

1 1 1

2 2 21 * * 1 .
k k k

k k k k

τ τ τ
λ λ λ λ λ λ− − −

+ +− ≤ − − −  (B.11) 

I know that 1 1
1k kτ τ− −
+  , so B.9 can be obtained by B.11. 

If k=x x  in B.4, I obtain: 

1 T 1 T 1

1 T T

( ) ( f( ) ) 0,
( ) ( f( ) ) 0.

k k k k

k k k k

λ
λ

+ + +

+

 − ∇ − ≥


− ∇ − ≥

x x x A
x x x A

 (B.12) 

By adding the above two inequalities, I can obtain: 

1 T 1( ) ( ) 0.k k k kλ λ+ +− − ≥x x A  (B.13) 

If kτ τ≡ , and 1 1( )k k k
kλ λ τ+ += − −Αx b , the above inequality could be expressed as: 

1 T 1( ) ( ) 0,k k kτ+ +− − ≥x x A Ax b  (B.14) 

and then, I obtain: 

2 2 21 1 1 1( ) 2( ) ( ),k k k k k T k k

τ τ τ
τ+ + + +− = − + − + − −Ax b Ax b A x x Ax b A x x  (B.15) 

and: 

2 2 21 1( ) .k k k k

τ τ τ

+ +− ≥ − + −Ax b Ax b A x x  (B.16) 

The inequality B.10 is proved. 

Theorem 1.4. For any 1k ≥ , under ALM, I can obtain: 
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1
0

20 *

* * * * * *L( , ) L( , ) , ( , ) .
2

k k

k
τ

λ λ
λ λ λ

−−
− ≤ ∀ ∈ ×x x x X Λ  (B.17) 

Proof. Because 1 1
1k kτ τ− −
+ 

, I can obtain the following inequality from B.4: 

1 1 1
1

1 1 * *

2 2 21 * * 1 * * * *

2(L( , ) L( , ))

  , ( , ) .
j j j

j j

j j j j

τ τ τ

λ λ

λ λ λ λ λ λ λ− − −
+

+ +

+ +

−

≥ − − − + − ∀ ∈ ×

x x

x X Λ
 (B.18) 

As I know 1 1 * *L( , ) L( , ) 0j jλ λ+ + − ≤x x , I obtain the following inequality from B.18: 

1 1 1
1

1
1 1 * *

0

12 2 2* 0 * 1

1

2( L( , ) L( , ))

  .
j j j

k
j j

j

k
k j j

j

k

τ τ τ

λ λ

λ λ λ λ λ λ− − −
+

−
+ +

=

−
+

=

−

≥ − − − + −

∑

∑

x x
 (B.19) 

If k j=  and ( , ) ( , )j jλ λ=x x , according to inequality B.2, I obtain: 

1

21 1 1L( , ) L( , ) ,
j

j j j j j j

τ
λ λ λ λ −

+ + +− ≥ −x x  (B.20) 

and: 

1

1 1 21 1 1 1 1

1 1
2 (( 1) L( , ) L( , ) L( , )) 2 .

j

k k
j j j j j j j j

j j
j j j

τ
λ λ λ λ λ −

− −
+ + + + +

= =

+ − − ≥ −∑ ∑x x x  (B.21) 

Adding B.19 and B.21, then I obtain: 

1 1 1
0

* *

12 2 2* 0 * 1

0

2 (L( , ) L( , ))

    (2 1) .
k j

k k

k
k j j

j

k

j
τ τ τ

λ λ

λ λ λ λ λ λ− − −

−
+

=

−

≥ − − − + + −∑

x x
 (B.22) 

Therefore, I obtain: 
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1
0

20 *

* *L( , ) L( , ) .
2

k k

k
τ

λ λ
λ λ

−−
− ≤x x  (B.23) 

According to the above derivation process, I can conclude that the iterative complexity 

of ALM is (1/ )O k , and the proof ends.  
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Appendix C. Iteration-Complexity of the Inexact ALM: iALM 

The iterative complexity of iALM is 2(1/ )O k , and the proof as follows (Kang et al., 

2015; Sahin et al., 2019; Nedelcu et al., 2014): 

Similar to ALM, in iALM, I have: 

2T 1arg min f( ) ( ) ( )
,2

( ).

k

k k

k k k
k

x x

x

τ
λ

λ λ τ

  = − − + − ∈ 
 

 = − −

x x A b A b x X

A b







 (C.1) 

Similar to inequality B.6 in ALM, in iALM, I have: 

11 1

2 22* *

* * * * * *                        2(L( , ) ( , )), ( , ) .
kk k

k k k k

k kL
ττ τ

λ λ λ λ λ λ

λ λ λ

−− −
− ≤ − − −

− − ∀ ∈ ×x x x X Λ

 





 (C.2) 

Lemma 2.1. When 1 1t = , it satisfies: 

( 1) / 2, 1.kt k k≥ + ∀ ≥  (C.3) 

Proof. I can know the following equations by induction: 

* *

1 1 *

L( , ) L( , ),
(2 ) .

k k k

k k k k k kt
λ λ

λ λ λ λ λ− −

 = −


= − − + −

v x x
u





  

 (C.4) 

Lemma 2.2. According to C.4, kλ  and kλ  in iALM satisfied: 

1 1
1 1

2 22 1 2 1 14( ) 4( ) , 1.
k k

k k k k k kt t k
τ τ− −

+ +

+ + +− ≥ − ∀ ≥v v u u  (C.5) 

Proof. According to Lemma 2.1, if ( , ) ( , )k kλ λ=x x  and * *( , ) ( , )λ λ=x x , I obtain: 
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1
1

1
1

21 1 1 1 1 1 1 1
1

21 1 * * 1 1 * 1 1 1 1
1

L( , ) L( , ) ( ) ( ),

L( , ) L( , ) ( ) ( ).

k

k

k k k k k k k k T k k
k

k k k k k T k k
k

τ

τ

λ λ λ λ λ λ τ λ λ

λ λ λ λ λ λ τ λ λ

−
+

−
+

+ + + + + − + +
+

+ + + + + − + +
+

 − ≥ − + − −

 − ≥ − + − −


x x

x x

    

 

  



 (C.6) 

Substituting C.4 into C.6, I can get: 

1
1

1
1

21 1 1 1 1 1 1
1

21 1 1 * 1 1 1 1
1

( ) ( ),

( ) ( ),

k

k

k k k k k k T k k
k

k k k k T k k
k

τ

τ

λ λ λ λ τ λ λ

λ λ λ λ τ λ λ

−
+

−
+

+ + + + − + +
+

+ + + + − + +
+

 − ≥ − + − −

− ≥ − + − −


v v

v

  

 

 (C.7) 

and: 

1
1

1 1 1

21 1 1 1 1 1 1 1 1 *
1

(( 1) )

  ( ) ( ( 1) ).
k

k k k k

k k k k k T k k k k
k

t t

t t t
τ

λ λ λ λ τ λ λ λ
−
+

+ + +

+ + + + + − + + +
+

− −

≥ − + − − − −

v v
  

 (C.8) 

According to 2 2
1 1k k kt t t+ += − , I obtain: 

1
1

2 2 1
1

21 1 1 1 1 1 1 1 1 1 *
1

1 1 1 1 1 1 1 *
1

( )

  ( ) ( ) ( ( 1) )

  ( ( )) ( ( 1) ),
k

k k
k k

k k k k k k T k k k k
k

k k k T k k k k
k

t t

t t t t

t t t
τ

λ λ λ λ τ λ λ λ

λ λ τ λ λ λ

−
+

+
+

+ + + + + + − + + +
+

+ + + − + + +
+

−

≥ − + − − − −

= − − − −

v v

  

  

 (C.9) 

and: 

1
1

1
1

22 2 1 1 1 1 *
1

21 1 *

1( ) (2 )
4

1                           ( ) .
4

k

k

k k k k k k k
k k

k k k k

t t t

t

τ

τ

λ λ λ λ λ

λ λ λ λ

−
+

−
+

+ + + +
+

+ +

− ≥ − − + −

− − + −

v v   

 

 (C.10) 

According to C.4, the last inequality can be expressed as: 

1 1
1 1

222 2 1 1 1 1 *
14( ) ( ) .

k k

k k k k k k k
k kt t t

τ τ
λ λ λ λ− −

+ +

+ + + +
+− ≥ − − + −v v u    (C.11) 

 

If I set: 
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1 1 * 1 1 *( ) (2 ) ,k k k k k k k k kt tλ λ λ λ λ λ λ λ λ+ + − −− + − = − − + −      (C.12) 

from C.12 I can get: 

1 1
1 1

1( )( ) ( )( ).
k k

k k k k k k
k k

t t
t t

λ λ λ λ λ λ+ −
+ +

−
= + − + −     (C.13) 

The Lemma is proven. 

Corollary 2.3. According to C.4, I have: 

1
1

22 2 1 1
14 4 , 1.k

kt t k
τ −

≤ + ∀ ≥v v u  (C.14) 

Proof. As I used before, that 1 1
1k kτ τ− −
+ 

, and from C.5, I can obtain: 

1 1
1

2 22 2 1 1
14( ) .

k k

k k k k
k kt t

τ τ− −
+

+ +
+− ≥ −v v u u  (C.15) 

Theorem 2.4 In iALM, when 1k ≥ , I obtain: 

1
1

21 *

* * * * * *
2L( , ) L( , ) , ( , ) .

( 1)
k k

k
τ

λ λ
λ λ λ

−−
− ≤ ∀ ∈ ×

+
x x x X Λ

  (C.16) 

Proof. According to C.4, I obtain: 

1
1

22 1 1
1* *

2

4
L( , ) ( , ) .

4
k k k

k

t
L

t
τλ λ
−+

− = ≤
v u

x x v

  (C.17) 

Combining the above inequality with inequality C.3, I can get: 

1
1

22 1 1
1* *

2

4
L( , ) L( , ) .

( 1)
k k

t

k
τλ λ
−+

− ≤
+

v u
x x 

  (C.18) 

Because 1 1t = , and according to C.2 and C.4, I can get: 



171 

 

1 1 1
1 1 1

2 22* * 1 1 1 * 1 * 1 14(L( , ) L( , )) 2 2 2 .
τ τ τ

λ λ λ λ λ λ λ λ− − −
− ≤ − − − − −x x   


 (C.19) 

Similar to the derivation process from C.9 to C.11, I obtain: 

1 1
1 1

22* * 1 1 1 * 1 1 *4(L( , ) L( , )) 2 .
τ τ

λ λ λ λ λ λ λ− −
− ≤ − − − −x x  


 (C.20) 

From C.19 and C.20, I have: 

1 1
1 1

2 22 1 1 1 *
14 .t

τ τ
λ λ− −+ ≤ −v u  (C.21) 

Combining C.21 with C.18, I proved that the iterative complexity of iALM is 2(1/ )O k , 

and the proof ends.  
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